武广客运专线韶花段球状风化花岗岩工程特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
球状风化是花岗岩层中十分常见的一种现象,关于球状风化的研究,一般都是在工程实践中,结合某一个或几个特定的工点,提取少数钻孔岩芯样品进行室内试验,研究其对工程产生的危害性、对施工造成的复杂性以及相应的工程处治措施,而没有对球状风化的工程特性进行系统研究,尤其缺乏从显微组构特征方面对球状风化花岗岩力学性能的分析成果。针对花岗岩地段普遍发育的球状风化现象,本学位论文结合科研项目“武广客运专线韶关至花都段球状风化花岗岩工程特性与综合勘探成套技术研究”,对武广客运专线韶关至花都段沿线的球状风化花岗岩,采用岩矿微观分析试验、地质调绘、原位测试、室内试验等多种手段,对风化花岗岩的显微组构变化特征及其对花岗岩力学性能的影响以及风化花岗岩的宏观物理力学性能变化特征进行了分析,并从微观和宏观两个角度,对球状风化体的形成机理、分布规律及工程特性进行了分析,建立了球状风化花岗岩的综合勘察技术,并提出相应的工程处理措施。主要的结论和研究成果如下:
     (1)花岗岩的不同风化层具有不同的显微组构特征,无论是在细观组构特征(包括结构、微裂隙发育程度、矿物晶形自形程度、矿物表面模糊程度、矿物成分及相对含量、风化产物成分及相对含量)还是微观组构特征(包括整体微结构、矿物粒间联结方式、微裂隙发育程度以及矿物中元素相对含量)上,都有着明显的区别。显微组构特征的不同也导致了不同风化层具有不同的力学性能,这也从对风化花岗岩宏观物理力学性能变化特征的分析上得以印证。根据上述从微观和宏观两个不同角度的分析,可对风化花岗岩的物理力学性能有一个比较全面的认识。
     (2)风化球体具有与同等风化程度的风化层岩样相似的显微组构特征和宏观物理力学性能。无论是在细观组构特征、微观组构特征还是宏观物理力学性能上,弱风化球体都具有和弱风化岩样相似的特征,强风化球体都具有和强风化岩样相似的特征,这也意味着风化球体将具有明显区别于赋存环境周围岩土体的物理力学性能。
     (3)球状风化花岗岩的形成机理:在花岗岩中,三组原生节理将岩体分割为许多呈长方体或正方体形态的岩块,在风化过程中,原生节理相交的部位表面积最大,风化作用最集中,风化速度最快,从而更容易被风化掉,岩块体的棱角逐步被圆化,岩块逐步变小。有些部位的岩块,由于具有有利于岩块力学性能提高的显微组构特征,当风化作用进行到这些部位的时侯,风化速度减小,此时周围的岩土体的风化速度高于这些部位,随着时间的推移,这些部位的风化程度会明显的低于周围岩土体的风化程度而呈现出“孤石”的状态。由于棱角的不断圆化,这些部位的呈“孤石”状态的岩块的表面棱角很少,而常常表现出似椭圆体的形态。
     (4)花岗岩球状风化分布规律:在地表,风化球体成单个零星分布、线状分布或群体分布,地表风化球体发育往往意味着地下赋存有风化球体;在地下,风化球体的分布规律具有以下特征:风化球主要分布在全风化带中;风化球体的表现形式主要为全风化带(W4)中含强风化(W3)球体或弱风化(W2)球体;风化球体大小主要集中在0~5m,风化球体所在高程主要集中在0~60m之间,其中20~30m之间的最多;风化球体的埋深主要集中在0~40m,其中0~20m最为集中。由上往下,从全风化带向强风化带,风化球体表现出“上小下大、上多下少”的总体变化趋势。
     (5)球状风化花岗岩综合勘察技术:首先,应对花岗岩地段,进行详细的花岗岩风化球的地表调绘,并按照发育和不发育两种类型对花岗岩地段进行分区;其次,针对地表风化球发育的地段,展开钻探工作,揭示局部的风化球体的发育情况、赋存特征、地质特征,从而为工程设计和施工提供参数和处理意见;而对于地表风化球不发育的地段,可只选择部分地段进行钻探。
     (6)球状风化花岗岩的工程特性:风化球体的存在,破坏了所在风化层力学性能的宏观均匀性,二者所形成的“整体岩体”的变形破坏机制也不同于无风化球体存在的风化层岩体,它的力学强度高于不含风化球体的风化层,低于与风化球体具有相同风化程度的风化层,变形破坏也相对于不含风化球体的风化层更难,而相对于具有相同风化程度的风化层更易。风化球体往往具有“近椭圆形”的外观,且其长轴平面并不都是水平面,而往往是倾斜面,容易引起风化球体的不均匀沉降变形和转动。因此,含风化球体的风化层既不能视为具有与风化球体相同风化程度的风化层“基岩”,也不应完全不考虑风化球体。
     (7)球状风化花岗岩的工程处理措施:加强对球状风化的地质勘察,在勘察阶段已发现风化球发育的情况下,桩基设计应尽量避免风化球发育带;如果无法避开,则在地表风化球体发育的地段,钻探深度要适当加深,尽量避免误将弱风化球体视作基岩。在路基工程中,对于埋深较浅而块径较小的风化球体可以人工挖除,并填土压实,对于块径较大的可以考虑爆破清除,或者在上布置砂垫层以扩大受力面积,减少风化球体的影响。在桥基工程中,也可采用人工挖除、爆破清除和布置砂垫层的方法,不可将风化球体作为受力层而在上面布置端承桩和摩擦桩等桩基础。
Spheroidal weathering is a very common appearance in granite or bassalt or sandstone,which is similar to different weathering.But,the different weathering usually occurs in the different rocks,while the spheroidal weathering in the same rocks.About the spheroidal weathering,we usually get some drilling samples in certain or some bores during engineering geological prospecting for experiment analysis,which can help us to realize its damage and adverse effect and operation characteristic to construction.At the same time,the research on its mechanism and occurrence and engineering properties are ignored.And now the problem is expected to be