含分布式电源的综合负荷建模方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式发电以其安装灵活、投资少、清洁高效等优点及其对传统集中式电网性能改善的巨大潜力得以快速发展。分布式电源接入容量的不断增大,使得原本呈放射状的配电网络逐步演变成一种遍布电源和用户互联的网络,配电网潮流将不再由变电站母线单向流向负荷。电网结构及潮流流向的改变将不可避免地影响配电网运行特性和综合负荷特性。原有的综合负荷模型可能已不再能很好地描述该区域的负荷特性。基于此,本文依托国家自然科学基金资助课题“考虑分布式发电的电力系统广义综合负荷建模关键理论与技术研究”,就含分布式电源的配电网综合负荷特性及其模型结构与建模方法展开研究,以期为电力系统仿真计算提供必要的模型支持。
     本文深入研究了典型分布式电源的运行特性,提出了光伏发电、燃料电池发电、微型燃气轮机发电、风力发电等分布式电源的等效描述模型;在深入分析逆变并网型分布式电源的结构及其等效外特性所具有的共同特点的基础上,提出了逆变型分布式电源的统一等效模型;研究了逆变并网型分布式电源接入容量对传统机理负荷模型描述能力的影响,提出了能够描述逆变型分布式电源高渗透率水平下配电网综合负荷特性的广义综合负荷模型结构;研究了双馈式风力发电系统的功率特性,构建了面向负荷建模的风力发电系统的等效描述模型;基于数值相似度和趋势相似度,提出了一种以数值处理和权重分配为核心的负荷模型准确性评估方法。具体工作如下:
     构建了典型分布式电源等效模型,包括光伏发电、燃料电池发电、微型燃气轮机发电、直驱式风力发电。在系统研究分布式电源发电原理和运行特性的基础上,基于Matlab/Simulink仿真平台,构建了典型分布式电源的详细数字仿真模型。通过研究其在暂态过程中的动态行为,建立了光伏阵列的受控电流源模型、燃料电池的电压源模型、微型燃气轮机及整流器的受控电流源模型、直驱式风力发电机及整流器的受控电流源模型,进而结合通用的控制策略,建立了上述分布式电源的外特性等效模型,并通过不同故障程度条件下的建模仿真分析,验证了等效模型的有效性。
     提出了逆变型分布式电源的统一模型。根据分布式电源与电网的连接方式,将功率全部通过逆变器馈入电网的分布式电源统称为逆变型分布式电源,主要包括光伏发电、燃料电池发电、微型燃气轮机发电、直驱式风力发电。通过分析逆变型分布式电源在拓扑结构和控制特性上的相似性,结合其运行特征,提出了逆变型分布式电源的统一模型,并给出模型完整的数学解析及模型参数的辨识策略,并通过不同故障程度条件下的仿真实验,验证了统一模型对各逆变型分布式电源外特性描述的适用性。
     提出了含逆变型分布式电源的配电网广义综合负荷模型。首先系统分析了逆变型分布式电源接入对传统机理模型在区域配电网综合负荷特性描述能力方面的影响,指出在逆变型分布式电源高渗透率条件下,传统机理负荷模型将不能很好地反映区域配电网综合负荷特性。为准确描述逆变型分布式电源高渗透率条件下区域配电网的综合负荷特性,基于逆变型分布式电源统一模型,提出了考虑逆变型分布式电源影响的配电网广义综合负荷模型结构,并在不同故障程度和不同逆变型分布式电源容量配比条件下,检验了该广义综合负荷模型的有效性。
     提出了面向负荷建模的双馈式风力发电机的等效描述模型。通过系统分析双馈式风力发电机的稳态运行特性及其在暂态过程中的动态行为,以三阶感应电机模型为基础,结合双馈式风机的转子电压调整机制,构建了双馈式风力发电机的等效描述模型——感应电机并联受控功率源模型。在此基础上,通过在模型的输出方程中引入一阶差分环节,构建了DFIG风电系统的改进等效模型,解决了由于模型降阶带来的暂态特性逼近能力不足的问题,有效地提高了模型对暂态过程的描述能力。
     提出了一种基于趋势相似度和数值相似度的模型准确性评估方法。首先将数据序列按事态发展进行分段,并依据重视程度对各段分配相应的权重,有效削弱了常规数值评估方法存在的评估结果与序列长度强相关的不利影响。数值相似度评估方法以稳态值为基准值构建数据序列的相对差值序列,避免了由于序列间相对应元素之间差值过大造成的数值相似度为负的错误,并根据层次分析法,确定相对差值序列元素的权重。趋势相似度采用规范变换法,有效降低了序列的幅值、偏移及噪声等因素对趋势相似度评估带来的不良影响。通过基于实测数据和基于仿真数据的模型准确性评估算例,验证了该方法的可行性。
Distributed generation (DG) has won a rapid development for its flexible installation, less investment, cleanliness and efficiency as well as its ability to improve the function of traditional centralized grid. Accompanied with the ever increasing generation capacity, the original radial distribution networks have gradually evolved into an interconnected network of users and generations in which load flow is no longer unidirectional from substation bus lines to the load. Unavoidably, the change of grid structure and direction of load flow would have an impact on the operational characteristics of the distribution network and that of the composite load. As a result, the former composite model may fail to offer a suitable depiction of regional load characteristics. Under Such Background, relying on the National Natural Science Foundation project “Critical Theory and Technology of Power System Generalized Composite Load Modeling Considering Distributed Generation”, this paper studies the composite load characteristics of distribution network with DG and its model structure in an effort to provide model to support power system simulation.
