高盐难降解废水处理工程生产性调试研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的高速发展,化工、制药等工业企业数量剧增,在创造出巨大经济效益的同时,也排放大量难降解有毒有害或高盐废水。以精细化工废水为例,“难降解”与“高盐度”、“高浓度”或“有毒有害”几大特性的叠加,会严重抑制微生物的正常新陈代谢功能,使生化反应难以进行,废水处理难度很大,已建项目常难以达标排放。与此同时,国家又陆续颁布或更新了更严格的工业废水排放标准。因此,研究高盐难降解废水处理的可靠工艺与关键技术,解决当前我国重污染企业面临的困境是当务之急。
     重庆某精细化工厂拟采用以“Fenton氧化-两相厌氧-生物接触氧化”为主体的工艺处理高盐难降解的羧甲基纤维素钠(Carboxy Methyl Cellulose,CMC)废水,在废水处理工程建设完成后,从培养耐盐菌开始一直到项目验收共计半年时间,笔者进行了生产性调试研究,研究内容几乎涉及污水处理领域的各个层面,十分复杂而且广泛。首先,同时向水解酸化池、接触厌氧池和生物接触氧化池投加相同成分的某城市污水厂污泥,各池独立完成培菌和挂膜过程。然后,整个系统正式启动,以培养和驯化同步进行的方式来培养系统污泥。在调试期间,进水量控制在200 m3左右,逐步提升进水盐度至设计值26072.9 mg/L,进水COD 6000mg/L。当进水水质水量达到设计值,同时,出水COD稳定在500 mg/L时,向环保局申请验收。
     调试研究结果表明:①常规生物处理系统通过适当驯化后能够处理高盐废水,但驯化菌种的耐盐度有限,而且驯化时间长、易受冲击。应严格控制耐盐微生物的驯化培养过程;②盐度控制是高盐难降解废水生物处理工艺成功运行的关键。CMC废水处理的盐度应控制在2%左右;③在生物接触氧化工艺中,生物膜是降解有机物的主体;④高盐污泥沉降性能较差,应注意合理设计沉淀池,适当增加沉淀时间;⑤生产性调试运行表明,采用“Fenton氧化-两相厌氧(水解酸化池+厌氧反应池)-生物接触氧化”组合工艺处理高盐难降解的CMC废水是可行的,出水可达到《污水综合排放标准》(GB8978-1996)中的三级标准。
     高盐度难降解废水处理技术本身就是学术研究的前沿,已受到学术界和工程界的普遍关注,成为污水处理领域中近几年来最具吸引力的研究方向之一。本文研究结果可用于指导重污染企业达标排放,缓解当前紧迫的水环境压力,产生环境效益、社会效益和经济效益,具有重大的理论与实践意义。
With the high-speed development of our country's economic, the number of chemical pharmaceutical and other industrial enterprise has a huge increasing, creating huge economic benefit, but also of the discharge difficult degradable poisonous and harmful or high salt wastewater. For example with the fine chemical wastewater, the several characteristics superposition of“refractory”with“high salinity”“high concentration”or“poisonous and harmful”, it serious inhibits microbes normal metabolism function, make biochemical reactions very difficult, wastewater treatment is very difficult, already built projects often standards. At the same time, the government has issued or renewed more tightening industrial wastewater discharge standard. So reliable treatment process and key treatment technologies of effluents containing high salinity and refractory biodegradable organic matter is very important to be studied to resolve the difficulty that heavy pollution industries in china are faced with.
     The combined treatments of Fenton oxidation—two-phase anaerobic(hydrolytic acidification tank+ anaerobic tank)—biological contact oxidation was intended to be used in a Fine Chemical Factory in Chongqing in order to treat CMC effluents containing high salinity and refractory biodegradable organic matter. After the completing of project construction, it takes a total of six months from culturing halo -tolerant bacteria to acceptance of the project, I carried on the production commissioning research involving almost every aspect of the wastewater treatment in the six months, and it is extensive and complex. At first, the sludge of a municipal effluent treatment plant was added to hydrolytic acidification tank, anaerobic biological contact tank and biological contact oxidation tank at the same time, cultivation and membrane forming was accomplished separately in each tank. Then the system started. The cultivation and acclimation was carried out to culture sludge in the system. During the commissioning, the influent was confined around 200 m3,and the salinity of influent was increased gradually to 26072.9 mg/L, COD of the influent is 6000mg/L. When the quality and volume of influent reached the design requirements, COD of the effluent is stability 500mg/L, the application of acceptance of the project was submitted to Environmental Protection Agency.
