单轴压缩条件下岩石的声发射试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了能够更好的将声发射技术应用到工程实践中,本文通过室内声发射试验对不同岩石试样在单轴压缩条件下的声发射特征进行了分析,研究了影响岩石声发射特性的因素,探讨了岩石的破坏机理与损伤特性。
     对大理岩、花岗岩和砂岩进行单轴压缩试验,运用声发射仪器监测岩石破坏过程中的声发射活动。通过对比,分析以上三种岩石的声发射特性,并推断影响岩石声发射特性的主要因素包括岩石自身的颗粒大小、强度、硬度、节理裂隙等。但是岩样的加工过程不同,取样地点不同均对岩石声发射特性造成影响。实验结果同时揭示出:(1)不同的加载方式下,岩石的破坏机理不同;(2)加载速率的不同影响声发射的变化率,加载速度的增加导致岩石的损伤加剧;(3)岩石在破坏失稳前声发射事件存在一段沉寂区,在实际工程中可以将这一重要的特性作为岩体破坏的前兆特征进行预测预报,并且发现岩石强度越高这一沉寂区持续时间越长,越明显;(4)岩石声发射都经历了初始压密区,上升区,峰值区和下降区,不同岩石是否经历每个阶段以及每个阶段持续时间的长短与岩石的性质有关;(5)岩石声发射能率在破坏前的沉寂区比声发射率的更加明显,能更好的反应岩石破坏前的前兆特征,为更加准确的预测预报实际工程中的灾害提供理论依据。
     在试验的基础上,结合理论分析,研究了各声发射参数特征及参数之间的关系,并总结了各参数的演变规律,基于参数研究,分析了岩石损伤量与岩石声发射的关系,并建立了损伤本构模型。通过声发射事件数拟合出的理论应力应变曲线能够合理地反映岩石实际的应力应变特性,从而验证了本构模型的正确性。
     采用循环加载的方式,研究不同岩石样本的凯赛效应,实验结果显示损伤发展规律分为初始阶段、稳定阶段和失稳阶段三个阶段。当三种岩石在在应力位于峰值强度的20%~70%之间,凯赛效应明显并且岩石的记忆能力准确、稳定。
In order to introduce the acoustic emission technique into the civil engineering, theacoustic emission characteristics of rock specimen were analyzed in the unconfinedcompression condition by the laboratory acoustic emission tests. The influence factors ofacoustic emission characteristics were analyzed, in addition, the failure mechanisms anddamage characteristics were discussed.
     The uniaxial compression tests were executed in the rock specimen of marble,granite and sandstone, and the acoustic emission was monitored by the acoustic emissionapparatus in the failure process. The acoustic emission characteristics of the above rockswere analyzed, and the main influence factors for the acoustic emission characteristics,which were particle size of different rocks, strength, stiffness, joints, etc, were inferredby the comparative analysis. However, the acoustic emission characteristics are affectedby the process of rock specimen preparation and the sampling locations. The test resultsindicate that:(1) the failure mechanism of the rocks are different when the loading modesare different;(2) the rate of change of the acoustic emission is affected by the loadingrate, and the rock damages exacerbate when the loading rates increase;(3) the acousticemissions present quiet before the rock damage, so the characteristic can be utilized toforecast the rock failure in the engineering, and the quiet time is long and obvious if therock strength is high;(4) the acoustic emissions express initial compaction phase, ascentphase, peak phase and reduction phase;(5) the quiet time of acoustic emission energyrate is more obvious than it of acoustic emission rate, so the quiet time of acousticemission energy rate can reflect the rock failure in more reasonable manner, and itprovides rational basis to forecast the disaster in the engineering.
     Based on the tests and analysis, the characteristics and relations of acoustic emissionparameters were analyzed, and the evolution law of the parameters was summarized.Based on the parameter research, the amount of rock damage and the relationship withacoustic emission were analyzed, in addition, the damage model was established. Thetheoretical stress-strain curve which was fitted by the number of events in the acousticemission, and then the correctness of damage model was verified.