solved .In this article, on the basis of geologic drilling on the granite area along the Shaoguan-Huadu section of the Wuhan-Guangzhou high-speed railway, the author analyzed the weathering microproperties of the drilling samples by the optical microscope and scanning electron microscope and X-ray diffractometer to get the microscopic mechanism.On the other hand,by percussion boring and in situ tests and laboratory tests,the macroscopic physical and mechanical properties of weathered-granite layers were analyzed.Then based on the results of micro analysis and macroscopic analysis,the mechanism and occurrence and engineering properties of spherodial weathering of granite were analyzed,and the comprehensive survey method was built,and the corresponding engineering safety measures were suggested.The research work involves several aspects as follows:
     1.By the optical microscope and scanning electron microscope and X-ray diffractometer experiments,the author found the difference of micro-structure in the diffent weathered layers of granite,which concluded the texture, the development degree of micro crack,the main mineral constituent,the weathering products constituent ,the visibility of the minerals' optical surfaces, the visibility of the crystalline form,and the jointing modes of particles,and so on.
     The difference of micro-structure would result in the difference of mechanical properties of rock,and this guess had been confirmed by the macroscopic analysis.
     2.The micro-structure properties and the physical and mechanical properties in the spheres which weathering degree were weak were similar to the weakly weathered samples,and the micro-structure properties and the physical and mechanical properties in the spheres which weathering degree were strong were similar to the strong weathered samples.
     3.The mechanism of spheroidal weathering of granite could be described as following:in the weathering process,the sections in which the joints intersected had maximal surface areas,and were more easily weathered,and their edges would be rounded.Some rocks in the granite rock mass had the micro-sturcture which was more advantageous to mechanical properties would be weathered more slowly,and their weathered degree would be more weak than the rocks all round and be isolated.So the isolated spheres would apperanced.
     4. By statistically analysis about the characteristics of the weathered-granite spheres,the occurrence of above-ground spheres could be showed as follows:the conclusion of the surface geological survey was accordant to the conclusion drawn by analyzing the drilling samples,that is,when large spheres were found baring above ground,the subsurface spheres could be expected,otherwise,founding the subsurface spheres would be unlikely.