     The results of commissioning show:①Conventional biological treatment systems could be used to treat highly saline wastewater through moderate acclimated biomass. Acclimated micro-organisms could tolerate high salt concentrations, but the tolerance of acclimated micro-organisms is limited, the adapting of micro-organisms to high salt concentrations takes a long time and acclimated micro-organisms are often exposed to shocks. So the adapting and cultivating of salt-tolerant micro-organisms should be controlled strictly.②The key of excellent performance biological treatment process of effluents containing high salinity and refractory biodegradable organic matter is controlling the salinity. The salinity of the CMC effluents treated biologically should be confined to 2 percent.③In the biological contact oxidation process for the removal of organic matter, biological film is the main part.④Settling properties of the sludge in high saline environments is bad, so Sedimentation Tank should be designed properly to appropriately increase the time of settling.⑤The results of production commissioning and operation show that the treatment of CMC effluents containing high salinity and refractory biodegradable organic matter,using the combined treatments of Fenton oxidation—two-phase anaerobic(hydrolytic acidification tank+ anaerobic tank)—biological contact oxidation,is feasible. The effluent quality meets the third grade criteria of integrated wastewater discharge standard (GB8978-1996).
     Treatment technology of effluents containing high salinity and refractory biodegradable organic matter is an academic frontier; it has drawn the concern of academic and engineering circles and is becoming one of the most attractive research directions in the wastewater treatment. The results of this paper could be used to help the effluent of heavy pollution industry to meet the discharge standard in order to relieve urgent press of water environment, and realize environmental, economic and social profits. It has great theoretical and practical meaning.
引文
[1]雷云,解庆林,李艳红.高盐度废水处理研究进展[J].环境科学与管理, 2007, 32(6): 94-98.
    [2]邹小玲,丁丽丽,等.高盐度废水生物处理研究[J].工业水处理, 2008, 28(9): 1-4.
    [3]王志霞,王志岩,武周虎.高盐度废水生物处理现状与前景展望[J].工业水处理, 2002, 22(11): 1-4.
    [4]农少梅,李捍东,张树增,李霁.高盐废水处理技术研究新进展[J].工业水处理, 2008, 21(3): 72-76.
    [5] Lawton G W. Effect of high sodium chloride concentrationon trickling filter slimes[J]. Sewage and Industrial Wasters, 1957, 29(11): 1 228-1 236.
    [6] Petrasek A C, Kugelamn I J, Austern B M, Pressley T A, WinslowL A, Wise R H·Fate of toxic organic compounds in wastewater treatment plants[J]. J Water Pollu Control Fed, 1983, 55: 1286-1295.
    [7]张胜田,江希流,叶青.江苏某镇稻田污染事故诊断研究[J].农业环境科学学报, 2005, 24(增刊): 254-256.
    [8] Lefebvre, O. , Moletta, R. . Treatment of organic pollution in industrial saline wastewater: a literature review [J]. Water Research 2006, 40: 3 671–3 682.
    [9] Sohair I. Abou-Elela, Mohamed M. Kamel, Mariam E. Fawzy. Biological treatment of saline wastewater using a salt-tolerant microorganism [J]. Desalination2010, 250: 1-5.
    [10] Pankaj Chowdhury, T. Viraraghavan, A. Srinivasan. Biological treatment processes for fish processing wastewater-A review[J]. Bioresource Technology 2010, 101: 439–449.
    [11] B. J. W. Tuin, R. Geerts, J. B. Westerink, G. C. G. Van. Pretreatment and biotreatment of saline industrial wastewaters[J]. Water Science and Technology 2006, 53 (3): 17-25.
    [12]曾青兰,李晓宏.离子交换膜技术及其应用[J].科技资讯, 2010, 04: 1-3.
    [13]徐昌松,程少民等.电渗析法处理联碱废水的研究[J].纯碱工业, 2000(1): 10-12.
    [14] Piya-areethamP, Shenchunthichai k, Hunsom M. Application of electrooxidation process for treating concentrated wastewater from distillery industry with a voluminous electrode[J]. Water Research, 2006(40): 2 857-2 864.
    [15]包勇.高浓度含盐染料废水电混凝处理研究[J].工业水处理, 2006, 26(7): 33-35.
    [16]卢彦越,胡仰栋,徐冬梅,等.反渗透海水淡化系统的优化设计[J].水处理技术, 2005, 31(3): 9-14.
    [17]付守琪,陈萍,罗专溪.渗透法处理高盐废水的原理及工艺[J].环境科学与管理, 2006,31(7): 96-98.
