典型断层组合及不同温压条件下岩石变形过程中的声发射活动特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为系统研究断层组合形式及温压环境对岩石变形过程中微破裂时空演化特征的影响,本文主要开展了以下几方面的工作:(1) 在前人研究成果的基础上给出声发射定位的慢度离差模型;(2) 重点进行了四个大尺度标本的双轴压缩破裂实验,分别预置拉张和挤压型雁列式断层、共线不连通断层和含圆柱型障碍体的平直断层,后两者在概念上可模拟与地震孕育有关的“强闭锁区”和断层面上的障碍体或坚固体。共进行了一万六千余次微破裂事件的时、空、强定位和一万余次微破裂事件的破裂机制反演,据此重点讨论了不同典型断层组合条件下微破裂的时空演化、破裂扩展和破裂机制问题;(3) 在不同的温压条件下开展了39个高温高压实验(固体围压介质),重点研究不同温、压环境对AE时序特征的影响。三组实验的温、压条件分别是:室温(20℃)下围压从50MPa-850MPa改变、400MPa围压下温度从室温(20℃)-900℃改变、以及模拟地壳温压条件直至35km深度;(4) 基于实验结果及已有的研究成果,提出一个表征地震活动过程的简单物理概念模式,据此对部分地震学观测事实进行了初步的解释。
     论文在以下几方面取得积极进展:
     1、声发射定位方法的理论和数值试验研究
     依据慢度离差模型的基本原理,给出一种仅依赖于初至到时的声发射定位及瞬时波速联合反演方法。通过数值试验对参数设置、探头数量及其与AE空间位置的关系、震相到时的噪声干扰等问题进行探讨,并对真实定位的误差分布给出统计上的圈定。数值试验结果表明:到时噪声小于测量时间单位的50%时,平均定位误差小于1.3,最大误差为5.0;97%以上的“AE”事件的定位误差小于物理不可分辨精度3mm。
     该方法的最大特点在于可以不预先知道速度信息并且不需对速度结构进行均匀性假定,这对速度结构复杂并随时间(加载过程)变化的AE定位问题显得尤其重要。通过与标本破裂后表面宏观裂纹的对比分析,进一步证实了定位方法的正确性及较高的定位精度。
     2、典型断层组合变形过程中声发射时空演化及破裂扩展
     根据16通道AE波形记录结果,对一万六千余次AE事件进行了三维定位并确定其发生时间及能级大小。进而详细研究了四种典型断层组合变形过程中群体AE事件的时空动态演化过程,这不但丰富、深化了前人的认识,而且取得一些新的重要结论。与标本破裂后表面宏观裂纹相比较,完整地描述了变形过程中标本的动态破裂扩展图象。
     2.1 从AE时序特征来看,破前随差应力的增加,不同断层组合标本AE活动均明显增强。雁列式断层和含障碍体的平直断层标本破裂前AE累积频次指数增长,而共线不连通断层标本则显示线性增长趋势。因而,AE累积频次指数或线性增长均是系统失稳前典型的微破裂前兆特征,其差异可能缘于构造组合形式的不同。相对于弹性变形阶段而言,雁列式断层标本破裂前的弱化阶段相对较长,而共线或平直断层标本则弹性变形时间较长,弱化阶段不甚明显。一般情况下峰值差应力对应最大的AER,而挤压型雁列式断层标本和含障碍体的平直断层标本在弱化阶段后期还显示破裂失稳前短时期内的相对平静现象。
     2.2 从AE空间分布格局来看,预置构造对雁列式断层组合变形过程中AE空间分布格局具有较强的控制作用,破裂前局部化现象十分明显,前期的微破裂丛集图象指示并勾勒出后期宏观破裂的具体部位、扩展尺度及方向。雁列式断层组合AE主要分布于雁列区预置断层两个端点附近及其连线附近发生。结构不均匀性的影响随差应力增加逐渐显著,在变形的中后期较大事件通常集中于某一端点附近发生,拉张型雁列式断层雁列区最终破裂扩展与σ_1方向垂直,而挤压型雁列区最终破裂扩展方向则与σ_1方向平行。共线不连通断层破裂失稳前最
1 Major Research ContentsThe aim of this work is to study the characteristics of acoustic emission (AE) of deforming rock sample with typical combined faults and samples at high pressure and temperature. It includes following aspects: (1) A slowness deviation model for AE location is given based on the results of predecessors. (2) The spatial-temporal evolution of AE, fracture extension and fracture mechanism during rock deformation is studied by experiment under biaxial compression. The samples of complex faults is composed compressional and extensional en-echelon, collinear fault with a non-connected area, and a regular fault with a columnar asperity. (3) With the solid confining pressure medium, thirty-nine HT-HP experiments have been performed under different pressure and temperature conditions. The focus is the influences of temperature and pressure condition on temporal features of AE sequences. The temperature and pressure conditions of three group tests are: (a) room temperature and confining pressure from 50MPa to 850MPa; (b) 400MPa confining pressure and temperature from room temperature (20°C) to 900°C; (c) simulating the temperature and pressure condition of crust up to about 35km depth. (4) Base on the experimental and theoretical results, a simple physical concept model for earthquake generation is proposed. And some observations are explained preliminarily with the model.2 Major Results and their implications(I) Based on the fundamental principle of the slowness deviation method, the specific method to determine the source location, occurring time and P-wave velocity of an AE by the Genetic Algorithm is offered. Combining with the actual experimental condition, some basic question such as AE location errors are studied by the numerical tests, and the statistic limitation for error distribution of AE location is determined. The results show that the locating errors of more than 97% of AE events are distributed within the range of 3mm, smaller than the diameter of a Tap sensor.The maximum feature of this AE locating method is that it does not need to know the velocity messages in advance and to assume the uniformity of the velocity field. This is very important for the AE location, which has a complex velocity structure and the velocity varys with the time (loading process). It is an important innovative progress for the AE location method , especially for AE location study on the structural rock samples and its results.(2) The spatial-temporal evolution of AE. fracture extension and fracture mechanism during rock deformation arc studied experimentally under biaxial compression. About more than 16000
    AE events are located The final images of AE spatial-temporal evolution corresponded to the macro-cracks of samples.2.1 The temporal characteristics of AE sequences show that the AE activity enhances with the increase of the differential stress before failure. Both exponential and linear increments of cumulated frequency of AE are typical precursory features before the system's instability, the differences are mainly due to the different forms of combined faults. During the deformation of the en-echelon fault and the regular fault with a columnar asperity, the cumulated frequency increases exponentially before failure, but it increases linearly for the collinear fault with a non-connected area. Comparing with to the elastic stage, weaken stage is relatively long for the en-echelon faults. On contrary the elastic stage is very long for the collinear fault with a non-connected area and the regular fault with a columnar asperity, weaken stage is not obvious for these two types of fault combination. Generally, the peak differential stress corresponds to the maximum AER, and the relative quiet phenomena of short time appear in the anaphase of weaken stage before the instability for compressional en-echelon and regular fault with a columnar asperity.2.2 Viewing from the space distribution of AE events, the prefab faults have a big influence on the AE distribution pattern in the en-echelon area. Most of AE are distributed between the two points of prefab faults and big AE generally occurr around one point. The fracture localization is very clear. The evolation of AE space distribution corresponds to the extensional process and crack image of macrofractures. The extending direction of the fracture for extensional and comresssional en-echelon are perpendicular and parallel with the a,, respectively. For the collinear fault with a non-connected area, the most distinct feature is that with progress of deformation, a clear evolation process of gap revealed around the non-connected area, which develop in time and concentrates in space gradually. Due to complex action between the hanging and lower wall and asperity, the alternate AE activity in different areas is the most remarkable feature of the regular fault with a columnar asperity. Taking asperity as a center, compressional risen area and extensional area are formed on the cross regions around the asperity. The AE events occur alternately in the compressional or extensional region with the increment of difference stress. Among them, big AE mainly occurr in the extensional area and most of small AE events concentrate in the compressional area.2.3 The variations of the b values display a common feature. The b value reduced gradually in the prophase for a long time, and then rises back quickly before the instability. The b value dropping processes generally happen during the processes of difference stress increment. It indicates that the size of micro-fractures augment with the increment of difference stress. This dropping tendency of b values may continue to the weaken stage. And the quick comeback processes mainly happen in the anaphase of the weaken stage and at the moment before the fracture instability. The studies also show that after the failure, the dropping process of b value in en-echelon region correspond to the fracture extending process outside the en-echelon area (the hanging wall) in the time. This is a typical separation phenomenon of "source" and "precursory". Its basic essential is that the fractured region has a lower strength than other regions and has a more sensitive reaction for tinier variation of regional stress field.2.4 Considering the frequency and magnitude characteristics of AE sequences, the total AE number of the collinear fault with a non-connected area and the regular fault with a columnar asperity are larger than that of en-cchelon. On the other hand, the big AE events of en-echelon samples are slightly larger than that of collinear fault sample and regular fault sample The ratio