     Further more, the occurrence of subsurface weathered-granite spheres could be showed as follows: (1)the weathered-granite spheres were mainly located at the complete-weathering zone,and almost of the spheres were strongly weathered while the other were weakly weathered;(2)the appearance of the weathered-granite spheres was mainly complete weathering-strong weathering-complete weathering or complete weathering-weak weathering-complete weathering,secondly strong weathering-weak weathering-strong weathering;(3)the vertical diameter of the weathered-granite spheres ranged from 0 to 5 m,and almost of them were located at the complete-weathering zone;(4) the weathered-granite spheres were mainly located at the depth of 0 to 40 m below the ground surface,even 0 to 20 m;(5)the height of the weathered-granite spheres ranged from 0 to 60 m,even 20to 30 m;(6)generally speaking,the occurrence could be generalized as "upper small and many ,while lower big and few".
     5.The comprehensive investigation method of spheroidal weathering of granite was showed as follows:firstly,the surface geological survey should be done;and then in the places where large spheres were found baring above ground,the geological exploration should be done.
     6.The engineering properties of spherodial weathering of granite could be described as following:the spheres altered the homogeneity of original weathered layers,and the "whole rocks" were anisotropic.The mechanical strength of the "whole rocks"was higher than the original weathered layers but lower than the spheres,and its modification and breakup was more hard than the original weathered layers but more easy than the spheres.On the other hand,differential settlement usually occurred in the spheres.
     7.The corresponding engineering safety measures of spheroidal weathered granite were suggested as following:the comprehensive investigation of spheroidal weathering was necessary in the first stage of engineering,which could help us to find the occurrence of spheroidal weathering.And the drilling depth would be more big in the section where the spheres were found.And by manual excavation and explosive excavation we could clear the spheres.
引文
[1]陈明晓.广东沿海地区化岗岩风化剖面及其差异风化现象的特征分析[J].广东公路交通,2003(1)
    [2]刘靓.华南沿海花岗岩风化物工程特性探讨[J].岩土工程界,Vol.6(10),2003
    [3]冯涛,吴光,王华,李建强.广东花岗岩地段球状风化地下分布特征分析[J].铁道建筑,2007(1)
    [4]冯涛,吴光,赵志明,拿建强.韶花铁路化岗岩球状分布规律统计分析[J].水文地质工程地质,2006(6)
    [5]赵建峰,甄庆延.铁路客运专线地质勘察问题探讨[J].铁道工程学报,2007(2)
    [6]铁道第二勘察设计院地勘分院.武汉至广州客运专线韶关至花都段初步设计阶段勘察成果.2004
    [7]铁道第二勘察设计院地勘分院.武汉至广州客运专线韶关至花都段可行性研究阶段勘察成果.2004
    [8]铁道部第一勘察设计院主编.铁路工程地质手册[M].北京.中国铁道出版社.2002
    [9]袁灿勤等编.岩土工程勘察[M].成都.西南交通大学出版社.1994
    [10]蒋爵光主编.铁路工程地质学[M].成都.西南交通大学出版社.1991
    [11]李隽蓬,谢强主编.土木工程地质成都[M].西南交通大学出版社.2000
    [12]郭欣.花岗岩风化带的现场确定及定量划分[J].岩土工程技术,1997(3)
    [13]黄聪.深圳特区花岗岩风化剖面的划分[J].勘察科学技术,1987(6)
    [14]尚彦军,曲永新,胡瑞林.花岗岩风化壳工程地质研究现状及问题—以东南沿海地区为例[J].工程地质学报,2000(8,增刊)
    [15]巨广宏.黄河拉西瓦水电站坝区花岗岩体风化研究[J].中国地质灾害与防治学报,2006(1)
    [16]张丽萍.三峡坝区花岗岩风化分带的化学风化特征指标研究[J].浙江大学学报(理学版),2003(7)
    [17]吴恒.梧州市花岗岩风化壳工程地质研究及垂直分带[J].工程地质学报,1994(12)
    [18]李日运,吴林峰.岩石风化程度特征指标的分析研究[J].岩石力学与工程学报,2004(11)
    [19]巫锡勇,罗健,魏有仪.岩石风化与省石化学成分的变化研究[J].地质与勘探,2004(7)
    [20]北京大学等六校合编.地貌学[M].北京,人民教育出版社.1979
    [21]夏邦栋主编.普通地质学[M].北京,地质出版社.1995
    [22]李山寨.论花岗石石球粒的成因及其找矿意义[J].石材,1997(5)
    [23]鲍晓东.深圳地区花岗岩残积土工程特性的研究[J].铁道勘察,2004(2)
    [24]李晓昭,肖琳,程建军,刘琦.润扬大桥风化花岗岩工程特性与影响因素研究[J].岩石力学与工程学报,2004(5):1681-1688
    [25]Bryan P.Ruxton,Lenoard Berry,1957,Weathering of granite and associated erosional features in Hong Kong[J],Bulletin of the Geological society of America,Vol.68:1263-1292.