     Kaiser effect of different rock specimen was analyzed by the cyclic loading. The testresults demonstrate that the damage are divided three phases, including initial phase,stable phase and Instable phase. Cathay effect is obvious and the memory of rocks iscorrect and stable when the stresses between the20%~70%of peak intensity.
引文
Blake W. Microseismic applications for mining--a practical guide[R]. United State Bureau of Mines,1982.
    Chang S H, Lee C I. Estimation of cracking and damage mechanisms in rock under triaxialcompression by moment tensor analysis of acoustic emission[J]. International Journal of RockMechanics and Mining Sciences,2004,41:1069-1086.
    Chen Z H, Tang C A, A double roek sample model for rock bursts[J]. International Joumal of RockMechanics and Mining Science,1997,34(6):991-1000.
    Goodman R E. Sub audible noise during compression of rock [J]. Geological Society of AmericanBulletin,1963,74:487-490.
    Hardy, H R. Applications of acoustic emission technique to rockand rock structures, a state-of-the-artreview[J]. ASTM Special Technical Publications,1981,750:4-92.
    Holcomb D J, Costin L S. Detecting damage surfaces in brittle materials using acoustic emissions[J].Journal of Applied Mechanics,1986,53(3):536-554.
    Kaiesr J. A sutdy of acoustic phenomena in tensile tests[D]. Technische Hochschule Munchen,1950.
    Lockner D A. The role of acoustic emission in the study of rock fracture[J]. International Journal ofRock Mechanics and Mining Science and Geomechanics Abstracts,1993,30(7):893–899.
    Rudajev V, Vilhelm J, Lokajicek T. Laboratory studies of acoustic emission prior to uniaxialcompressive rock failure[J]. International Journal of Rock Mechanics and Mining Science,2000,37(4):699-704.
    Shiotani T, Ohtsu M. Prediction of slope failure based on AE activity, Acoustic emission: Standardsand technology update[J]. ASTM Special Technical Publications,1999,1353:156-172.
    Tomoki Shiotani, Masayasu Ohtsub, Kenji Ikeda. Detection and evaluation of AE waves due to rockdeformation[J]. Construction and Building Materials,2001,15:235-246.
    陈颙.声发射技术在岩石力学中的应用[J].地球物理学报,1997,20(4):312-322.
    陈颙.不同应力途径三轴压缩下岩石的声发射[J].地震学报,1981,3(1):41-48.
    耿荣生.声发射技术发展现状-学会成立20周年回顾[J].无损检测,1998,20(6):151-154.
    韩放,纪洪广,张伟.单轴加卸荷过程中岩石声学特性及其与损伤因子关系[J].北京科技大学学报,2007,29(5):452-455.
    纪洪广.混凝土材料声发射性能研究与应用[M].北京:煤炭工业出版社,2004.
    蒋宇,葛修润,任建喜.岩石疲劳破坏过程中的变形规律及声发射特性[J].岩石力学与工程学报,2004,23(11):1810-1814.
    李庶林,尹贤刚,王泳嘉等.单轴受压岩石破坏全过程声发射特征研究[J].岩石力学与工程学报,2004,23(15):2499-2503.
    李俊平,周创兵.岩体的声发射特征试验研究[J].岩土力学,2004,25(3):374-378.
    李元辉.不同应力路径对岩石声发射Kaiser效应的影响[J].东北大学学报(自然科学版),2007,28(4):576-579.
    李元辉,赵兴东,赵友国.不同条件下花岗岩中声波传播速度的规律[J].东北大学学报(自然科学版),2006,27(9):1030-1033.
    刘贵民.无损检测技术[M].国防工业出版社,2006.
    刘立强,马胜利,马瑾等.不同结构岩石标本声发射b值和频谱的时间扫描及其物理意义[J].地震地质,2001,4(23),481-492.