     This paper has carried out in-depth research on the operational characteristics of typical DG, proposed equivalent description models for DGs such as PV, fuel cell, micro-gas turbine generator, etc. With analysis of the similarities among structure and equivalent characteristics of different inverter-based grid-connecting DGs, a unified model for this kind of DG is put forward. This paper also studies the impact of inverter-based DG's penetration levels on descriptive ability of traditional mechanism model, and proposes a generalized composite load model structure that can represent the distribution network’s composite load characteristics with high penetration of inverter-based DGs. After thoroughly studying the output characteristics of doubly-fed wind generation system, a modeling-oriented equivalent description model of wind generation system is constructed. Then, based on numerical and trend similarity, an assessment method for load model accuracy centered on numerical processing and weight distribution is put forward. Detailed works are as follow:
     In the first place, equivalent models for typical DGs including PV, fuel cell, micro-gas turbine generator, direct-drive wind generator are constructed. Based on systematic research on DG’s generating principles and operational characteristics, using Matlab/Simulink, specific digital simulation models for typical DGs are established. By studying their dynamic behaviors in transient process, controlled current source model of PV array, voltage source model of fuel cell, controlled current source model of micro-gas turbine generator and its rectifier as well as that of direct-drive wind generator and its rectifier are set up. These models are then combined with general control strategy to construct their external characteristic equivalent models. With simulation and analysis of those models under different fault degrees, their effectiveness is testified.
     Secondly, a unified model for inverter-based DGs is proposed. From the connection mode between DGs and the grid, it defines the DG which feeds its power through inverter into the grid as inverter-based DG This category includes generation systems of PV, fuel cell, micro-gas turbine generator and direct-drive wind generator. Through analyzing the similarities of inverter-based DG on topological structure and control characteristics, and considering their operational characteristics, a unified model for inverter-based DG has come into being with complete mathematical analysis and identification strategy of model parameters. The unified model’s adaptability to depict the external characteristics of different inverter-based DGs is verified by running numerous simulations under different fault degrees.
     Then, the generalized composite load model of distribution network considering the impact of inverter-based DG is constructed. After systematic analysis of the impact of inverter-based DG’s penetration on the traditional mechanism model’s descriptive ability over regional composite load characteristics of the distribution network, it is pointed out that the traditional one is incapable to offer a well depiction of composite load characteristics of the distribution network under high penetration of inverter-based DG. Therefore, in a pursuit to conquer this problem, a generalized composite load model of distribution network considering the impact of inverter-based DG is proposed on the basis of the unified model of those DGs. The validity of the proposed model is testified under different fault degrees as well as varied capacity configuration ratios of different inverter-based DGs.
     Also, an equivalent description model of load modeling-oriented doubly-fed wind generator is built. Through systematic analysis of steady-state operational characteristics of doubly-fed wind generator (DFIG) as well as its dynamic behavior in transient state, its corresponding equivalent description model is constructed based on three-order induction motor model—an induction motor in serial connection with controlled power source. Moreover, an equivalent description model of DFIG wind generation system is proposed, that is, an internal feedback expressed by a first-order difference equation is introduced into the output equation of the model, to solve the problem of inadequate approximation capability resulted from order reduction of the model and strengthen its depiction ability of transient state.
     Finally, a model accuracy assessment method is proposed based on trend and numerical similarity. The data sequence is divided at the beginning according to its development. Their corresponding weight is distributed according to their importance. By doing so, the negative impact of strong relation between assessment results and sequence length occurred in regular numerical assessment is effectively curbed. Numerical similarity assessment method bases its relative deviation sequence of data sequence on steady-state value, thus avoiding the mistakes of negative numerical similarity due to large gap between corresponding elements of the sequence. Weight of relative deviation sequence’s elements is set in line with analytic hierarchy process. Trend similarity has adopted gauge transformation method to reduce the negative impact of sequence amplitude, deviation as well as noise on trend similarity assessment. By test carried out on examples based on measured and simulation data, the new assessment method is proved to be effective.