    [26]R.W.Brock,1943,Weathering of igneous rocks near Hong Kong[J],Bulletin of the Geological society of Arnerica,Vol.54:717-738.
    [27]A.Chatterjee,B.C.Raymahashay,1998,Spheroidal weathering of Deccan Bassalt:a three-mineral model[J],Quarterly Journal of Engineering Geology,Vol.31,pp:175-179.
    [28]M.T.Heald,T.J.Hollingsworth,1979,Alteration of sandstone as revealed by sphereoidal weathering[J],Journal of Sedimentary Petrology,Vol.49(3):901-909.
    [29]R.C.Fletcher,H.L.Buss,B.L.Brantley,A sphereoidal weathering model coupling porewater chemistry to soil thicknesses during steady-state denudeation[J],Earth and Planetary Scinece Letters,244(2006):444-457.
    [30]Judy Ehlen,2002,Some effects of weathering on joints in granitic rocks[J],Catena:91-109.
    [31]Lina C.Patino,Trace element mobility during spheroidal weathering of basalts and andesites in Hawaii and Guatemala[J],Chemical Geology,202(2003):343-364.
    [32]Emilia Le Pera,Marino Sorriso-Valvo,2000,Weathering and morphogenesis in a Mediterranean climate,Calabria,Italy[J],Geomorphology,Vol.34:251-270.
    [33]D.G.Price,Weathering and weathering processes[J],1995,Quarterly Journal of Engineering Geology,Vol.28(3):243-252.
    [34]H.X.Lan,2003,Engineering and geological characteristics of granite weathering profiles in South China[J],Journal of Asian Earth Science,Vol.21:353-364.
    [35]H.B.Li,J.Zhao,T.J.Li,2000,Micromechanical modeling of the mechanical properties of a granite under dynamic uniaxial compressive loads[J],International of Rock Mechanics and Mining Sciences,Vol.37:923-93 5.
    [36]王德滋.光性矿物学[M].上海:上海人民出版社.1974
    [37]叶大年.结构光性矿物学[M].北京:地质出版社.1988
    [38]何作霖.光性矿物学[M].上海:商务印书馆.1951
    [39]成都地质学院岩石教研室.矿物光性鉴定手册[M].北京:地质出版社.1988
    [40]中国地质科学院地质矿产所.透明矿物鉴定表[M].北京:地质出版社.1977
    [41]地质部矿物原料研究所岩矿研究室.重要矿物的野外鉴定法[M].北京:地质出版社.1958
    [42][外]琼斯,弗来明.等著.矿物颗粒鉴定[M].北京:地质出版社,1974
    [43][外]塔达尔斯基著.碳酸盐类造岩矿物的鉴定方法[M].北京:石油工业出版社.1957
    [44][外]特吕格著.郭宗山译.造岩矿物光性鉴定表[M].北京:地质出版社.1959
    [45][外]斯莫里扬宗诺夫著.怎样按外表特征鉴定矿物[M].北京:重工业出版社.1954
    [46][外]格里姆著.许冀泉译.粘土矿物学[M].北京:地质出版社.1960
    [47][外]穆扎法罗夫著.矿物岩石鉴定法[M].北京:燃料工业出版社.1953
    [48]胡瑞林.等著.粘性土微结构定量模型及其工程地质特征研究[M].北京:地质出版社.1995
    [49]曾正文,蒋爵光,李秉生.大瑶山隧道F_9地段的岩石微观分析和工程地质预测[J].全国第三次工程地质大会论文选集,1988
    [50]郭宝罗,李志中等.用偏光显微镜进行显微构造分析的一种方法[J].地球科学,1989(10)