    between the number of MM>\.5 events and the total AE number for extensional and compressional en-echelon are 66% and 69% , respectively. But this ratio for collincar fault with non-connected area and regular fault with a columnar asperity are only 21% and 42% , respectively. The b values of G-R relationship of the collinear fault or regular fault are a little larger than that of en-echelon. This means that the small AE events occupies more larger ratio during the deformation period for the collinear fault with a non-connected area and the regular fault with a columnar asperity. Meanwhile, it indictes that the differences of b value due to the differences of structure are larger than the variation of b value caused by the increase of differential stress. That is, relative to the mechanical condition, the structure difference has more strong influence on the b values.3 <. Based on the AE locating results, the fracture mechanisms of more than 10000 events are inversed and statistical characteristics of AE fracture mechanism during the deformation process of typical combined faults.3.1 For micro-fracture types, the dip and oblique slip are dominant. Among them more than 54% micro-fractures are dip slip in the compressive en-echelon area, indicating the strong compressive action and a complex faulting type. The fracture type has a large difference between the compressive and extensional areas in the sample of the regular fault with a columnar asperity, the dip slip is dominant in the compressive areas, meanwhile the oblique and dip slip are similar in the extensional areas. The rate of extensional or compressive dip slip is some extent different during the different periods before or after failure for the en-echelon fault samples. For the compressive en-echelon sample, when it approaches to the failure, the remarkable dilatancy-diffusion weaken process leds to increase of the rate of extensional fracture obviously in the future macro-fracture area. This means that it is possible to estimate the occurrence time of big earthquakes to some extent by comparing the proportional variation of extensional or compressive component in the mechanism solutions. The study also shows that there is a visible increase of strike slip component of big events with M4£>2.() when the failure approaches, even if the dip and oblique slip also were dominant. At the same time, the horizontal or nearly horizontal forces for these big events are dominant too. Its major reason is that the big events controlled by existing faults strongly, while small events produced mainly by the fracture of intact rock. There is no obvious relation between the small events and existing faults.Generally, the dominant direction of A-plane and B-plane of mechanism solutions are parallel or perpendicular to existing faults and the al is roughly their symmetry axis. But they looklike rather dispersed. Indicating the strong influence of existing faults and loading process on the AE mechanism solutions. Results also show that the mechanism solutions (specially for stress field direction) of AE which happened inside the intact rock and far from existing faults can reflect the realistic characteristics of regional stress field.3.2 Local mechanical circumstance from the AE mechanism solutions is very complex. For principal stress a,, oblique and nearly horizontal slips are dominant, and the vertical force is lack. The direction of principal extensional or compressive stress reflects the direction and acting mode of additional tectonic stress, the direction of P- or T-axis is close to that of additional loading force roughly but generally had a large deviation. Almost at the same point inside the intact rock, the mechanism solutions also vary with time. This means that under the intact medium condition, the stress level may be taken an important effect on the mechanism solutions of AE. This also reveals that in seismicity it is likely understandable for middle or small earthquakes, which occur in the
    same small area and different stage, but their seismic mechanism solutions have statistical stability of short time. They are acted commonly by both the local medium asymmetry and regional tectonic stress, very different from large earthquakes which are controlled by existing faults. Comparing with the experiment results, the remarkable variation of mechanism solutions of these middle or small earthquakes probably reflect changes of regional stress field.3.3 The results of partial experiments show that the tectonic deformation process has big influence on the direction of local principal stress. The dominant direction of P-axis has a believable change before and after the failure. The results also show that the influence of additional force would increase gradually if the loading strength is big enough. Maybe this is the major reason that seismic activity displays similar images in the different tectonic structure areas. For the sample of the regular fault with a columnar asperity, the mechanism solutions are different in the initiative and passivity wall during the process of fault relative movement. The dominant direction of P- or T-axis is coherent in the lower wall (passivity wall), but it is dispersive in the hanging wall (initiative). Meanwhile, the force type is relatively coherent in compressive region and dominated horizontal or nearly horizontal force.4-. The Fourier spectrum of the AE wave in a infinitesimal area (approximately in the same point) shows that during the elastic deformation stage, the high frequency component reveals an increasing tendency with the development of deformation (time). And during weaken stage after the peak strength, besides the wide frequency belt of energy distribution, a lower frequency peak also appears for some AE events. The wavelet analysis on the AE wave indicates that the dynamic fracture processes are not similar for any two AE events. The calculations of seismic parameters on four big AE events (M^^.O) show that the fracture size of AE is mainly between 1.24mm to 1.66mm.5, At different temperatures and different confining pressures as well as temperature and pressure conditions corresponding to in different crust depths, the temporal characteristics of AE sequences have been stress studied. The results show that the temperature is the major influence factor for granite brittle-ductile transition. And the failure forms of granite mainly depend on the confining process. For rock strength, the influence of confining pressure is stronger than that of temperature in the brittle and semi-brittle field, but opposite in the semi-brittle and ductile field.5. / At the room temperature, the rock strength becomes large with the increasing confining pressure, and the failure types also become from incremental failure into abrupt failure. Meanwhile, the failure types of medium become from tensile-shear fracture to shear fracture and further to the shear fracture and stick-slip. At the low confining pressure, the system keeps its stability state when the sample fractures and there are a few AE events in this process. And the AE temporal distribution is stochastic before and after failure. This means that it can not accumulate huge energy to produce a big fracture or instability under the pressure condition of earth surface (about zero depth). Under the major confining pressure, the system is instability, showing stick-slip features and obvious stress drop. With increment of confining pressure, the number of AE before and after failure increases and the time when AE are detected is eralier. Showing an obvious cluster feature in time means that a tiny stress disturbance (increment of difference stress) can trigger the microfracture or urge it to extend continuously at high confining pressure. Before the failure, the AE cumulating frequency increases accord with exponent model and the exponential increasing rate increase with the increasing of confining pressure In the quasi-periodic process of stress drop, amplitude, releasing rate and time interval of large stress drop