引文
[1]薛禹胜,肖世杰.从印度大停电透视电力系统的广义阻塞.电力系统自动化,2012,36(16):1-8
    [2] A C G,Li F X,Xu X K.An overview of the analysis of cascading failures andhigh-order contingency events. In: Proc of Power and Energy EngineeringConference (APPEEC).Chengdu,China,2010,1-5
    [3]丁道齐.复杂大电网安全性分析.北京:中国电力出版社,2009,1-9
    [4]吴文可,文福拴,薛禹胜,等.基于马尔可夫链的电力系统连锁故障预测.电力系统自动化,2013,37(5):29-37
    [5] Salim N A,Othman M M,Musirin I,et al.Risk assessment of cascading collapseconsidering the effect of hidden failure.In:Proc of IEEE International Conferenceon Power and Energy.Kota Kinabalu,Malaysia,2012:778-783
    [6]曾鸣.印度大停电对我国电力工业发展的警示.中国电力企业管理,2012,(09):15-17
    [7]薛禹胜.印度大停电事故原因分析及对中国电网的警示.电网与清洁能源,2012,28(10):1-3
    [8]陈迅,陈红军.简述美加大停电及广东电网的问题与对策(一)——大停电前的电网态势及停电起因.广东输电与变电技术,2005,(5):11-18
    [9] Andersson G,Donalek P,Farmer Ret,et al.Causes of the2003major gridblackouts in north America and Europe,and recommended means to improvesystem dynamic performance.IEEE Transactions on Power Systems,2005,20(4):1922-1928
    [10] Momoh J A.Smart grid design for efficient and flexible power networks operationand control.In:Proc of Power Systems Conference and Exposition.Seattle,USA,2009,1-8
    [11]肖朝霞,方红伟,张献.智能微电网研究综述.见:天津市电机工程学会2009年学术年会论文集.天津:天津市电机工程学会,2009,103-109
    [12]卢永,甘德强,Jiang J N.美国智能电网和分布式发电重点方向的调研分析.电力系统自动化,2010,34(9):12-16
    [13]季阳,艾芊,解大.分布式发电技术与智能电网技术的协同发展趋势.电网技术,2010,34(12):15-23
    [14]李硕.中国的分布式太阳能发电“革命”.www.greenpeace.org/china/zh/news/commentaries/blog/44700,2013-04-11
    [15] Rodriguez-Garcia L, Perez-Londono S, Mora-Florez J. A methodology forcomposite load modeling in power systems considering distributed generation.In:Proc of Latin America Conference and Exposition (T&D-LA).Montevideo,UY,2012,1-7
    [16]李欣然,惠金花,钱军,等.风力发电对配电网侧负荷建模的影响.电力系统自动化,2009,33(13):89-94
    [17]王吉利,贺仁睦,马进.配网侧接入电源对负荷建模的影响.电力系统自动化,2007,31(20):22-26,40
    [18]杨静.电力系统传输网络与负荷模型辨识及其在电压稳定分析中的应用:[中南大学博士学位论文].湖南:中南大学,2012,50-55
    [19]汤涌.电力负荷的数学模型与建模技术.北京:科学出版社,2012,63-65
    [20]张景超,鄢安河,张承学,等.电力系统负荷模型研究综述.继电器,2007,35(6):83-88
    [21]张东霞,汤涌,张红斌,等.负荷模型的应用与调查报告.电网技术,2007,31(4):16-23
    [22]鞠平.电力系统负荷建模理论与实践.电力系统自动化,1999,23(19):1-6
    [23] Pereira L,Kosterev D,Mackin P,et al.An interim dynamic induction motormodel for stability studies in the WSCC.IEEE Transactions on Power Systems,2002,17(4):1108-1115
    [24] Policies H O.Procedures&guidelines:derivation of operating security limits byoff-line computer studies.Ontario:Ontario Hydro,1994,1-20
    [25]汤涌,张红斌,侯俊贤,等.考虑配电网络的综合负荷模型.电网技术,2007,31(5):34-38
    [26] IEEE Task Force on Load Representation for Dynamic Performance.Standardload models for power flow and dynamic performance simulation. IEEETransactions on Power Systems,1995,10(3):1302-1313
    [27] Kosterev D N,Taylor C W,Mittelstadt W A.Model validation for the August10,1996WSCC system outage.IEEE Transactions on Power Systems,1999,14(3):967-979
    [28] Hauer J F,Mittelstadt W A,Martin K E,et al.Use of the WECC WAMS inwide-area probing tests for validation of system performance and modeling.IEEETransactions on Power Systems,2009,24(1):250-257
    [29] Kosterev D,Davies D.System model validation studies in WECC.In:Proc ofPower and Energy Society General Meeting.Minneapolis,USA,2010,1-4
    [30]李颖,贺仁睦,徐衍会.广东电网基于PMU的负荷模型参数辨识研究.南方电网技术,2009,3(1):16-19
    [31]鞠平,马大强.电力系统负荷建模(第二版).北京:中国电力出版社,2010,4-6
    [32] Hwang J C,Huang C W,Cheng C T.The development of load characteristicsinformation network system to improve the estimated efficiency of load synthesisin Taipower.In:Proc of1st International Conference on Innovative Computing,Information and Control.Beijing,China,2006,6-9