    [51]尚彦军,岳中琦等.全风化花岗岩样品中粘土矿物含量变化对比[J].地球科学,2005(5)
    [52]吴继敏.薄片显微描绘和自动图像分析技术在岩石学定量评价中的应用[J].矿物岩石,1999(6)
    [53]吴继敏.图像阈值计算方法及岩石薄片中矿物信息提取[J].水利水电科技进展,1998(6)
    [54]吴继敏.应用图像分析法评价花岗岩结构特征[J].河海大学学报,1998(7)
    [55]吴继敏.法国GUERET花岗岩内黑云母的结构特征研究[J].高校地质学报,1997(3)
    [56]吴继敏,陈志坚.国外岩体裂隙面形态特征评价方法综述[J].水利水电科技进展,1997(6)
    [57]吴继敏,陶卫,张永乐.统计及模型在地质工程中的应用[J].勘察科学技术,2000(5)
    [58]刘岫峰.显微镜光片和薄片微机分析系统[J].矿物岩石,1991(3)
    [59]刘岫峰.JGT光笔式图像分析仪在沉积岩研究应用中若干问题的探讨[J].沉积学报,1983(2)
    [60]刘岫峰等.用TX—2型图像分析仪对岩石和矿砂进行矿物定量分析[J].地质实验,1979(10)
    [61]成都地质学院图像分析组.TX—2型图像分析仪的原理及应用[J].地质实验,1977(5)
    [62]周芬娜,陈立平,王文魁.矿物晶体形态数据管理模型的研究[J].矿物学报,1997(6)
    [63]陈岳龙.结晶岩中造岩矿物含量的定量计算方法[J].岩石学报,1993(2)
    [64]吴萍.显微镜鉴定目估含量法.矿物岩石地球化学通报[J],1987(2)
    [65]张清敏编译.扫描电子显微镜和X射线微区分析[M].天津:南开大学出版社.1988
    [66]廖乾初,蓝芬兰编著.扫描电镜分析技术与应用[M].北京:机械工业出版社.1990
    [67]朱宜,汪裕苹,陈文雄编著.扫描电镜图像的形成处理和显微分析[M].北京:北京大学出版社.1991
    [68]朱宜等编著.扫描电镜图像的形成处理和显微分析[M].北京:北京大学出版社.1991
    [69]杜学礼,潘子昂编.扫描电子显微镜技术[M].北京:化学工业出版社.1986
    [70]黄孝瑛著.电子显微镜图像分析原理与应用[M].北京:宇航出版社.1989
    [71]陈丽华等著.扫描电镜在地质上的应用[M].北京:科学出版社.1986
    [72]翟淑芬.李端编著.扫描电子显微镜及其在地质学中的应用[M].武汉:中国地质大学出版社:1991
    [73]张天乐,王宗良.中国粘土矿物的电子显微镜研究[M].北京:地质出版社.1987
    [74]邹春艳,罗蓉等.电镜扫描在碎屑岩储层粘土矿物研究中的应用[J].地质勘探,2005(12)
    [75]李景阳,朱力军.碳酸盐岩残积红粘土微观结构的扫描电镜研究[J].中国岩溶,2002(12)
    [76]张梅英.粘性土岩介质的电子显微镜研究[J].电子显微学报,1983(1)
    [77]张梅英.利用扫描电镜研究土的微结构有关问题[J].岩土力学,1998(5)
    [78]张汝藩.微细矿物的扫描电镜X射线能谱分析研究[J].矿物岩石地球化学通报,1991(4)
    [79]张汝藩.扫描电镜在粘土矿物研究中的应用[J].地质科学,1986(10)
    [80]张天刚.扫描电镜下砂岩中的粘土矿物[J].矿物岩石,1983(3)
    [81]谭以安.岩爆岩石断口扫描电镜分析及岩爆渐进破坏过程[J].电子显微学报,1989(2)
    [82]赵永红,黄杰藩等.岩石微破裂发育的扫描电镜即时观测研究[J].岩石力学与工程学报,1992(9)
    [83]黄纪蓉,王宝棣,温静娴.广西六种花岗岩中石英相结构分析[J].广西大学学报(自然科学版),2004(12)
    [84]谢又予,崔之久,李洪云.扫描电镜下石英砂的表面结构特征及其地质解译[J].石油与天然气地质,1981(3)
    [85]吴建辉.用扫描电镜二次电子象观察分析金相组织[J].材料工程,1992(2)
    [86]刘伟新,史志华等.扫描电镜 能谱分析在油气勘探开发中的应用[J].石油实验地质,2001(9)
    [87]白春礼编著.扫描隧道显微术及其应用[M].上海:科学技术出版社.1992
    [88][外]戈尔茨坦著,张大同译.扫描电了显微技术与X射线显微分析[M].北京:科学出版社.1988
    [89][外]Otaley,C.W.著,葛肇生译.扫描电子显微镜[M].北京:机械工业出版社.1983
    [90][外]维库洛娃著,许冀泉译.粘土的电子显微镜研究[M].北京:地质出版社.1957
    [91][外]R.J.Gilkes等.用扫描电镜对深度风化花岗岩的形态学研究[J].地质地球化学.1982(2)
    [92]Moustafa El Omella,TANG Chun-an,ZHANG Zhe.Scanning of essential minerals in granite electron microscope study on the microfracture behavior[J].Geology And Resources,2004(9).