    increase with the increase of confining pressure. These can be analogy to such an observed fact qualitatively: that in quasi-periodic seismic activity, the high environment stress can generate a strong earthquake and the active period of strong earthquake will be longer. Dividing stages by the occurrence time of big stress drops, a remarkable distinguish is, along with the drown on of the huge instability, the cumulating frequency of AE increases with the exponential model or linear model before or after failure, respectively.5.2 Under the condition of 400MPa confining pressure, the rock strength decreases gradually with the rising of temperature. The sample failure types become from abrupt instability at low temperature into the quasi- abrupt instability at middle temperature and incremental failure at high temperature. The transition temperature is about 150°C and 550°C. The medium failure types become from brittle tensile-shear fracture and stick-slip (about 20~250°C) , through the semi-brittle fracture (350°C) to the semi-brittle flow (650°C) . At 850°C, plastic flow and partial smelting appear. With the rising of temperature, the number of AE decreases quickly, and the level of difference stress also has a little increase. Below 250°C, the cumulating number of AE before the failure correspond to the exponential increasing model with the failure draw on, but the rate of exponential increasing minishes with the rising of temperature. There is no AE event been recorded at the high temperature (650°C and 850°C).5.3 Under the experiment conditions that model changes with crust depths, the granite rock strength increases with the depth until 30km. In shallow crust (about 3km), abrupt rock failure or quasi-abrupt instability happen at lower pressure and result in tensile-shear fractures. AE are distributed almost uniformly before or after failure. Downward to the depth range (about 6-1 Okm) with progressive failure as the main feature, there are no or only a few number of AE before or after failure. In deeper range (about 14-22km), rock failure shows some features of quasi-abrupt instability at high pressure. There are still few AE before failure, but with the stick-slip, much more AE events are detected post-failure. At the temperature and pressure condition of more deeper crust (about 26km), rock failure takes abrupt instability with at pressure, there are dense AE activity before failure and cumulating frequency of AE increases exponentially before the failure. At about 35km depth range, rock strength decreases quickly with the depth and the sample semi-ductile or ductile deforms and progressive fails, there are no AE detected before and after failure.5.4 At different temperatures and confining pressures, the frequency-magnitude relationships of AE accord with the famous G-R relation. At the room temperature, the b value in entire deformation process decreases with the increasing of confining pressure. This implies that tendentious fall of b value may predict an enhancement of environment stress. At the 400MPa confining pressure and different temperatures, the b value before failure is a little larger than that of after failure. In the case of before or after failure, the b-value is high at the low temperatures and is low at the high temperatures. The lowest b value appears at 350°C, which is the temperature condition when failure types transform from abrupt instability to incremental failure under the 400MPa confining pressure. Under the condition changing with the crustal depth, the b value of AE sequence before failure seems a little smaller than that in post-failure stage, similar to natural earthquake sequences. An important fact is that the b value tends to decrease with depth. The results of after failure, show that the lowest b value appears at the temperatures and pressures equivalent to 14~18km deep crust.5.5 The study results demonstrate that the AE temporal sequences have an obvious
    multifractal characteristic which is mainly controlled by the temporal cluster feature of AE sequences. The numerical ranges of index a decrease with the increase of the confining pressure, and becomes wide with the rise of temperature. The former means that the scaling types decrease with the increase of confining pressure, and predicts that the temporal structure of AE sequence tends to be simple and in order. The later means that the scaling types increase with the elevation of temperature and implies that the temporal structure of AE sequence tends to be complex and chaos with the rise of temperature. The experiment results under the conditions that change with the crustal depth show that the numerical range of index a is the widest at about 18km depth and becomes narrow at shallower or deeper crust. So, when the temperature and pressure condition simulating the real environment of focal depth changes from shallow to deep in the earth crust, the range of a of microfracture sequence is likely to go tlvrough such an evolvation process that a changes from narrow to wide and then to narrow again.6, Based on the properties and mechanical behaviors of rock deformation and failure, as well as the rock strength features with the crust depth, a simple physical model for earthquake generation is proposed. In the epicenter area, it is assumed the medium component is the same and almost uniformity from shallow to deep, and assuming the tectonic stress loading at an fixed strain rate in horizontal direction and there is no relation to depth. Under this medium and mechanical condition, in the upper crust brittle and semi-brittle field, the rock strength increases with the depth. The differential stress increases gradually with time. For somewhere in the crust, when the differential stress is larger than the rock strength, the rock will fail. But the rock failure does not always lead to abrupt instability (earthquake). It also relates to the mechanical behavior of rock failure at different temperatures and pressures. According to the model, during a loading circle, tectonic stress increases gradually with time and the foci move to the deeper crust gradually. The relocation results of some earthquake sequences support this concept model.In brittle field, when temperature and pressure condition simulating the real environment of crust changes from shallow to deep, the mechanical behavior of granite failure will go through the section of abrupt instability7 at low pressures, the section of incremental failure, the section of quasi-abrupt instability and the section of abrupt instability at high pressures. The medium failure and correlative microfractures temporal distribution before or after failure are very different when the mainfracture occurs in different sections. The range of a of microfracture sequence is likely to go through such an evolvation process that a changes from narrow to wide and then to narrow again. With the development of earthquake generation, the fracture position becomes deep gradually. Due to above intrinsic attributes, the phenomena of "enhancement-quiet-active again" and other seismic images will emerge in the epicenter area before the mainshock. A long period dropping of b values before the mainshock may be the result of small earthquakes moving to the deep in the epicenter area, and sudden drop of b values, close to the mainshock may be the reflection of rock dilatancy weaken or fault displacement weaken. The range of a, multifractal index spetrum, of microshock sequence is going through to wide or to narrow before the strong earthquake may depends on the focal depth distribution of the mainshock.