    [33]张红斌,汤涌,张东霞,等.基于总体测辨法的电力负荷建模系统.电网技术,2007,31(4):32-35
    [34]赵兵,汤涌,张文朝,等.基于故障拟合法的综合负荷模型验证与校核.电网技术,2010,34(01):45-50
    [35]鞠平,刘伟航,项丽,等.电力系统负荷建模的自动故障拟合法.电力系统自动化,2013,10(37):60-65
    [36] Rudolph G. Convergence analysis of canonical genetic algorithms. IEEETransactions on Neural Networks,1994,5(1):96-101
    [37]王斌晓,黄彦全,宋廷珍,等.基于混沌蚁群算法的负荷模型参数辨识.电力系统保护与控制,2011,39(14):47-51
    [38]鞠平,张翠,卫志农,等.电力系统潮流计算的模拟进化方法.河海大学学报,1998,5(26):25-30
    [39]陆荣双,杨文龙,曾璐.模拟进化计算理论及其应用.河南冶金,2004,12(6):18-19,43
    [40]李欣然,李培强,金群,等.负荷建模参数辨识中综合改进遗传算法的应用.湖南大学学报(自然科学版),2007,34(2):46-50
    [41] Tang J,Zhao L,Yue H,et al.Spectral kernel principal component selection basedon empirical mode decomposition and genetic algorithm for modeling parametersof ball mill load.In:Proc of2011Fourth International Conference on IntelligentComputation Technology and Automation.Shenzhen,China,2011,1:932-935
    [42] Huang Y,Li W,Ye X.A modified genetic algorithm for developing dynamicneural network model and its application in daily short-term load forecasting.In:Proc of20103rd International Conference on Advanced Computer Theory andEngineering.Chengdu,China,2010,1-5
    [43] Price W W,Casper S G,Nwankpa C O,et al.Bibliography on load models forpower flow and dynamic performance simulation.IEEE Transactions on PowerSystems,1995,10(1):523-538
    [44] IEEE Task Force on Load Representation for Dynamic Performance.Standardload models for power flow and dynamic performance simulation. IEEETransactions on Power Systems,1995,10(3):1302-1313
    [45] Tewari D,Heydt G T.Load modeling utilizing symbolic dynamics.PowerEngineering Review,2002,22(8):53-54
    [46]王金芝.东北电网第二次大扰动试验回顾.电网技术,2007,31(04):23
    [47]王金芝.为提高500kV电网送电能力国家电网公司在东北电网进行两次大扰动试验.电网技术,2007,31(04):10
    [48]王金芝.国内首次人工大扰动试验回顾.电网技术,2007,(04):68
    [49] Yong T,Hong-Bin Z,Dong-Xia Z,et al.A synthesis load model with distributionnetwork for power transmission system simulation and its validation.In:Proc ofPower&Energy Society General Meeting.Calgary,Canada,2009,1-7
    [50]邱丽萍,张文朝,汤涌,等.华北电网综合负荷建模研究.电网技术,2010,34(03):72-78
    [51]汤涌,张红斌,侯俊贤.负荷建模的基本原则和方法.电网技术,2007,3(04):1-5
    [52]王琦,张文朝,汤涌,等.统计综合法负荷建模中的调查方法及应用.电网技术,2010,34(02):104-108
    [53]汤涌,赵兵,张文朝,等.综合负荷模型参数的深化研究及适应性分析.电网技术,2010,34(02):57-63
    [54]侯俊贤,汤涌,张红斌,等.感应电动机的综合方法研究.电网技术,2007,31(04):36-41
    [55]杨华春,贺仁睦,王鹏,等.基于聚合理论的大区电网负荷建模.电力系统自动化,2005,29(1):49-52
    [56]洪志鹏,马进,贺仁睦.基于统计学分类的综合负荷模型实测建模.现代电力,2008,25(2):6-12
    [57]郑晓雨,贺仁睦,马进,等.基于轨迹灵敏度的负荷分类.电工技术学报,2010,25(09):145-150
    [58]贺仁睦,王卫国,蒋德斌,等.广东电网动态负荷实测建模及模型有效性的研究.中国电机工程学报,2002,22(3):78-82
    [59] He R,Ma J,Hill D J.Composite load modeling via measurement approach.IEEETransactions on Power Systems,2006,21(2):663-672
    [60]贺仁睦,徐衍会,马进,等.人工三相短路试验数据验证的负荷实测建模方法.电网技术,2007,31(4):59-64
    [61]许涛,贺仁睦,王鹏等.基于统计学习理论的电力系统暂态稳定评估.中国电机工程学报,2003,23(11):51-55
    [62]韩冬,马进,贺仁睦等.电力系统时域仿真的动态一致性检验.电力系统自动化,2010,34(16):29-33
    [63]周成,贺仁睦.电力系统仿真模型有效性的动态评估.电网技术,2010,34(03):61-64
    [64]徐昊,贺仁睦,周静姝等.从BPA到EMTDC的动态模型转换.现代电力,2011,28(3):7-11
    [65]李颖,贺仁睦,徐衍会.广东电网基于PMU的负荷模型参数辨识研究.南方电网技术,2009,3(01):16-19
    [66]张进,贺仁睦,王鹏等.一种新型差分方程负荷模型与电力系统仿真程序的接口方法.电网技术,2005,29(10):57-60
    [67]苏盛,李欣然,陈元新等.电力负荷特性记录装置的开发与应用.长沙电力学院学报(自然科学版),2002,17(1):27-30
    [68]徐鹏,李欣然,朱湘有等.电力负荷特性在线记录系统软件设计.微计算机信息,2010,26(01):69-71
    [69]张磊,李欣然,陈辉华等.统计综合法电力系统负荷建模平台的开发.电力系统及其自动化学报,2010,22(1):120-125
    [70]李培强,李欣然,陈辉华等.基于模糊聚类的电力负荷特性的分类与综合.中国电机工程学报,2005,25(24):73-78
    [71]林舜江,李欣然,李培强等.基于实测响应空间的负荷动特性直接综合方法.中国电机工程学报,2006,26(21):36-42