    [18] Macoun A. Alleviating water shortages-lessons from the Middle East[J]. Desalination&Water Reuse, 2000, 10(2): 14-20.
    [19]王车礼,王军.膜蒸馏淡化处理油田高含盐废水的实验研究[J].膜科学与技术, 2004, 24(1): 46-49.
    [20] GrytaM, KarakulskiK, MorawskiA W. Purification of oily wastewater by hybrid UF/MD. W aterRes, 2001, 35(15): 3 665-3 669.
    [21]马静颖,马增益,严建华,等.萃取在含盐有机废水焚烧处理中的应用[J].环境科学学报, 2007, 27(1): 86-91.
    [22]相欣奕,郑怀礼. Fenton反应处理染料废水研究进展[J].重庆建筑大学学报, 2004, 26(4): 126-130.
    [23]罗刚,黄君礼,孙红.活性炭吸附/Fenton试剂氧化法处理造纸厂污冷凝水的研究[J].哈尔滨建筑大学学报, 1999, 32(6): 59-62.
    [24] Xu Xiangrong, Li Huabin, Wang Wenhua, et al. Degradation of dyes solutions by the Fenton process[J]. Chemosphere, 2004, 57(7): 595-600.
    [25]徐颖,陈磊,周俊晓. Fenton氧化-生化组合工艺处理染料中间体废水[J].环境工程学报, 2007, 1(4): 57-60.
    [26]许云峰,徐云兰,曾立云.微电解法处理染料废水[J].工业科技, 2004, 33(2): 67-68.
    [27]施帆君,孙世群,杨阳,孔殿超.微电解+Fenton试剂预处理染料废水工程实例研究[J].环境科学与管理, 2009, 34(11): 93-96.
    [28]张自杰,顾夏声.排水工程(第4版)[M].北京:中国建筑工业出版社, 2000.
    [29]郑平,冯孝善主编,废物生物处理理论核技术[M].杭州:浙江教育出版社, 1995.
    [30]何健.高盐度难降解工业废水生化处理的研究[J].中国沼气, 2000, 18(2): 12—16.
    [31] Hoover S. R. , Porges N. . Assimilation of Dairy Wastes by Activated Sludge II. The Equation of Synthesis and Rate of Oxygen Utilization[J]. Sew, Ind. Waste, 1952, 24: 306.
    [32] Pasveer A. . Contribution to the Development in Activated Sludge Treatment[J]. Ind. Sew. Purif. , 1957, 4: 436.
    [33]杨健.高含盐量石油发酵废水处理研究[J].给水排水, 1999, 25(3): 35—38.
    [34]张华,张学洪,等. ABR+SBR工艺处理高盐采油废水工程[J],水处理技术, 2008, 34(2): 89-91.
    [35]郑元景,等,生物魔法处理污水.北京:中国建筑工业出版社, 1998.
    [36] Yang L. Biodegradation of dispersed diesel fuel under high salinity conditions[J]. Wat. Res. , 2000, 34(13): 3 303-3 314.
    [37] Yang L, Lai C T. Biological treatment of mineral oil in a salty environment[J]. Wat. Sci. Tech. ,2000, 42(5): 369—375.
    [38] Balslev-Olesen P. Pilot-scale experiments on anaerobic treatment of wastewater from a fish processing plant [J]. Wat. Sci. Tech. , 1990, 22(1): 463-474.
    [39] Juang Ruey-Shin, Wu Cheng-Ying. Microbial Degradation of phenol in High-salinity Solutions in Suspensions and Hollow fiber membrane Contract[J]. Chenmosphere, 2007(66): 191-198.
    [40]李长江,刘聚峰,徐园园.水解酸化+两级生物接触氧化处理高盐度水产品加工废水[J].环境科学导刊, 2007, 26(2): 48-50.
    [41] Kim Windey, Inge De Bo, Willy Verstraete. Oxygen-limited autotrophic nitrification denitrification (OLAND)in a rotating biological contactor treating high-salinity wastewater[J]. Water Research, 2005(39): 4 512-4 520.
    [42] HamodaM F, Al-AtlarM S. Effects of high sodium chloride concentration on activated sludge treatment[J]. Wat. Sc. i Tech, 1995, 31(9): 61-72.
    [43]解庆林,李艳红,朱义年,等.高盐度污水生物处理技术研究[J].环境工程, 2004, (2): 15-17.
    [44]刘正.高浓度含盐废水生物处理技术[J].化工环保, 2004, 24(增刊): 209-211.