    [93]KONG Jiang-rong,SUN Ke-ning,ZHOU De-rui,ZHANG Nai-qing,Electrochemical and microstructural characterization of cyclic redox behaviour of SOFC anodel[J],RERE METALS,Vol.25(9),2006(10).
    [94]CHEN Zi-long,PENG Shenglin,Experimental results of liquation of TUNGTEN-AND TIN-BEARING granitic magmas saturated with water and their metallogenic significance [J],Geotectonica et Metallogenia,Vol.19(1),1995.
    [95]Waldbilling D.,Wood A.,Ivey D.G.,Electrochemical and microstructual characterization of the redox tolerance of solid cxide full ceel anodes[J],J.Power.Sources,2005:206-215.
    [96]ZHU Lin,MENG Guang-kui,Micro-deformation of Quartz under the Dynamic Action and Its Applications[J],GEOCHEMISTRY,Vol.2,No.4,1983:338-349.
    [97]LI Lian,Microscopic study and numerical simulation of the failure process of granite [J],Chinese Journal of Rock Mechanics and Engineering,Vol.21(1),2002(1):149-150.
    [98]YANG Xue-ming,ZHANG Pei-shan,Preliminay Study on Partially Metamict Allanite from Guposhan Granites[J],JOURNAL OF RARE EARTHS,Vol.12(2),1994:124-129.
    [99]ZHANG De-quan,SUN Gui-ying,Proceedings of Geological Symposium for Tin Deposits in chin[M],Beijing:Geological Publishing House.1987.
    [100]PANG Jiang-li,HU Xuan-er,HUANG Chun-chang,Micromorphological Features of Old Cultivated and Modern Soils in Guanzhong Areas,Shanxi Province,China[J],Agricultural Science in China,2006(9):691-699.
    [101]周上祺著.X射线衍射分析原理与应用[M].重庆:重庆大学出版社.1991
    [102]丘利,胡玉和编著.X射线衍射技术及设备[M].北京:冶金工业出版社 1998
    [103]韩建成等著.多晶X射线结构分析[M].上海:华东师范大学出版社.1989
    [104]李瑞诚等译.X射线光谱分析的原理和应用[M].北京:国防工业出版社.1983
    [105]南京大学地质学系矿物岩石学教研室.粉晶X射线物相分析[M].北京:地质出版社.1980
    [106]林西生等编著.X射线衍射分析技术及其地质应用[M].北京:石油工业出版社.1990
    [107]叶大年,金成伟编著.X射线粉末法及其在岩石学中的应用[M].北京:科学出版社1984
    [108]李晓鄂,蔡胜华.三峡工程坝基花岗岩力学性能的微观分析[J].电子显微学报,1995(5)
    [109]涂新斌,王思敬,岳中琦.香港风化花岗岩细观结构研究方法[J].工程地质学报,2003(11)
    [110]尚彦军,吴宏伟,曲永新.花岗岩风化程度的化学指标及微观特征对比—以香港九龙地区为例[J].地质科学,2001(7)
    [111]苗春省,时光.花岗岩类主要造岩矿物的X射线衍射定量分析方法的研究[J].矿物学报,1985(12)
    [112]吴乾荣.粘土矿物的X射线衍射物相分析[J].岩矿测试,1994(3)
    [113]张荣科,范光.粘土矿物X射线衍射相定量分析方法与实验[J].铀矿测试,2003(5)
    [114]闵连太,黄凤贞.粘土矿物的X射线定量研究[J].水文地质工程地质,1994(4)
    [115]Powder Diffraction File Search Manual Hanawalt Method[M],Published by the JCPDS International Center for Diffraction Data,U.S.A,1979.