    [72]李欣然,姜学皎,钱军等.基于用户日负荷曲线的用电行业分类与综合方法.电力系统自动化,2010,34(10):56-61
    [73]鞠平.电力系统对负荷建模的要求.现代电力,2008,25(04):1
    [74]鞠平.电力系统建模理论与方法.北京:科学出版社,2010
    [75]陈谦,孙建波,蔡敏等.考虑配电网络综合负荷模型的参数确定.中国电机工程学报,2008,28(16):45-50
    [76]程颖,鞠平,吴峰.负荷模型参数辨识的粒子群优化法及其与基因算法比较.电力系统自动化,2003,27(11):25-29
    [77] Chen Q,Ju P,Shao Z Y,et al.Electrical load modeling with consideringdistribution network. In: Proc of Bulk Power System Dynamics andControl–VII.Charleston,USA,2007,1-6
    [78]李娟,丁坚勇.电力系统负荷建模和算法的研究及进展.高电压技术,2008,34(10):2209-2215
    [79]张红斌,汤涌,张东霞等.负荷建模技术的研究现状与未来发展方向.电网技术,2007,31(4):6-10
    [80]鞠平,谢会玲,陈谦.电力负荷建模研究的发展趋势.电力系统自动化,2007,31(2):1-4,64
    [81]李琼慧,黄碧斌,蒋莉萍.国内外分布式电源定义及发展现况对比分析.中国能源,2012,34(8):31-34
    [82] Modi P K,Singh S P,Sharma J D,et al.Stability improvement of power systemby decentralized energy.Advances in Energy Research,2006,65-70
    [83] Ackrmann T,Andersson G,Soder L.Distributed generation:a definition.ElectricPower Systems Research,2001,57(3):195-204
    [84] Pepermans G,Driesen J,Haeseldonckx D,et al.Distributed generation:definition,benefits and issues.Energy Policy,2005,33(6):787-798
    [85]董轶婷.分布式电源发展现状及前景.www.nsd.edu.cn/cn/userfiles/Other/2013-03/2013032221071176031081.pdf.2013-03-22
    [86] WADE.World survey of decentralized energy-2006,WADE Report.www.localpower.org/nar_publications.html.2006-05-11
    [87] REN21.Renewables2012global status report.Paris:REN21Secretariat andWashington DC:Worldwatch Institute,2012,95-110
    [88] METI.The strategic energy plan of Japan:meeting global challenges and securingenergy futures.www.meti.go.jp/english/press/data/pdf/20100618_08a.pdf.2010-06-18
    [89] WWEA.Small wind world report summary2012.www.wwindea.org/webimages/WWEA%20Small%20Wind%20World%20Report%20Summary%202012.pdf.2012-03-15
    [90]白明,许敏,崔新雨,等.基于可再生能源的分布式发电技术的应用及前景.节能与环保,2008,(2):20-22
    [91]国家发展和改革委员会.可再生能源发展“十二五”规划.太阳能,2012,(16):6-19
    [92]郑广君,李杰,王立永,等.分布式电源接入配电网的规划研究.供用电,2011,28(04):22-27
    [93]符杨,朱齐,李振坤.含分布式电源配电网的扩展规划研究.华东电力,2011,39(11):1771-1775
    [94]徐玉琴,李雪冬,张继刚,等.考虑分布式发电的配电网规划问题的研究.电力系统保护与控制,2011,39(1):87-91,117
    [95]崔金兰,刘天琪,李兴源.含有分布式发电的配电网重构研究.电力系统保护与控制,2008,36(15):37-40,49
    [96]李红伟,孙宏斌,张安安,等.基于正序分量的含PV节点的三相配网潮流算法.中国电机工程学报,2012,32(1):115-121
    [97]李红伟,张安安.含PV型分布式电源的弱环配电网三相潮流计算.中国电机工程学报,2012,32(4):128-135
    [98]邰能灵,冯希科.分布式电源对配电网自动重合闸的影响研究.电力科学与技术学报,2010,25(1):21-26
    [99]庞建业,夏晓宾,房牧.分布式发电对配电网继电保护的影响.继电器,2007,35(11):5-8
    [100]孙鸣,赵月灵,王磊.DG容量及接入方式对变电站继电保护定值的影响.电力自动化设备,2009,29(9):46-49
    [101]赵豫,于尔铿.电力零售市场研究(六)——分散式发电对电力系统的影响.电力系统自动化,2003,27(15):25-28,48
    [102]魏玲,杨明皓.含分布式发电和多种合同的配电公司中长期购电策略.电力系统保护与控制.2009,37(2):53-57
    [103]胡庶,吴耀武,娄素华,等.用户自备分布式发电与供电商的博弈.电力系统自动化,2006,20(30):21-25
    [104]黄汉奇,毛承雄,王丹,等.可再生能源分布式发电系统建模综述.电力系统及其自动化学报,2010,5(22):14-18,24
    [105] Qian J,Li X R,Hui J H.Impact of wind generation on load modeling ofdistribution network.In:Proc of International Conference on Sustainable PowerGeneration and Supply.Nanjing,China,2009,1-5
    [106]张剑,孙元章.含有分布式电源的广义负荷建模.电网技术,2011,8(35):41-46
    [107]丁明,严流进,茆美琴,等.分布式发电中燃料电池的建模与控制.电网技术,2009,33(9):8-13
    [108]钱军,李欣然,王玲,等.面向负荷的光伏电池和燃料电池建模及其等效描述.电网技术,2011,35(4):135-142
    [109]王玲,李欣然,马亚辉,等.燃料电池发电系统的机电动态模型.中国电机工程学报,2011,31(22):40-47
    [110]张剑,孙元章.三相单级光伏并网系统对配电网侧负荷建模的影响.电力系统自动化,2011,35(02):73-78
    [111] Riley D M,Venayagamoorthy G K.Comparison of a recurrent neural networkPV system model with a traditional component-based PV system model.In:Procof Photovoltaic Specialists Conference (PVSC).Seattle,USA,2011,2426-2431