    秦四清,李造鼎,张倬元等.岩石声发射技术概论[M].成都:西南交通大学出版社,1993.
    秦四清,李造鼎等,岩石声发射力学模型及其应用[J].应用声学,1992,11(l): l-4.
    秦四清,李造鼎.岩石声发射事件在空间上的分形分布研究[J].应用声学,1992,11(4):19-21.
    秦四清.岩石断裂过程的声发射试验研究[J].地质灾害与环境保护,1994,5(3):48-55.
    孙吉主,周健,唐春安.影响岩石声发射的几个因素[J].地壳形变与地震,1997,17(2):1-5.
    沈功田,戴光,刘时风.中国声发射检测技术进展一学会成立25周年纪念[J].无损检测,2003,25(6):302-307.
    腾山邦久.声发射(AE)技术的应用[M].冯夏庭,译.北京:冶金工业出版社,1996.
    唐春安,岩石声发射规律数值模拟初探[J].岩石力学与工程学报,1997,16(4):368-374.
    吴刚,赵震洋.不同应力状态下岩石类材料破坏的声发射特性[J].岩土工程学报,1998,20(2):82-85.
    吴永胜,余贤斌.单轴压缩条件下岩石声发射特性的试验研究[J].金属矿山,2008,388(10),25-28.
    万志军,李学华,刘长友.加载速率对岩石声发射活动的影响[J].辽宁工程技术大学学报,2001,20(4):469-471.
    席道瑛.加载速率对岩石力学性质及声发射率的影响[A].第四届全国岩石动力学学术会议论文集[C].武汉:湖北科学技术出版社,1994.
    谢和平,高峰.岩石类材料损伤演化的分形特征[J].岩石力学与工程学报,1991,10(1):60-70.
    谢和平.岩石节理的分型描述[J].岩土工程学报,1995,17(l):18-23.
    杨瑞峰,马铁华.声发射技术研究及应用进展[J].中北大学学报(自然科学版),2007,27(5):27-29.
    尹贤刚,李庶林.声发射技术在岩土工程中的应用[J].采矿技术,2002,2(4):39-41.
    尹贤刚,李庶林等.岩石破坏声发射平静期及其分形特征研究[J].岩石力学与工程学报,2009,28(2):3383-3390.
    尹贤刚,李庶林,唐海燕.岩石破坏声发射强度分形特征研究[J].岩石力学与工程学报,2005,24(19):3512-3516.
    殷正刚,唐礼忠,李岳.岩石声发射对比试验研究[J].矿山压力与顶板管理,2005,95(3),95-97.
    余天庆,钱济承.损伤理论及其应用[M].北京:国防工业出版社,1993.
    余贤斌,谢强,李心一等.直接拉伸、劈裂及单轴压缩试验下岩石的声发射特性[J].岩石力学与工程学报,2007,26(1):137-142.
    袁振明,马羽宽,何泽云.声发射技术及其应用[M].北京:机械工业出版社,1985.
    赵兴东,陈长华,刘建坡.不同岩石声发射活动特性的实验研究[J].东北大学学报(自然科学版),2008,29(11):1633-1636.
    赵兴东,李元辉,袁瑞甫等.基于声发射定位的岩石裂纹动态演化过程研究[J].岩石力学与工程学报,2007,26(5):944-950.
    赵兴东,唐春安,李元辉等.花岗岩破裂全过程的声发射特性研究[J].岩石力学与工程学报,2006,25(S2):3673-3678.
    张茹,谢和平,刘建峰等.单轴多级加载岩石破坏声发射特性试验研究[J].岩石力学与工程学报,2006,25(12):2584-2588.
    张平,集成化声发射信号处理平台的研究[博士论文].北京:清华大学,2002.
    曾正文,刘立强,马瑾等.岩石破裂扩展过程中的声发射b值动态特征及意义[J].地震地质,1995,1(17):7-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700