    [116]Zevin.L.S,A method quantilative phase analysis without standards[J],J.APPL.Cryst,1977(10).
    [117]Bezjak.A.,X-ray quantitative analysis of multiphase systems[J],Groat.Chem.Act,Vol.33,No.4,1961:197-200.
    [118]Peter.E.,Kalma.A.,Quantitative X-ray analysis of crystalline multicomponent system[J],Acta.Chim.Acad.Hungr,Vol.41,No.4,1964:413-422.
    [119]Chung,F.H.,Quantitative Interpretation of X-Ray Diffraction Patterns of Mixture.I.Matrix-Flushing Method for Quantitative Multicomponent Analysis[J],J.APPL.Cryst.Vol.7,1974:519-525.
    [120]Chung,F.H.,Quantitative Interpretation of X-Ray Diffraction Patterns of Mixmre.Ⅱ.Adiabatic Principle of X-Ray Diffraction Analysis of Mixtures[J],J.APPL.Cryst,Vol.7,1974:526-531
    [121]Gibbs,R.J.,Clay Mineral Mounting Technique for X-Ray Diffraction Analysis:A Discussion[J],J.Sed.Petro,Vol.38,1968:242-243.
    [122]Oinuma,K.,Kobayashi,K.,Problems of Rapid Clay Mineralogical Analysis of Sedimentary Rocks[J],Clay.Sci,Vol.1,No.1,1961:8-15.
    [123]W.D.Johns and R.E.Grim and W.F.Bradlcy,Quantitative estimations of clay minerals by diffraction methods[J],J.Sedi.Petro,Vol.24,1954:255-267.
    [124]D.Minichelli,The quantitative phase analysis of clay minerals by X-ray diffraction:Modern Aspects of Industrial Routine Control[J].Clay Mineral,1982(17):35-42.
    [125]C.E.Corbato and R.T.Tcttenhorst,Two Examples of quantitative analysis by simulated X-ray powder diffraction patterns[J],Clay Minerals,1982(17):55-63.
    [126]彭尧.孤石花岗岩残积土层中挖孔桩设计评述与改进[J].福建工程学院学报.2003(8)
    [127]郑石仁.含孤石地基钻孔桩试桩施工[J].探矿工程,1995(1)
    [128]王刚耀,李新.花岗岩孤石的处理[J].西部探矿工程,2005(3)
    [129]孙谓栋.勘察误判孤石、抛石为“基岩”的工程实录[J].勘察科学技术,1994(2)
    [130]黄兴华.孤石出露地基的处理[J].施工技术,2004(6)
    [131]黄冠阜.桩孔内孤石的处理方法[J].建筑施工,1997(2)
    [132]林岳钿等.软土孤石地基的桩基施工[J].岩土工程界,2003(1)
    [133]孙广忠.岩体力学基础.北京:科学出版社.1983
    [134]谢和平,陈忠辉.岩石力学.北京:科学出版社.2004
    [135]车用太.岩体工程地质力学入门.北京:科学出版社.1983
    [136]刘瑞珣.显微构造地质学.北京:北京大学出版社.1988
    [137]王根元.矿物学.武汉:中国地质大学出版社.1989
    [138]谢强,姜崇喜,凌建明.岩石细观力学实验与分析.成都:西南交通大学出版社.1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700