大豆FT/TFL1基因克隆、表达模式及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷脂酰乙醇胺结合蛋白基因家族(Phosphatidylethanolamine-binding Protein,PEBP)编码一类对植物开花时间起重要调控作用的蛋白,其主要成员之一FT(FLOWERING LOCUS T)蛋白或(和)mRNA是成花素的重要组分。对大豆PEBP基因家族进行研究,明确其在大豆开花调控网络中的地位和作用,阐明其基因功能,将有助于揭示大豆开花调控的分子机制。本研究中克隆到了大豆PEBP基因家族的19个基因,对其进行了生物信息学分析,用实时荧光定量PCR(QuantitativeReal-time RT-PCR)分析了其在不同组织器官和发育时期的时空表达模式,并将部分基因在拟南芥中过表达研究其功能。由于qRT-PCR结果的准确性在很大程度上取决于合适内参基因的选择,所以,为了更好地研究大豆开花基因的表达模式,本研究还评价了14个大豆候选内参基因在116个不同发育时期、组织器官、光周期和品种样品间的表达稳定性。主要研究结果如下:
     1.ACT11,UKN1和UKN2在不同组织器官样品中的稳定性最好,SKIP16,UKN1和MTP在不同发育时期样品中的表达最为稳定。在长日和短日光周期样品中,ACT11,TUA5和TIP41稳定性最好。TIP41,UKN1和UKN2在蓝光和红光光周期样品中的稳定性最好,不同品种间ACT11,UKN2和TUB4稳定性最好。整体而言,SKIP16,UKN1和UKN2的表达稳定性最好。
     2.确定了大豆不同类别样品基因表达分析准确定量所需的最适内参基因数目。对组织器官和光周期(长日/短日)样品来讲,分别需要用3个内参基因对结果进行标准化,而蓝光/红光和不同品种样品仅需要2个内参基因就能保证定量结果的准确性。发育时期样品需要4个内参基因同时使用以保证结果的准确性。
     3.从大豆中克隆到19个PEBP基因,包括9个FT同源基因,4个TFL1同源基因,4个CEN同源基因和1个MFT同源基因。这些基因位于10条不同染色体上,FT类基因具有成对排列于同一条染色体的短的区段的倾向,TFL1和CEN的4个不同拷贝均位于不同的染色体上。7对基因之间同源性高于90%,而且多位于不同染色体上,可能与大豆古四倍体的特性有关。
     4.除CEN4外,大豆PEBP基因均具有4个外显子和3个内含子的保守基因结构。第二个和第三个外显子的长度最为保守,在所有基因间多为62bp和41bp。多数大豆的FT/TFL1基因具备该类基因的典型特征,9个配基结合位点非常保守。
     5.在洋葱表皮、拟南芥原生质体和大豆幼叶中瞬时表达表明大豆9个FT均定位于细胞质和细胞核中。
     6.长日条件下,不同纬度来源的大豆品种FTL1/2和FTL3 mRNA表达量与开花时间成正相关,短日条件下的FT的表达量没有显著差别,相对应的开花时间也没有差异。大豆FT类(FTL和TSF)和TFL1类(TFL1和CEN)基因在不同发育时期的表达模式基本相反,大多数FT同源基因在开花期表达量较高,而TFL1同源基因在营养生长的早期表达水平较高;多数大豆FT基因在营养生长阶段的表达呈逐渐升高的趋势,并在开花期达到峰值,表明其可能在大豆的开花调控中起重要的作用。GmFTL1,GmFTL2和GmFTL3过表达拟南芥均导致极端早花表型。PEBP家族基因在不同物种间具有高度的保守性。
     7.多数FT mRNA在开花期叶柄中高水平表达,比在叶片中表达量高30~50倍,这种表达的组织特异性是在其他植物中尚未见报道,初步推测叶柄在大豆开花调控中具有重要功能。
Phosphatidylethanolamine-binding protein(PEBP) gene family members are of important roles in controlling flowering time in plants.As a key member of PEBP gene family,FT(Flowering Locus T) protein or/and mRNA are one of the principal components of florigen.An analysis of soybean PEBP gene family aimed to clarify their definite roles and positions in soybean flowering network may be helpful to elucidate the molecular mechanism underlying flowering control in soybean(Glycine max),a typical short day(SD) crop and a model plant in the early study of photoperiodic flowering.In the present study,19 members of soybean PEBP gene family were cloned and bioinfomatically analyzed. Their spatio-temporal expression profiles across different developmental stages and in various tissues/organs were performed by quantitative real-time reverse transcript PCR(qRT-PCR). Furthermore,functional analysis of three FT-like genes was performed in transgenic Arabidopsis.As the accuracy of qRT-PCR mainly relies on the selection of proper internal reference controls.We perform the gene stability analysis of 14 candidate reference genes in soybean among 116 samples including different developmental stages,various tissues/organs and different photoperiod treatments.The main results were as follows:
     ⅰACT11,UKN1 and UKN2 were the most stably expressed reference genes among different tissues/organs,whereas SKIP16,UKN1 and MTP showed the most expression stabilities in samples from different developmental stages.In LD and SD photoperiodic treatment,ACT11,TUA5 and TIP41 were the most stably expressed.TIP41,UKN1 and UKN2 showed the most expression stabilities in blue and red light photoperiodic treatment.ACT11,UKN2 and TUB4 performed the best in different cultivars. Generally,SKIP16,UKN1 and UKN2 showed excellent expression stabilities across all the experimental samples.
     ⅱTo determine the optimal number of genes required for accurate normalization in soybean gene expression studies,a default cut-off value of 0.15 as proposed by geNorm was adopted.For the samples of different cultivars and blue and red photoperiodic treatment,two reference genes are necessary for optimal normalization.For samples of LD and SD photoperiodic treatments,three genes would be necessary and sufficient to achieve accurate normalization.In contrast,for developmental stages and tissue/organ samples,a combination of four genes is recommended for the accurate normalization.
     ⅲNineteen PEBP genes in soybean were cloned,including 9 FT homologs,4 TFL1 homologs,4 CEN homologs and 1 MFT homolog.They were located on 10 different chromosomes,and FT-like genes seemed proning to parallelly locate in a short section on the same chromosome.In contrast,the different copies of TFL1 and CEN genes were located on the four different chromosomes,respectively. There were 7 pairs of genes which shared high identities of more than 90 percent,and locate on the different chromosomes.This may be due to the characteristics of soybean genome,an ancient tetraploid.