    [112] Saha A K,Chowdhury S,Chowdhury S P,et al.Modelling and simulation ofmicroturbine in islanded and grid-connected mode as distributed energyresource.In:Proc of Power and Energy Society General Meeting.Pittsburgh,USA,2008,1-7
    [113]李军军,吴政球.微型燃气轮机分布式发电系统的建模和仿真.湖南大学学报(自然科学版),2010,37(10):57-62
    [114] Laili M S,Zakaria Z N,Halim N H,et al.Modelling and simulation ofmicroturbine for a distribution system network with hybrid filter.In:Proc ofPower Engineering and Optimization Conference(PEDCO).Melaka,2012,204-208
    [115]刘君,穆世霞,李岩松,等.微电网中微型燃气轮机发电系统整体建模与仿真.电力系统自动化,2010,34(7):85-89
    [116] Ma Y H,Li X R,Wang L,et al.Modeling and equivalent description ofmicroturbine generation system. In: Proc of International Conference onAdvanced Power System Automation and Protection(APAP).Beijing,China,2011,867-872
    [117]马亚辉,李欣然,李小菊,等.含微型燃气轮机发电的配电网综合负荷建模.湖南大学学报(自然科学版),2012,39(11):58-64
    [118] Ishchenko A,Jokic A,Myrzik J M A,et al.Dynamic reduction of distributionnetworks with dispersed generation.In:Proc of International Conference onFuture Power Systems.Amsterdam,2005,1-7
    [119] Ischchenko A,Myrzik J M A,Kling W L.Dynamic equivalencing of distributionnetworks with dispersed generation.In:Proc of Power Engineering SocietyGeneral Meeting.Montreal,Canada,2006,1-8
    [120] Ishchenko A,Myrzik J M A,Kling W L.Dynamic equivalencing of distributionnetworks with dispersed generation using Krylov methods.In:Proc of2007IEEE Lausanne Power Tech.Lausanne,Switzerland,2007,2023-2028
    [121] Ishchenko A,Myrzik J M A,Kling W L.Dynamic equivalencing of distributionnetworks with dispersed generation using Hankel norm approximation.IETGeneration,Transmission&Distribution,2007,1(5):818-825
    [122] Resende F O,Moreira C L,Pecas Lopes J A.Identification of dynamicequivalents for MicroGrids with high penetration of solar energy usingANN. PV-Hybrid and MiniGrid-3rd European PV-Hybrid and Mini-GridConference.Aix en Provence,France,2006
    [123] Resende F O,Pecas Lopes J A.Development of dynamic equivalents forMicroGrids using system identification theory.In:Proc of2007IEEE LausannePower Tech.Lausanne,Switzerland,2007,1033-1038
    [124] Resende F O.Contributions for MicrGrids dynamic modelling and operation:[dissertation]. Porto:Porto University,2007,1-5
    [125] Azmy A M,Erlich I.Identification of dynamic equivalents for distribution powernetworks using recurrent ANNs.In:Proc of Power Systems Conference andExposition.New York,USA,2004:348-353
    [126] Azmy A M, Erlich I, Sowa P. Artificial neural network-based dynamicequivalents for distribution systems containing active sources. IEEProceedings-Generation,Transmission and Distribution,2004,151(6):681-688
    [127] Katiraei F,Iravani M R,Lehn P W.Small-signal dynamic model of a micro-gridincluding conventional and electronically interfaced distributed resources.IETGeneration,Transmission&Distribution,2007,1(3):369-378
    [128] Boemer J C,Gibescu M,Kling W L.Dynamic models for transient stabilityanalysis of transmission and distribution systems with distributed generation:anoverview.In:2009IEEE Bucharest Power Tech Conference.Bucharest,Rumania,2009,1-8
    [129]刘其辉,李万杰.双馈风力发电及变流控制的数/模混合仿真方案分析与设计.电力系统自动化,2011,35(1):83-86,95
    [130] Daniel A F C,Marcelo L H.Modeling and design of a micro wind energy systemwith a variable-speed wind turbine connected to a permanent magnetsynchronous generator and a PWM rectifier.In:Proc of Power ElectronicsConference (COBEP).Natal,Brazil,2011,292-299