    [45] Kargi F, Dincer A R. Biological treatment of saline wastewater by fed-batch operation[J]. J. Chem. Technol. Biotechnol. 1997, 69(2): 167-72.
    [46] AhmetUygur. Specific nutrient removal rates in saline wastewater treatment using sequencing batch reactor[J]. ProcessBiochemistry, 2006, 41(1): 61-66.
    [47] Thongchai Panswad, Chadarut Anan. Specific oxygen, ammonia, and nitrate uptake rates of a biological nutrient removal process treating elevated salinity wastewater [ J]. Bioresource Technology, 1999, 70(3): 237-243.
    [48] IlgiKarapinar Kapdan, Burcu Erten. Anaerobic treatment of sa-line wastewater by Halanaerobium lacusrosei [ J]. Process Bio-chemistry, 2007, 42(3): 449-453.
    [49] Eldon R Rene. Effect of COD /N ratio and salinity on the performance of sequencing batch reactors [ J]. Bioresource Technology, 2008, 99(4): 839-846.
    [50] FikretKarg, i AliR Diner. Effect of salt concentration on biological treatment of saline waste waterby fed-batch operation [J]. Enzyme andMicrobialTechnology, 1996, 19(7): 529-537.
    [51]王立东,李志华,等.含盐量对好氧颗粒污泥结构及处理效能的影响[J].中国给水排水, 2008, 26(11): 19-22.
    [52] Rinzema A, van Lier J, Lettinga G. Sodium inhibition of acetoclastic methanogens in granular sludge from a UASB reactor[J]. Enzyme Microb. Technol. , 1988, 10(1): 24-32.
    [53] Vallero MV G, Hulshoff Pol L W, Lettinga G, et al. Effect of NaCl on thermophilic(55℃)methanol degradation in sulfate reducing granular sludge reactors[J]. WaterRes. , 2003, 37(10): 2269-2280.
    [54] Rosa MF, FurtadoAAL, Albuquerque R T, et al. Biofilm development and ammonia removal in the nitrification of a saline wastewater[J]. Bioresour. Technol. , 1998, 65(1): 135-138.
    [55] Campos J. L. , Mosquera-Corral A. , et al. Nitrification in saline waste water with high ammonia concentration in an activated sludge unit. WaterRes. , 2002, 36: 2555~2560.
    [56] P . van der Hoek P, Latour J, Klapwijk A. Denitrification with methanol in the presence of high nitrate waste solutions[J]. Appl. Micro. Biotech. , 1987, 27(2): 199-205.
    [57]郭艳丽,张培玉,等.嗜盐菌与高盐度废水生物处理研究进展[J].环境科学与管理, 2008, 33(9): 79-83.
    [58] Abu-ghararah ZH, Sherrard JH. Biological nutrient removal in high salinity wastewater[J]. Environ. Sc. i Health, 1993, 28: 599-61.
    [59]张雨山,王静,蒋立冬,等.海水盐度对二沉池污泥沉降性能分影响[J].中国给水排水, 2000, 16(2): 18-19.
    [60]何健,李顺鹏.含盐工业废水生化处理耐盐污泥驯化及其机制[J].中国环境科学, 2002, (6): 546-550.
    [61] Woolard C R. Biological treatment of hypersaline wastewater by a biofilm of halophilic bacteria[J]. Wat. Res. , 1994, 28(3): 230-234.
    [62]凌云,冯贵颖,李晓斌,穆军.产朊假丝酵母菌处理皂素废水的研究[J].中国给水排水, 2008, 24(3): 87-91.
    [63] Shin G T, Hang Y D. Production of caroenoids by Rhodotorula rubra from sauer kraut brine[J]. Lebensum. -W iss. u. -Techno, l 1996, 29: 570-572.
    [64] ChoiM H, Park Y H. Growth of Pichia guilliermondii A9, an osmotolerantyeast, inwaste brine generated from kimehi production[J]. Bioresource Technology, 1997(3): 231-236.
    [65] F. Karg. i Empiricalmodels for biological treatment of salinewastewater in rotating biodisc contactor[J]. Process Biochemistry, 2002, 38(3): 399-403.
    [66]魏呐,王详河,李风凯,等.复合高效微生物处理高含盐石油开采废水[J].城市环境与城市生态, 2003, 16(6): 10-12.
    [67]徐锐,曾玮,温康文.高盐污水生物处理技术浅探[J].广东化工, 2008. 35(11): 90-94.
    [68]马承愚,彭英利主编.高浓度难降解有机废水的治理与控制[M]北京:化学工业出版社, 2007.