引文
安镇文,朱传镇,李纪汉.1987.单轴压缩下岩石热破裂声发射M值及其破裂扩展特征.地震学报,9(增刊):407-412
    安镇文.1999地震孕育过程的物理学研究展望.国际地震动态5,12-15
    蔡戴恩,方亚茹,隋旺华,等.1987.岩石破裂全过程的声发射b值.地震学报,9(增刊):401-406
    陈逢时.1998.子波变换理论及其在信号处理中的应用.北京:国防工业出版社
    陈颙,季颍.1993.一个能产生分形结构的地震活动性模型.西北地震学报,15(4):1-6
    陈颙,郝晋升,严维玲,等.1982.单轴压缩时压机刚度对岩石样品声学性质的影响.国家地震局科技监测司编,大陆地震和地震预报国际学术讨论会文集.北京:地震出版社,409—415
    陈颙,于小红,戴恒昌,等.1987.加载历史对岩石声发射的影响—关于水库地震机理的讨论,地震地磁观测与研究,7(1)
    陈颙,于小红.1984.岩石样品变形时的声发射,地球物理学报,27(4):
    陈颙等(著).1989.分形与混沌在地球科学中的应用,学术书刊出版社
    邓起东.1979.中国构造应力场特征及其与板块运动的关系,中国地质,1(1)
    邓志辉,马胜利,马瑾,等.1995.粘滑失稳及其物理场时空分布的模拟研究,地震地质,17(4)
    丁韫玉,狄秀玲,梅世蓉.1997.华北北部5级以上地震地震学异常的研究.地震短临预报的理论与方法——“八五”攻关三级课题论文集.北京:地震出版社,103~119
    丁韫玉、狄秀玲、梅世蓉.1997.华北北部5级以上地震地震学异常的研究.地震短临预报的理论与方法——“八五”攻关三级课题论文集.北京:地震出版社,103~119
    杜异军,马瑾.1986.“入”字式断层声发射b值及震级—频度关系的物理意义,地震地质,8(2)
    方亚如.1987.岩石声发射Kaiser效应的方向独立性,地震地磁观测与研究,6(2)
    傅承义,陈运泰,祁贵仲.1991.地球物理学基础,北京:科学技术出版社
    傅淑芳,刘宝诚.地震学教程,北京:地震出版社,535-539
    高平,刘若新,马宝林,李彪,等.1994.绿泥石片岩和斜长角闪岩在高温高压下的物理力学性质及其应用地震地质,16(1):83-88
    耿乃光,郝晋升,李纪汉,等.1987.应力途径与岩石的摩擦滑动,地震学报.9(2)
    耿乃光.1986.值模拟实验的进展和我国b值模拟实验的开端,地震学报,8(3):330—333
    顾浩鼎,孙文福.1992.地震活动的自组织和演化,地球物理学报,35(1)
    郭增建,秦保燕.1991.地震成因与地震预报.北京:地震出版社,220—223
    郝晋升,刘晓红,李纪汉.1986.华北地区五种岩石在高压下的破坏特征,8(4)
    何昌荣,刘树山.1997.高温高压岩石三轴固体介质实验装置改造,国家地震局“八五”重点项目报告
    胡小幸,林邦慧.1989.邢台地震空间分布随时间变化的立体图象与地震发生过程.地震学报,11(1):1—11
    胡小幸,林邦慧.1989.邢台地震空间分布随时间变化的立体图象与地震发生过程.地震学报.11(1):1—11
    黄立基,丁菊仁.1991.多标度分形理论及进展.物理学进展:11(3):269—329
    蒋海昆,刁守中.1995.一个具有分形结构的地震活动性模型及分形维数与b值之间关系的初步讨论,地震学报,17(4):524-527
    蒋海昆,王忠民,刁守中.1995.地震能量空间分布局域标度特性的初步研究,地震研究,18(4):357-364
    蒋海昆,魏光兴.1993.华北地区地震分布多标度分形特征的初步研究,西北地震学报,15(1):61-66
    蒋海昆,侯海峰,王琦.2000.华北地区大范围内中等地震活动平静的统计检验及其预测意义.内陆地震.14(2):97-104
    蒋海昆,张流.1998.岩石破裂过程的声发射研究进展(综述).世界地震译丛,(3):1—9
    蒋海昆,张流.1998.岩石微破裂时空分布特征及其动态演化过程的声发射研究进展(综述).世界地震译 丛,(5):1—10
    焦明若,张国民.2000.地震中短期前兆某些特征的研究.地震,20(3),29-36
    焦文杰,马瑾,吴秀全,等.1991.围压下岩石破坏声发射测试系统及震级频度关系的实验研究,地震地质,13(1):54-59
    焦远碧,吴开统,张智.1989.断层面上的障碍体与地震序列中的强余震,地球物理学报,32(专辑)
    金川忠.1995.用声发射方法测量地壳应力,世界地震译丛,3
    雷兴林,马瑾,楠濑勤一郎,等.1991.三轴压缩下粗晶花岗闪长岩声发射三维分布及其分数维特征,地震地质,13(2)
    雷兴林,马瑾,楠濑勤一郎,西泽修,佐藤隆司.1990.三轴压缩变形条件下粗晶花岗岩声发射震源机制的实验研究,岩石变形过程中声发射时空分布特征及其地震学意义(博士学位论文)
    雷兴林,马瑾.1990.利用多通道声发射波形数据分析b值—b值分段现象及其可能的物理机制探讨,岩石变形过程中声发射时空分布特征及其地震学意义(博士学位论文)
    雷兴林,马瑾.1990.实验室岩石声发射三维定位及标本速度场联合反演—理论与方法,《全国第二届构造物理学术讨论会文集》,北京:地震出版社
    雷兴林,西泽修,楠濑勤一郎,等(陈世军译).1995.两种不同粒度花岗岩中声发射的震源分布分形结构和震源机制解.世界地震译丛,5
    雷兴林.1989.岩石声发射实验研究概况,地震地质译丛,11,6
    李典文.1995.岩石工程中的声发射技术研究与应用现状,岩石混凝土测试技术新进展论文集
    李纪汉,刘晓红,郝晋升,等.1986.华北地区五种岩石破裂前声发射b值的变化,地球物理学报,32(专辑)
    李纪汉,刘晓红,郝晋升.1986.温度对岩石弹性波和声发射的影响.地震学报,8(3):293—300
    李全林,于渌,郝柏林,陈锦标.1979.地震频度—震级关系的时空扫描,北京:地震出版社
    李善邦.1957.中国的地震活动性.北京:科学出版社
    李世愚,滕春凯,卢振业,等.2000.典型构造微破裂集结的实验研究,地震学报,22(3),278—287
    李世愚,朱传镇,王琳瑛.1997.大尺度岩石破裂声发射序列的实验研究.见:地震短临预报的理论与方法(文集).北京:地震出版社,537-545
    林邦慧,胡小幸,周冉.1990.1966年邢台地区强震前小震的“密集-平静”特征及其初步解释.地震学报,12(4):348—356
    刘力强,马瑾,吴秀芳.1986.雁列式断层变形与失稳过程的实验研究,地震学报,8(4)
    刘力强,马胜利,马瑾,等.1999.岩石构造对声发射统计特征的影响.地震地质,21(4):377-386
    刘万琴,李世愚,郑治真,赵明,沈苹.1999.破坏性矿震震前短临阶段震源过程研究,地震学报,21(1),57—64
    刘希强,周蕙兰,沈苹,等.2000.用于三分向记录震相识别的小波变换方法.地震学报.22(2):125—131
    刘希强,周蕙兰,郑治真,等.1998.基于小波包变换的弱震相识别方法.地震学报.20(4):373—380
    刘晓红,李纪汉,郝晋升,等.1989.不同应力变化过程岩石的声发射b值,地球物理学报,32(专辑)
    刘祝萍,吴小燕,楚泽涵.1994.岩石声学参数测量及研究.地球物理学报,37(5):659—666
    陆远忠,陈章立,王碧泉,等.1985.地震预报的地震学方法.北京:地震出版社,91~94
    吕培苓,吴开统,焦远碧,等.1991.岩石蠕变过程中声发射活动的实验研究,地震学报,13(1)
    马瑾,马文涛,马胜利,等.1986.5°拐折构造变形物理场的实验研究与数值模拟,地震地质,17(4)
    马瑾,赵国光,张肇诚,洪汉净,等.1996.构造运动异常与地震前兆的鉴别及场源关系的研究,“八五”重点课题85-04-06研究报告
    马瑾,马胜利,刘力强,等.2000.交叉断层的交替活动与块体运动的实验研究,地震地质,22(1):65-73
    马瑞,卢民杰.杨晓东.1996.不同温压条件下弹性波在岩石中传播速度的实验研究.地震地质,18(3):259—268
    马胜利,邓志辉,马文涛,等.1995.雁列式断层变形过程中物理场演化的实验研究(一),地震地质,17(4)
    马胜利,刘力强,邓志辉.1995.雁列式断层变形过程中物理场演化的实验研究(二),地震地质,17(4)
    马文涛,马瑾,刘力强,等.1995.雁列断层变形过程中的声发射特征,地震地质,17(4)
    马文涛,马瑾,刘力强,等.1996,单裂缝岩石标本的弹性波频响特征初步研究,地震地质,18(3)
    马文涛.1996.典型断层组合的声发射及波速场的实验研究,博士论文,国家地震局地质研究所,2—5
    马宗晋.1982.1966—1976中国九大地震,北京:地震出版社
    梅世蓉,冯德益,张国民,朱岳清,高旭,张肇诚.1993.中国地震预报概论,北京:地震出版社
    梅世蓉,宋治平,薛艳.1996.我国巨大地震前地震活动环形分布图象与规律.地震学报,18(3):1—9