    [131]谭勋琼,吴政球,周野,等.固体氧化物燃料电池的集总建模与仿真.中国电机工程学报,2010,(17):104-110
    [132] Souleman Njoya M,Tremblay O,Dessaint L A.A generic fuel cell model for thesimulation of fuel cell vehicles.In:Proc of Vehicle Power and PropulsionConference (VPPC).Michigan,USA,2009,1722-1729
    [133] McDermott T E. Modeling PV for unbalanced, dynamic and quasistaticdistribution system analysis.In:Proc of2011IEEE Power and Energy SocietyGeneral Meeting.San Diego,CA,2011:1-3
    [134]马亚辉,李欣然,宋军英,等.PMU数据处理及其在综合负荷建模中的应用.电力系统及其自动化学报,2011,23(5):6-11
    [135]赵争鸣,刘建政,孙晓英,等.太阳能光伏发电及应用.北京:科学出版社,2005,27-29
    [136] Kasera J,Chaplot A,Maherchandani J K.Modeling and simulation of wind-PVhybrid power system using Matlab/Simulink.In:Proc of IEEE Students’Conference on Electrical, Electronics and Computer Science(SCEECS).Bhopal,India,2012,1-4
    [137]程启明,程尹曼,倪仁杰,等.基于Fuzzy-Pi双模控制的光伏发电系统最大功率点跟踪仿真研究.太阳能学报,2011,32(5):704-709
    [138]马进,贺仁睦,周彦军.负荷模型泛化能力的研究,中国电机工程学报,2006,26(21):29-35
    [139] Massucco S,Morini A,Petretto G,et al.A solid oxide fuel cell model toinvestigate load following and stability issues in distribution networks.In:2009IEEE Bucharest Power Tech Conference.Bucharest,Rumania,2009:1-7
    [140] Rowen I. Simplified mathematical representations of heavy-duty gasturbines.Journal of engineering for power,1983,105(4):865-869
    [141]尹明,李庚银,张建成,等.直驱式永磁同步风力发电机组的建模及其控制策略.电网技术,2007,15(31):55-61
    [142] Nayak S K,Gaonkar D N.Modeling and performance analysis of microturbinegeneration system in grid connected/islanding mode. In: Proc of IEEEInternational Conference on Power Electronics, Drives and EnergySystems(PEDES).Bengaluru,India,2012,1-6
    [143]雷亚洲,Lightbody G.国外风力发电导则及动态模型简介.电网技术,2005,29(12):27-32
    [144]李晶,宋家骅,王伟胜.大型变速恒频风力发电机组建模与仿真.中国电机工程学报,2004,24(6):95-100
    [145]刘其辉,王志明.双馈式变速恒频风力发电机的无功功率机制及特性研究.中国电机工程学报,2011,31(03):82-89
    [146]李晶,刘进军,袁敞,等.基于Saber的风力发电系统建模及仿真分析.太阳能学报,2008,29(12):1471-1476
    [147]陈树勇,宋书芳,李兰欣,等.智能电网技术综述.电网技术,2009,33(08):1-7
    [148]余贻鑫,栾文鹏.智能电网述评.中国电机工程学报,2009,29(34):1-8
    [149] Fan Z,Kulkarni P,Gormus S,et al.Smart grid communications:overview ofresearch challenges, solutions, and standardization activities. IEEECommunications Surveys&Tutorials,2013,15(1):21-38
    [150]董钺,孔力.微型燃气轮机发电系统直流侧建模方法.电网技术,2008,32(3):7-13
    [151]赵仁德,王永军,张加胜.直驱式永磁同步风力发电系统最大功率追踪控制.中国电机工程学报,2009,29(27):106-111
    [152] Tsai H L,Tu C S,Su Y J.Development of generalized photovoltaic model usingMATLAB/IMULINK.In:Proceedings of the World Congress on Engineering andComputer Science2008.San Francisco,USA,2008,1-6
    [153] Zhu Y,Tomsovic K.Adaptive power flow method for distribution systems withdispersed generation.IEEE Transactions on Power Delivery,IEEE,2002,22(5):72
    [154]王志群,朱守真,周双喜.逆变型分布式电源控制系统的设计.电力系统自动化,2004,28(24):61-65,70
    [155] Nayak S K,Gaonkar D N.Modeling and performance analysis of microturbinegeneration system in grid connected/islanding mode. In: Proc of IEEEInternational Conference on Power Electronics,Drives and Energy Systems(PEDES).Bengaluru,India,2012,1-6
    [156]陈树勇,鲍海,吴春洋,等.分布式光伏发电并网功率直接控制方法.中国电机工程学报,2011,31(10):6-11
    [157] Kim S K,Jeon J H,Cho C H,et al.Modeling and simulation of a grid-connectedPV generation system for electromagnetic transient analysis.Solar Energy,2009,83(5):664-678
    [158]谭玲君,杨晨.固体氧化物燃料电池与质子交换膜燃料电池联合系统的建模与仿真.中国电机工程学报,2011,31(20):33-39
    [159] Gebregergis A, Pillay P, Bhattacharyya D, et al. Solid oxide fuel cellmodeling.IEEE Transactions on Industrial Electronics,2009,56(1):139-148
    [160]高峰,周孝信,朱宁辉,等.直驱式风电机组机电暂态建模及仿真.电网技术,2011,35(11):29-34