     ⅳAll the soybean PEBP genes except for CEN4 possessed a conserved exon-intron structure with 4 exons and 3 introns.The second and third exons were most conserved among all the PEBP genes, which is 62bp and 41bp in length,respectively.Most of soybean FT/TFL1 proteins shared almost identical ligand-binding sites with their counterparts in other plants reported.
     ⅴThe transient expression using particle bombardment in three different systems including onion epidermal cells,Arabidopsis proplast and soybean leaves was employed to investigate the subcellular location of 9 soybean FT homologs.All the analysis reached to the same patterns that all soybean FT homologs were localized in both nuclear and cytoplasm as Arabidopsis FT did.
     ⅵThe mRNA expression level of GmFTL1/2 and GmFTL3 was positively correlated with the flowering time of different cultivars from different latitudes under long day(LD) conditions.There is no significant differences in FT mRNA expression and flowering time among the different cultivars in short day(SD) conditions.Soybean FT-like genes and TFL1-like genes showed generally opposite expression patterns across different developmental stages.Most of the FT-like genes showed high expression at the anthesis,while TFL1 genes showed high expression at the earlier vegetative stages.The mRNA expression of most of FT genes increased gradually along with the vegetative growth and peaked at the flowering.Overexpression of GmFTL1,GmFTL2 and GmFTL3 in Arabidopsis all resulted in extremely early flowering.These results demonstrated that FT genes may be important in soybean flowering time control and the function of FT was highly conserved in soybean.
     ⅶThe mRNA expression of a majority of FT homologs was detected with a relatively high abundance in petioles,which was 30~50 folds higher than that in leaves.This indicated that the petiole may function(at least in part) on the floral induction in soybean.
引文
1.傅永福,孟繁静.植物的成花决定,植物生理学通讯,1997,33:81-87,100
    2.李宪利,袁志友.高等植物成花分子机理研究现状及展望.西北植物学,2002,22:173-183
    3.石磊,杨克恭.mRNA定位的主动运输机制.国外医学:分子生物学分册,2002,24:344-348
    4.王冬梅,王学臣.胞间连丝与大分子物质的胞间转运机制.植物生理学通讯,2000,36:393-400
    5.魏秋华,吴宁,李锦.磷脂酰乙醇胺结合蛋白的研究进展.中国药理学通报,2007,23:1121-1124
    6.曾群,赵仲华,赵淑清.植物开花时间调控的信号途径.遗传,2006,28:1031-1036
    7.赵人中,雍伟东.高等植物开花研究现状简述.植物学通报,1999,16:157-162
    8.Abe M,Kobayashi Y,Yamamoto S,Daimon Y,Yamaguchi A,Ikeda Y,Ichinoki H,Notaguchi M,Goto K,Araki T.FD,a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex.Science,2005,309:1052-1056
    9.Adam H,Ouellet F,Kane NA,Agharbaoui Z,Major G,Tominaga Y,Sarhan F,Overexpression of TaVRN1 in Arabidopsis promotes early flowering and alters development.Plant Cell Physiol,2007,48:1192-1206
    10.Ahmad M,Cashmore AR.The blue-light receptor cryptochrome 1 shows functional dependence on phytochrome A or phytochrome B in Arabidopsis thaliana.Plant J,1997,11:421-427
    11.Ahmad M,Jarillo JA,Smirnova O,Cashmore A R.Cryptochrome blue-light photoreceptors of Arabidopsis implicated in phototropism.Nature,1998,392:720-723
    12.Ahn J H,Miller D,Winter V J,Banfield M J,Lee J H,Yoo S Y,Henz S R,Brady R L,Weigel D.A divergent external loop confers antagonistic activity on floral regulators FT and TFL1.EMBO J,2006,25:605-614
    13.Aki T,Shigyo M,Nakano R,Yoneyama T,Yanagisawa S.Nano scale proteomics revealed the presence of regulatory proteins including three FT-Like proteins in phloem and xylem saps from rice.Plant Cell Physiol,2008,49:767-790
    14.Alabadi D,Oyama T,Yanovsky M J,Harmon F G,Mas P,Kay S A.Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock.Science,2001,293:880-883
    15.Alabadi D,Yanovsky M J,Mas P,Harmer S L,Kay S A.Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis.Curr Biol.,2002,12:757-761
    16.Amador V,Monte E,Garcia-Martinez J L,Prat S.Gibberellins signal nuclear import of PHOR1,a photoperiod-responsive protein with homology to Drosophila armadillo.Cell,2001,106:343-354
    17.Amasino R M.Control of flowering time in plants.Curr.Opin.Genet Dev.,1996,6:480-487
    18.Amaya I,Ratcliffe O J,Bradley D J.Expression of CENTRORADIALIS(CEN) and CEN-like genes in tobacco reveals a conserved mechanism controlling phase change in diverse species.Plant Cell,1999,11:1405-1418
    19.An H,Roussot C,Su(?)ez-L(?)pez P,Corbesier L,Vincent C,Pi(?)ieiro M,Hepworth S,Mouradov A, Justin S, Tumbull C, Coupland G CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development, 2004, 131: 3615-3626
    