    [69]何苗,张晓健,等.杂环化合物好氧生物降解性能与其化学结构相关性的研究[J].中国环境科学, 1997, 17(3)199-202.
    [70]王绍文,罗志腾,钱雷主编.高浓度有机废水处理技术与工程应用[M].北京:冶金工业出版社, 2003.
    [71]钱易,汤鸿霄,等.水体颗粒物和难降解有机物的特性与控制技术原理(下卷),难降解有机物[M].北京:中国环境科学出版社, 2000.
    [72]张旋,王启山,高级氧化技术在废水处理中的应用[J].水处理技术, 2009, 35(3)18-22.
    [73]王国华,任鹤云编著.工业废水处理工程设计与实例[M].北京:化学工业出版社, 2004.
    [74]包木太,王娜,等. Fenton法的氧化机理及在废水处理中的应用进展[J]化工进展, 2008, 27(5): 660-665.
    [75]李金莲,金永峰,钱慧娟,等. Fenton试剂在水处理中的应用研究[J].化工科技市场, 2006, 29(6): 28-33.
    [76]张乃东.郑威. Fenton法在水处理中的发展趋势[J].化工进展, 2001, 20(12): 1-3.
    [77]邓南圣.吴峰.环境光化学[M].北京:化学工业出版社, 2003.
    [78] Walling C. Fenton’s reagentrevisited[J]. Acc. Chem. Res, 1975, 8(4): 125-131.
    [79] Sheng H Lin, Cho C Lo. Fenton process for treatment of desizing wastewater[J]. Water Research, 1997, 31(8): 2050-2056.
    [80] Tekin. H, Bilkay. O, Ataberk. S. S, etal. Use of Fenton oxidation improve the bio-deradability of a pharmaceutical wastewater[J]. J. Hazard. Mater, 2006, 136(2): 258-265.
    [81]刘剑玉,等. Fenton化学氧化法深度处理精细化工废水[J].环境科学与技术, 2009, 32(5)141-143.
    [82] Martinez. N. S. S, Fernandez. J. F, Segura. X. F, etal. Pre-oxidation of anextremely polluted industrial wastewater by the Fenton’s reagent[J]. J. Hazard. Mater, 2003, 101(3): 315-322.
    [83] Amat. A. M. , Arques. A, Lopez. F, etal. Solar photo-catalysis to remove paper mill wastewater pollutants[J]Sol. Energy, 2005, 79(4): 393-401.
    [84]张国卿,王罗春,徐高田,等. Fenton试剂在处理难降解有机废水中的应用[J].工业安全与环保, 2004, 30(3): 17-20.
    [85] Guedes. A. M. F. M, Madeira. L. M. P, Boaventura. R. A. R, etal. Fenton oxidation of corkcooking wastewater-over all kinetic analysis[J]. Water Res, 2003, 37(13): 3061-3069.
    [86]王春敏,张捷.类Fenton试剂及其在废水处理中的应用[J].山西化工, 2006, 26(6): 40-42.
    [87] F. G. Pohland, S. Ghosh. Developments in Anaerobic Stabilization of Organic Wastes: The Two-Phase Concept[J]. Environ. Technol. 1971, 1(2): 255-266.
    [88]任南琪,李建政主编.环境污染防治中的生物技术[M]北京:化学工业出版社, 2004.
    [89]李刚,欧阳峰,杨立中,等.两相厌氧消化工艺的研究与进展[J].中国沼气, 2001, 19(2):25-2.
    [90]张自杰主编.排水工程(第四版)下册[M].北京:中国建筑工业出版社, 2000.
    [91]林海主编.环境工程微生物学[M].北京:冶金工业出版社, 2008.
    [92]刘翔.生物接触氧化法处理污水的一种新型填料—悬浮性填料[J].重庆环境科学, 1999, 21(4).
    [93]梅翔.微污染水源生物接触氧化处理工艺中几种填料处理效果的初步比较[J].给水排水, 1999, 25(5).
    [94]丛书总,聂梅生编著.生物膜法污水处理技术[M].北京:中国建筑工业出版社, 2000.
    [95] Sigrun J. Jahren, Jukka A. Rintala, Hallvard?degaard. Aerobic moving bed biofilm reactor treating thermomechanical pulping whitewater under thermophilic conditions. Water Research, 2002, 36: 1067-1075.
    [96]马三剑,刘锋,吴建华,蒋京东,郭维华.柠檬酸废水生物处理过程中的pH值问题[J].中国给水排水, 2002, 18(10): 39-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700