    梅世蓉,薛艳,尹京苑.1999.唐山、邢台地震序列特征与三维速度结构的关系——兼论强震群型地震的预测问题.地震学报,21(2):159—165
    牛志仁,施行觉.1992.岩石分形断裂的统计理论,地球物理学报,35(5)
    牛志仁.1980.我国西部地区某些强震及中强震前后的异常地震活动.地震学报,2(3):294~303
    平田隆幸.1990.通过破裂实验观察地震现象,数理地震学,(日)斋藤正德等著,魏淳等译,北京:地震出版社,57—65
    石耀霖.1994.遗传算法及其在地球物理科学中的应用,中国科学技术大学研究生院讲义
    宋俊高,王炜,陆锦花.1997.前兆性地震平静在中期预报中的定量研究.西北地震学报,19(3):37~43
    宋治平,尹祥础,陈学中.1997.包体模型的力学场特征及其在地震活动性解释中的应用.见:国家地震局预测预防司编.地震短临预报的理论与方法——“八五”攻关三级课题论文集.北京:地震出版社,529—536
    唐晓明,陈颙.1989.震波衰减变化的测量及其在地震预报中的应用,地球物理学报,32(专辑)
    汪集炀,黄少鹏.1990.中国大陆地区大地热流数据汇编(第二版).地震地质,12(4):351—366
    汪素云,James Ni,马宗晋,等.1991.华北强震断层面解和震源深度特征.地球物理学报,34(1):42—54
    王连祥,方德植,张鸣镛,林坚冰,等.1977.数学手册,北京:人民教育出版社
    王绳祖,施良骐,张流.1986a.不同围压下花岗闪长岩主破裂带的形成与演变,现代地壳运动研究(2),北京:地震出版社,94-99。
    王绳祖,施良骐,张流.1986b.岩石塑性成分对失稳型式的影响,地震地质,8(4):77-84。
    王绳祖,施良骐.1985.岩石错动面的凹凸不平及两种突发失稳,地震地质,7(3):73-80。
    王绳祖,张流.1982.地壳温压条件下周口店花岗闪长岩的变形破坏,地震地质,4(4):68,图版3-4。
    王绳祖,张流.1984.剪切破裂与粘滑—浅源强震发震机制的研究,地震地质,6(2):63-73,图版5-7。
    王绳祖.1990.浅源强震的失稳过程:破裂扩展抑或摩擦错动?第二届构造物理学术讨论会文集,马瑾、王绳祖主编,北京:地震出版社,113-119
    王绳祖.1993.岩石脆性—延性转变及塑性流动网络,地球物理学进展,8(4):25-37。
    王威,崔效峰,王绳祖.1988.固体围压介质岩石三轴实验装置的压力标定:一种自检标定方法.见中国岩石力学与工程学会高温高压岩石力学专业委员会编,第一届高温高压岩石力学学术讨论会文集.北京:学术期刊出版社,179—185
    王子潮,王绳祖,王威.1990.地壳岩石的脆延性转变、失稳型式及浅源强震震源深度的估计,第二届构造物理学术讨论会文集,马瑾、王绳祖主编,北京:地震出版社,103-112。
    王子潮,王绳祖.1988.迁安石英岩脆延性转变特征及定量判据,长春地质学院学报,18(4):391-400。
    王子潮,王绳祖.1989.迁安石英岩的实验变形、失稳型式和石英晶体的位错结构,现代地壳运动研究(4).北京:地震出版社,86-93。
    王子潮,王绳祖.1991.地壳岩石半脆性非均匀蠕变破坏—失稳的判别,地质科学,(1):60-67。
    王子潮,王威.1989.高温高压岩石三轴蠕变实验系统(固体传压介质),地震学报,11(4),431—436
    吴荣辉.梁尚鸿.1985.利用区域地震台网P、S振幅比资料测定北京地区小震震源参数.中国地震.1(4).1985
    席道瑛,陈普刚.应力或热疲劳对花岗岩Kaiser效应的影响.地震地质,17(2),1995
    许昭永,舒燕华,包一峰.1989.单轴压缩下填充物胶灌切口样品的破裂特征,地球物理学报,32(专辑)
    许昭永,王彬,赵晋明,等.1997a.含硬包体试样微破裂图象演变过程的实验研究,地震学报,19(3)
    许昭永,梅世蓉,庄灿涛,等.1992.真三轴压缩时几种岩样微破裂定位的初步研究,地震学报,14(增刊)
    许昭永、王彬、赵晋明,等.1997b.含硬包体试样破裂特征的实验研究.地震学报,19(1):79—85
    许征宇,陈颙.1989.b值的实验研究,地球物理学报,32(专辑)
    许忠淮,阎明,赵仲和.1993.由多个小地震推断的华北地区构造应力场方向.地震学报,15(5),268—279
    扬润海,许昭永,赵晋明,等.1997.微破裂成核过程和应力(场)关系的实验研究,96-913-03-02项目阶段汇报材料,1997,8
    尹祥础,李世愚,李红,等.1987.从断裂力学观点探讨b值的物理实质,地震学报,9(4)
    臧绍先,范建利.1987.不同单轴加压下岩石声发射的时间过程与频率特性,地震学报,9(1)
    曾正文,马瑾,吴秀泉,王艾芳.1994.单节理岩体变形与破坏过程中声发射能量特征及意义,地震地质,16(1)
    曾正文,马瑾,刘力强,等.1995.岩体破裂—扩展过程中的声发射b值动态特征及意义,地震地质,17(1)
    曾正文,马瑾,马胜利,等.1993.岩石摩擦—滑动中的声发射b值动态特征及其地震学意义,典型不连续岩体变形与滑动过程的声发射实验研究(博士学位论文)
    曾正文.1993.典型不连续岩体变形与滑动过程的声发射实验研究,国家地震局地质研究所博士论文
    张大伦.1984.确定岩石中先存应力状态的声发射法,地震地质.6(1)
    张国民,傅征祥.1985.华北强震的时间分布特征及其物理解释,地球物理学报,26(6),569—578
    张流.1986.高温高压条件下周口店花岗闪长岩岩石力学性质的实验研究,地震地质论文集,天津:天津科学技术出版社
    张流,施良骐,王绳祖.1988.岩石破坏和断层活动的实验研究及多震层起因探讨,中国地震断层研究,乌鲁木齐:新疆出版社
    张流,王绳祖,施良骐,刘树山.1989.高温高压岩石三轴实验装置(固体介质)及实验技术,中国技术成果大全,20期,国家科委成果管理办公室
    张流,薛丽霞,施良骐,等.1990.高围压下岩石破坏和摩擦滑动过程中的声发射活动性.岩石力学与工程学报,9(1)
    张流.1993.多震层多震的岩石力学因素.国际大陆多震层学术讨论会文集,北京:地震出版社,277—289
    张流,许昭永,陆阳泉,等.1995.地震前兆场物理机制实验研究的新进展,地震,增刊
    张智,吴开统,焦远碧.1987.含有障碍体的岩石样品破裂发展过程中的b值变化,中国地震,3(1)
    周德仁.1989.花岗闪长岩的静疲劳破坏及其声发射的实验研究,地球物理学报,32(专辑)
    周永胜,张流,蒋海昆,等.2000.不同温压条件下居庸关花岗岩变形破坏与失稳形式的实验研究.中国地震,待刊
    朱令人,周仕永.1992.地震多重分形标度指数谱f(a)的研究.西北地震学报,14(2):30-35
    朱令人.1997a.对强震前地震分形谱异常的研究.地震学报,19(3):331—333
    朱令人.1997b“八五”期间非线性科学应用于地震科学基础研究的进展(综述).国际地震动态,(10):1—10
    Aki, K. 1966. Generation and propagation of G waves from the Niigata earthquake of June 16, 1964. 2. Estimation of earthquake moment, released energy, and stress drop from G wave spectrum, Bull. Earthq. Res. Inst., Univ. Tokyo, 44, 73-88
    Aki, K., and Richards, P. G. 1980. Quantitative seismology theory and methods, vol. 2 (W. H. Freeman and Co., San Francisco), pp805
    B. K. Rastogi and Prantik Mandal, 1999. Foreshocks and nucleation of small-to moderate-sized Koyna earthquake (India), BSSA, 89(3), 829-836
    Bak, P. and Tang, C. 1989. Earthquakes as a sell-organized critcal phenomenon, JGR, 14, B11, 15635-15637
    Barron K. 1971. Detection of fracture initiation in rock specimens by the use of a simple ultrasonic listening device. Int. J. Rock Mech. Min. Sci. 8, 55-59
    Boschetti,Mike D.Dentith,and Pon D.List. 1996. A fractal based algorithm detecting the first arrivals on seismic traces,Geophysics,61,4,1095-1102