    [161]胡书举,李建林,许洪华.直驱风电系统变流器建模和跌落特性仿真.高电压技术,2008,34(5):949-954
    [162]李欣然,金群,刘艳阳等.遗传策略的综合改进及其在负荷建模中的应用.电网技术,2006,30(11):40-46
    [163]郑晓雨,马进,贺仁睦等.基于模型激励响应的负荷分类及泛化能力.电工技术学报,2009,24(2):132-138
    [164]余昆,曹一家,倪以信等.分布式发电技术及其并网运行研究综述.河海大学学报(自然科学版),2009,37(6):41-48
    [165] Feng X,Lubosny Z,Bialek J.Dynamic equivalencing of distribution networkwith high penetration of distributed generation.In:Proc of41st InternationalUniversities Power Engineering Conference,Newcastle,UK,2006,467-471
    [166] Fried S,Shukla S,Sawyer S.Global Wind Report:Annual market update2011.www.gwec.net/publications/global-wind-report-2/global-wind-report-2010-2/#,2012-04-02
    [167]吴杰,孙伟,颜秉超.应用STATCOM提高风电场低电压穿越能力.电力系统保护与控制,2011,39(24):47-51,71
    [168]朱雪凌,张洋,高昆等.风电场无功补偿问题的研究.电力系统保护与控制,2009,37(16):68-72,76
    [169]张先勇,舒杰.基于无源性理论的双馈风力发电机双PWM变换器协调控制.电力系统保护与控制,2010,38(21):184-188,195
    [170]苑国锋,李永东,柴建云等.1.5MW变速恒频双馈风力发电机组励磁控制系统试验研究.电工技术学报,2009,24(2):42-47
    [171] Lok-Fu P,Dinavahi V.Real-time simulation of a wind energy system based onthe doubly-fed induction generator.IEEE Transactions on Power Systems,2009,24(3):1301-1309
    [172]黄学良,刘志仁,祝瑞金,等.大容量变速恒频风电机组接入对电网运行的影响分析.电工技术学报,2010,25(04):142-149
    [173] Kayikci M,Milanovic J V.Dynamic contribution of DFIG-based wind plants tosystem frequency disturbances.IEEE Transactions on Power Systems,2009,24(2):859-867
    [174] Trudnowski D J,Gentile A,Khan J Met,et al. Fixed-speed wind-generator andwind-park modeling for transient stability studies.IEEE Transactions on PowerSystems,2004,19(4):1911-1917
    [175] Fernández L M,Jurado F,Saenz J R.Aggregated dynamic model for wind farmswith doubly fed induction generator wind turbines.Renewable Energy,2008,33(1):129-140
    [176]陈树勇,王聪,申洪,等.基于聚类算法的风电场动态等值.中国电机工程学报,2012,32(4):11-19
    [177]林志明,潘东浩,王贵子,等.双馈式变速变桨风力发电机组的转矩控制.中国电机工程学报,2009,29(32):118-124
    [178]刘其辉,贺益康,赵仁德.交流励磁变速恒频风力发电系统的运行与控制.电工技术学报,2008,23(1):129-136
    [179]高乐.双馈感应风力发电机控制系统关键技术研究:[湖南大学博士学位论文].湖南:湖南大学,2010,36-45
    [180] Ekanayake J B,Holdsworth L,Jenkins N.Comparison of5th order and3rd ordermachine models for doubly fed induction generator (DFIG) windturbines.Electric Power Systems Research,2003,67(3):207-215
    [181]马进,贺仁睦,周彦军.负荷模型泛化能力的研究.中国电机工程学报,2006,26(21):29-35
    [182]李欣然,钱军,王立德,等.配电网集结等效的异步电动机综合负荷模型及其总体测辨建模.电工技术学报,2009,24(4):175-185
    [183]高松,贺仁睦,马进,等.电力系统动态仿真误差评定准则研究.电力系统自动化,2006,30(4):6-10
    [184]张恒旭,张宁,刘玉田.电力系统暂态稳定数字仿真有效性评价.电力自动化设备,2007,27(7):13-16
    [185] Han D,He Renmu,Ma J.Power system dynamic simulation validation based onsimilarity theory and analytical hierarchy process.In:Proc of2006InternationalConference on Power System Technology (POWERCON).Chongqing,China,2006,1-7
    [186]柳世考,刘兴堂,张文.利用相似度对仿真系统可信度进行定量评估.系统仿真学报,2002,14(02):143-145
    [187]周成,贺仁睦,王吉利,等.电力系统元件模型仿真准确度评估.电网技术,2009,33(14):12-15
    [188]贺仁睦.电网动态实时监控及管理系统的构想.电力系统自动化,2002,26(5):1-4,59
    [189] Alinejad B, Akbari M, Kazemi H. PMU-based distribution network loadmodelling using harmony search algorithm.In:Proc of17th Conference onElectrical Power Distribution Networks (EPDC).Tehran,Iran,2012,1-6
    [190]温菊屏,林冬梅.参考节点嵌入最短距离估算在图聚类中的应用.计算机工程与设计,2012,33(06):2300-2304
    [191]马轶东,何怡刚,王桓.运用BP神经网络的电力负荷混沌多步预测.电力系统及其自动化学报,2010,22(04):81-84
    [192] Dehghanian P, Fotuhi-Firuzabad M, Bagheri-Shouraki S, et al. Criticalcomponent identification in reliability centered asset management of powerdistribution systems via fuzzy AHP.IEEE Systems Journal,2012,6(4):593-602

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700