    Brace, W.T. and Kohlstedt, D. L.,1980. Limits on lithospheric stress imposed by laboratory experiments. J.Geophys. Res., 85: 6248-6252
    Brace,W.F. and J.D.Byerlee. 1966. Stick slip as a mechanism for earthquake, Science, 153(3739), 990-992
    Brady,B.T. 1974. Theory of Earthquakes. I. A Scale Independent Theory of Rock Failure. Pagcoph., 112: 149-163
    Brune,J.N. 1970. Tectonic stress and the spectra of seismic shear waves from earthquake,JGR,75,4997-5009
    Byerlee J.and D.Lockner. 1977. Acoustic emission during fluid injection in rock, Proceed.First Confer. AE/Microseismic Activ.Geol.Struc.Mater. ,87-98
    C.J.Allegre, J.Le Mouel and A.Provost, 1982. Scaling rules in rock fracture and possible implications for earthquake prediction. Nature. 297: 47-49
    Chen, W.P. and Molnar, P.,1983. Focal depths of intracontinental and intraplate earthquake and their relation for thermal and mechanical properties of the lithosphere, JGR, 83:4183.
    Chernov,L. A. 1967. Wave propagation in a random medium,Dover,New York
    Chow,T.M., I.L.Meglis and .R.P.Yourg. 1995. Progressive microcrack development in tests on Lac du Bonnet
    Granite—II. ultrasonic tomographic imaging, Int Rock Mech. Min. Sci. & Geomech., Abstr, 32, 1, 85-91
    D A Lockner, J D Byerlee, V Kuksenko. 1991 A Ponomarev and A Sidorin. Quasi-static fault growth and shear fracture energy in granite. Nature, .350(6313), 39-42
    D A Lockner. 1993. The role of acoustic emission in the study of rock fracture. Int. J. Rock Mech. Min. Sci., 30, 883-900
    Das S , C H Scholz. 1981. Theory of time dependent rupture in the earth. J. Geophys. Res., 86, 6039-6051
    Das, S., and Sholz, C. H. 1983. Why large earthquake do not nucleate at shallow depths. Nature. 305, 621-623
    David E. Goldberg. 1989. GENETIC ALGORITHMS: in Search, Optimization & Machine Learning, ADDISONWESLEY PUBLISHING COMPANY, INC.
    Dieterich J H. 1986. A model for the nucleation of earthquake slip, In Earthquake Source Mechanics. AGU Geophys. Mono. 37 (eds: S. Das, J. Boatwnght and C. Scholz), 1986, Washington, D. C, 37-47
    Dieterich J H. 1992. Earthquake nucleation on faults with rate-and state-dependent strength. Tectonophysics. 211:115-134
    Dieterich J H. 1992. Earthquake nucleation on faults with rate-and state-dependent strength. Tectonophysics Vol.211,115-134
    Engdahl,E.R. and Kisslinger,C. 1975. Seismological precursors to a magnitude 5 earthquake in the Central Aleution Islands,J.Phys.Earth 25S,243-250
    Evans, J. P. 1988. Deformation mechanisms in granitic rocks at shallow crustal levels, J. Struct. Geol., 10:437-443
    Fitz Gerald, J.D. and Stunitz, H. 1993. Deformation of granitoids at low metamorphic grade I: Reactions and grain size reduction, Tectonophysics, 221:269-297.
    G.M.Molchan, T.L.Kronrod, A.K.Nekrasova. 1999. Immediate foreshocks: time variation of the b-value. Phys Earth Planet Inter. 111: 229-240
    Gao P. and Zhang L. 1996. The mechanisms of low velocity and high conductivity layer / body in North China, Seismology and Geology, 18, Suppl.
    Gleason G. C. and Tullis, J. 1995. A flow law for dislocation creep of quartz aggregates determined with the molten salt cell, Tectonophysics, 247 :1-23.
    Goetze, C, and B. Evans. 1979. Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics, Geophys. J. R. Astr. Soc, 59: 463-478.
    Graza, T., C.Lomnitz, and C Ruiz de Velasco. 1977. An interactive epicenter location procedure for the RESMAC seismic array. I, BSSA, 67, 1577-1586
    Graza, T., C.Lomnitz, and C Ruiz de Velasco. 1979. An interactive epicenter location procedure for the RESMAC seismic array. II. BSSA, 69, 1215-1236
    Gupta,I.N. 1975. Precursory reorientation of stress axics due to vertical migration of seismic activity, JGR.. 82,272-273
    Hirasawa, T., K. Yamamoto, and K. Kusuuose. 1971. Rock mechanics, Chapman and Hall, London
    Hobbs, B. E, A. Ord, and C. Teyssier. 1986. Earthquakes in the ductile regime?, Pure appl. Geophys., 124: 309-336.
    Huang, J. and D. L. Turcotte. 1990a. Are Earthquake an example of delerministic chaos? Geophys. Res. Lett., 17, 3, 223-226
    Huang, J. and D. L. Turcotte. 1990b. Evidence for chaotic fault interactions in the seismicity of the Sen Andreas fault and Nankai frough, Nature
    Ito, K. and Matsuzaki, M. 1990. Earthquake as self-organized critital phenomena, JGR, 95(5), 6853-6860
    J.C.耶格,N.G.W.库克.岩石力学基础,科学出版社,1981
    Kanamori, H. 1981. The nature of seismicity patterns before large earthquakes, Earthquake Prediction-an international review (eds. D. W. Simpson and P. G. Richards), Maurice Ewing Series(AGU4), pp1~19
    Kanema, T. 1977. The effect of cracks and water saturation on attenuation of longitudinal waves in granite, Geophys. Bull. Hokkaido Univ., 36, 69-82 (in Japanese)
    Kenneth, W. W. 1986. Estimate of velocity dispersion between seismic and ultrasonic frequencies, Geophysics, 47, 1-15
    Kennett, B. L. N. and M. S. Sambridge. 1992. Eeathquake location genetic algorithms for teleseisms, Phys. Earth Planet. Interiors, 75, 103-110
    King G. 1983. The accommodation of large strain in the upper lithosphere of the earth and other solids by self-similar fault system: the geometrical origin of b-value, PAGEOPtt, 121, 5/6, 761-815
    Kirby, S. H. 1980. Tectonic stresses in the lithosphere: Constraints provided by experimental detbrraation of rocks, JGR, 89: 6353-6363.
    Kisslinger C, McDonald C and Bowman J R. 1985. Precursory time-space patterus of seismicity and their relation to fault processes in the Central Aleutian Islands seismic zone(Abstract). IASPEI Meeting Proceedings, Tokyo., 214~221
    Kisslinger C, McDonald C and Bowman J R. 1985. Precursory time-space patterns of seismicity and their relation to fault processes in the Central Aleutian Islands seismic zone(Abstract). IASPEI Meeting Proceedings, Tokyo., 214~221
    Kusunose, K., K. Yamamoto, and T. Hirasawa. 1990. Aalysis of acoustic emissions in granite under uniaxial stress for the size relatiou between microcracks and grains, Zisin (J. Seismol. Soc. Japan), 32, 11-23
    Kusunose, K., Lei Xinglin, O Nishizawa, and T. Satoh, 1990. Grain size effect on fiactal structure in AE hypocenter distribution in granitic rock,岩石变形过程中声发射时空分布特征及其地震学意义(雷兴林博士学位论文)
    Landau, L. D. and E. M. Lifshitz. 1954. Mechanics of continuous media, Nauka, Moscow
    Let Xinglin, Nishizawa O, Kusunose K, et al. 1992. Fractal structure of the hypocenter distributions and focal mechanism solutions of acoustic emission in two granites of different grain sizes. J. Phys. Earth, 40: 617-634
    Li, K. K., and J. R. Rice. 1987. Crustal deformation in great Califoruia earthquake cycles, JGR, 92: 11533-11551.
    Lindh, A. G., Fuis, G., and Mantis, C. 1978. Seismic amplitude measurements suggests foreshocks have different focal mechanisms than aftershocks, Science, 201, 56-59
    Lockner D. and Byerlee J. 1977a. Acoustic emission and creep in rock at high confining pressure and differential stress, BSSA, 67, 2
    Lockner D. and Byerlee J. 1977b. Acoustic emission and fault formation in rocks, Proceed. First Confer. AE/Microseismic Activ. Geol. Struc. Mater., 99-107
    Lockner D. and Byerlee J. 1992. Fault growth and acoustic emissions in confined granite, Appl. Mech. Rev., 45(3-2), 165-173
    Lockner, D. 1993. The role of acoustic emission in the study of rock fracture, Int., Rock Mech. Min. Sci., 30, 883-900
    Maeda, I. 1975. On the recording and processing system for AE: Application to a fracture experiment of marble, Zisin (J. Seismol. Soc. Japan), 28, 11-21
    Maeda, I. 1981. Spectral and source parameters of acoustic signals emitted by microcrack generation in a granite sample, J. Phys., Earth, 29, 241-253
    Mandelbrot, B. B. 1982. The fractal geometry of nature, Freeman, New York
    Martyn D. Read, Mark R. Ayling, Philip G. Meredith and Stanley A. F. Murrell. 1995. Microcracking during triaxial defonnation of porous rocks monitored by changes in rock physical properties, II Pore volumometry and acoustic emission measurements on water-saturated rocks, Tectonophysics, 245, 223-235
    Masuda,T. and A.Takagi. 1978. Source parameter estimates for small earthquake, Sci. Rep. Tohoku Univ. Geophys.,25,39-54
    Matthews M V and Reasenberg P A. 1988. Statistical method for investigating quiescence and other temporal seismicity pattern. PAGEOPH. 126(2-4): 357-372
    Matthews M V and Reasenberg P A. 1988. Statistical method for investigating quiescence and other temporal seismicity pattern. PAGEOPH. 126(2-4): 357-372
    Meglis,I.L., T.M.Chow, and R.P.Young. 1995. Progressive microcrack development in test on Lac du Bonnet granite — I. Acoustic emission source location and velocity measurements, Int.J.Rock Mech. Min. Sci.& Gcomech.Abstr.32,8,741-750
    Meissner, R. 1996. faults and folds, fact and fiction, Tectonophysics, 264,279-293.
    Meissner, R. And Strehlau, J. 1982. Limits of stresses in continental crust and their relationship to the depth frequence distribution of shallow earthquake, tectonics, 1:73-79.
    Meredith,P.G. and B.K. Atkinson. 1983. Stress corrosion and acoustic emission during tensile crack propagation in Whin Sill dolerite, Geophys.J.R. astr.Soc, 75,1-21
    Meredifh,P.G., l.G.Main and C.Jones. 1990. Temporal variations in seismicity during quasi-static and dynamin rock failure, Tectonophysics, 175,249-268
    Mitiyasu Ohnaka. 1992. Earthquake source nucleation: a physical model for short-term precursors, Tectonophysics, 211:149-178
    Mogi K. 1962a. Study of elastic shocks caused by the fracture of heterogeneous material and its relations to earthquake phenomena. Bull.Earthq.Res.Inst., Tokyo Univ., 40, 125-173
    Mogi K. 1962b. Magnitude-frequency relation for elastic shocks accompanying fractures of various materials and some related problems in earthquakes. 2, Bull.Earthq.Res.Inst., Tokyo Univ., 40, 831-853
    Mogi K. 1969. Some features of recent seismic activity in an near Japan(2), activity before and after great earthquakes. Bull Eathq. Res. Inst. Univ., Tokyo, 47: 295-417
    Mogi K. 1969. Some features of recent seismic activity in an near Japan(2), activity before and after great earthquakes. Bull Eathq. Res. Inst. Univ., Tokyo, 47: 295-417
    Mogi, M 1985. Earthquake prediction, Academic Press, Tokyo
    Mogi,K. 1968. Source locations of elastic shocks in the fracturing process of rock,Bull.Earthq.Res.Inst.Tokey Univ. ,46,1103-1125
    N.Hurukawa. 1998. The 1995 off-Etorofu earthquake: joint relocation of foreshocks, the main-shock, and aftershocks and implications for the earthquake nucleation process. BSSA. 88(5): 1112— 1126
    Nersesov,I.L.,Lukk,AA., Ponomorev, V.S.Rautian,T.G., Rulev,B.G., Scmenov,A.N., and Simbireva.I.G. 1973. Possiblities of earthquake prediction, Exemplified by the Garm Area of Tadzhik USSR., in Earthquake Precursors (eds.M.A.Sadovsky,I.L.Nersesov, and L.A.Latynina)(Academy of Science of the U.S.S.R, Moscow,1973): 72-99.
    Nevillel.Carter and Michael C. Tsenn. 1987. Flow properties of continental lithosphere, Tectonophysics, 136, 27- 63
    Ohnaka,M., and K.Mogi. 1981. Frequency dependence of acoustic emission activity in rocks under incremental, uniaxial compression, Bull. Earthq. Res. Inst., Tokyo Univ., 56,67-89
    Ohnaka,M., and K.Mogi. 1982. Frequency characteristics of acoustic emission in rocks under uniaxial compression and its relation to the fracturing process to failure, JGR, 87, B5,3873-3884
    Ohtake M, Matumoto T and Latham G V. 1981. Evaluation of the forecast of the 1978 Oaxaca Southern Mexico erathquake based on a precursory seismic quiescence. In Earthquake Prediction. Maurice Ewing Scries(Amer Geophys Union 4), 53-62
    Ohtake M, Matumoto T and Latham G V. 1981. Evaluation of the forecast of the 1978 Oaxaca Southern Mexico erathquake based on a precursory seismic quiescence. In Earthquake Prediction. Maurice Ewing Scries(Amer Geophys Union 4), 53-62
    Pujol, J. and R. Smalley, Jr. 1990. A preliminary earthquake location method based on a hyperbolic approximation to travel times, BSSA, 80, 129-150
    Rice, J. 1993. Sptio-temporal complexity of slip on a fault, JGR., 98, 9885-9908
    Rothman, R. L. 1977. Acoustic emission in rock stressed to failure, in Proceedings of the first Conference on Acoustic Emission/Microseismic acticity in Geological Structures and Materials(eds. H. R. Hardy and F. W. Leighten)(Trans Tech Publications, Clausthal, West Germany 1977), 109-133.
    Rummel, F., Fairhurst, C. 1970. Determination of the post-failure behaviour of brittle rock using a servo-controlled testing machine, Rock Mech., 2, 189-204
    Rudnicki, J. W., and J. R. Rice. 1975. Conditions for the localization of deformation in pressure sensitive dilatant materials, J. Mech. Phys. Solids, 23, 371-394
    Rydelek, P. A., and I. S. Selwyn. 1996. Earthquake slip rise time and rupture propagation: numerical results of the quantum earthquake model, BSSA, 86, 3, 567-574
    Sacks, I. S. and P. A. Rydelek. 1995. Earthquake "Quanta" as explanation for observed magnitudes and stress drops, BSSA, 85, 3, 808-813
    Sahimi, M., M. C. Robertson and C. G. Sammis. 1993. Fractal distribution of earthquake hypocenters and its relation to fault patterns and percolation, Phys. Rev. Lett., 70, 2186-2189
    Sambridge, M. and K. Gallagher. 1993. Earthquake hypocenter location using genetic algorithms, BSSA, 83, 1467-1491
    Salamon, M. D. G. 1970. Stability, instability and design of pillar working, Int. J. Rock Mech. Min. Sci., 7(6), 613-631
    Sato, T. 1978. A note on body wave radiation from expanding tensile crack, Sci. Rcp. Tohoku Univ. Geophys., 25, 1-10
    Satoh T,O.Nishizawa,K.Kusunose,K.Ono.1992.三轴压力下岩石中声发射源的源机制,世界地震译丛(陈世军等译),No.5,1994
    Scholz, C. H. 1968. The frequency-magitude relation of microfracturing in rock and its relation to earthquakes, BSSA, Vol. 58, 399-415
    Scholz, C. H. 1988. Mechanism of seismic quiescenccs, PAGEOPH, Vol. 126, 701-718
    Scholz, C. h. 1988. The brittle-plastic transition and depth of seismic faulting, Geol. Rund., 77: 319-328
    Shimada M. 1992. Confirmation of two types of fracture in granite deformed at temperatures to 300℃, Tectonophysics, 211, 259-268
    Shimada M. and Akio Cho. 1990. Two types of brittle fracture of silicate rocks under confining pressure and their implications in the earth's crust, Tectonophysics, 175, 221-235
    Shun-ichiro Karato, Teng-fong Wong. 1995. Rock deformation: Ductile and brittle, Reviews of geophysics, supplement (U. S. National Report to International Union of Geodesy and Geophysics 1991-1994), 341-343, July, 1995
    Sibson, R. H.. 1982. Fault zone models, heat flow, and the depth distribution of earthquakes in the continental crest of the United States, Bull. Seismol. Soc. Am., 72: 151-163.
    Smalley. R. F., JR., and D. L. Turcotte. 1985. A renonnalization group approach to the stick-slip behavior of faults,, J. Geophys. Res., 90, B2, 1894-1900
    Smith, R. B., and R. L. Bruhn. 1984. Intraplate extensional tectonics of the eastern Basin-Range: Inferences on structural style from seismic reflection data, regional tectonics, and thermal-mechanical models of brittle-ductile deformation, JGR, 89(B7), 5733-5762
    Sobolev, G., Ivan C. Getting, and Hartmut Spetzier. 1987. Laboratory study of the strain field and acoustic emissioms during the failure of a barrier, JGR, 92, B5, 9311-9318
    Sondergeld C. H. and Louis H. Estey. 1981. Acoustic emission study of microfracturing during the cyclic loading of Westerly granite, J. Geophys. Res., 86, B4, 2915-2924
    Sondergeld, C. H. 1979. Observatons of acoustic emissions during cyclic loading experiments (abstract), Eos Trans. AGU, 60, 380
    Sondergeld, C. H., and L. H. Estey. 1982. Source mechanisms and microfracturing during uniaxial cycling of rock, PAGEOPH, 120, 151-166
    T.Hirabayashi,K.Ito,T.Yoshii.1992.地震的多分形分析(洪时中译),世界地震译丛,5,60-70
    Thatcher, W. and T. C. Hanks. 1973. Source parameters of Southeru California earthquakes, JGR, 78, 8547-8576
    Trifunac,M.D. 1972. Tectonic stress and the source mechanism of the Imperial valley, California, earthquake of 1940, BSSA,62,1283-1302
    Tse, S. T. and Rice, J. R. 1986. Crustal earthquake instability in relation to the depth variation of frictional slip properties, J. Geophys. Res., 91:9452-9472.
    TurcotteH. 1986. Fractals and fragmentation. J.Geophys. Res., .91: 1921-1926
    Wang,Zichao and Wang,Shengzu. 1990. Brittle-ductile transition, instability modes of crustal rock and the estimation of shallow great earthquake depth. Phys.Chem.Earth, 17: 45-54.
    Wolfram, S. 1983. Statistical mechanics of cellular automata, Reviews of Modem Physics, 55,3,601-643
    Wyss M and Habermann R E. 1988. Precursory seismic quiescence. PAGEOPH. 126(2-4): 319-332
    Wyss M and Habermann R E. 1988. Precursory seismic quiescence. PAGEOPH. 126(2-4): 319-332
    Xie, Z., T. W, Spencer, and P. D. Rabinowitz. 1994. A new application of genetic algorithms to regional hypocenter location, EOS, 75, 459
    Zhang Liu, Xu Zhaoyong and Lu Yanquang. 1997. New Achievements of Experimental Study on the Physical Mechanism of Earthquake Precursor Fields, J. Earthq. Predi.Res., 6,2,217-234
    Zhi Xie, Terry W.Spencer, Philip D.Rabinowitz, and Davis A.Fahlquist. 1996. Anew regional hypocenter location method, BSSA, 86,4,946-958

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700