    20. Andersen C L, Jensen J L, Orntoft T F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res., 2004, 64: 5245-5250
    
    21. Araki T. Genetic control of flowering: transition from vegetative to reproductive growth. Tanpakushitsu Kakusan Koso, 1998, 43: 583-591
    
    22. Aukerman M J, Sakai H. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell, 2003, 15: 2730-2741
    
    23. Ausin I, Alonso-Blanco C, Jarillo J A, Ruiz-Garcia L, Martinez-Zapater J M. Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nat Genet, 2004, 36: 162-166
    
    24. Bancroft I, Jones J D, Dean C, Heterologous transposon tagging of the DRL1 locus in Arabidopsis. Plant Cell, 1993, 5: 631-638
    
    25. Banfield M J, Barker J J, Perry A C, Brady R L, Function from structure? The crystal structure of human phosphatidylethanolamine-binding protein suggests a role in membrane signal transduction. Structure, 1998, 6: 1245-1254
    
    26. Barak S, Tobin E M, Andronis C, Sugano S, Green R M, All in good time: the Arabidopsis circadian clock. Trends Plant Sci, 1998, 5: 517-522
    
    27. Bernier G, Perilleux C, A physiological overview of the genetics of flowering time control. Plant Biotechnol J, 2005, 3: 3-16
    
    28. Blazquez M A, Illuminating flowers: CONSTANS induces LEAFY expression. Bioessays, 1997, 19:277-279
    
    29. Blazquez M A, Green R, Nilsson O, Sussman M R, Weigel D, Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell, 1998, 10: 791-800
    
    30. Blazquez M A, Soowal L N, Lee I, Weigel D, LEAFY expression and flower initiation in Arabidopsis. Development, 1997, 124: 3835-3844
    
    31. Bohlenius H, Huang T, Charbonnel-Campaa L, Brunner A M, Jansson S, Strauss S H, Nilsson O, CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science, 2006, 312: 1040-1043
    
    32. Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein S, Coen E, Control of inflorescence architecture in Antirrhinum. Nature, 1996, 379: 791-797
    
    33. Bradley D, Vincent C, Carpenter R, Coen E, Pathways for inflorescence and floral induction in Antirrhinum. Development, 1996, 122: 1535-1544
    
    34. Brunner A M, Yakovlev I A, Strauss S H, Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol., 2004, 4: 14
    
    35. Bustin S A, Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol, 2002, 29: 23-39
    
    36. Cao Y, Dai Y, Cui S, Ma L, Histone H2B monoubiquitination in the chromatin of FLOWERING LOCUS C regulates flowering time in Arabidopsis. Plant Cell, 2008, 20: 2586-2602
    
    37. Carmona M J, Calonje M, Martinez-Zapater J M, The FT/TFL1 gene family in grapevine. Plant Mol Biol., 2007, 63: 637-650
    
    38. Casal J J, Luccioni L G, Oliverio K A, Boccalandro H E, Light, phytochrome signalling and photomorphogenesis in Arabidopsis. Photochem Photobiol Sci., 2003, 2: 625-636
    
    39. Chardon F, Damerval C, Phylogenomic analysis of the PEBP gene family in cereals. J Mol Evol.,2005,61:579-590
    
    40. Chou M L, Haung M D, Yang C H, EMF genes interact with late-flowering genes in regulating floral initiation genes during shoot development in Arabidopsis thaliana. Plant Cell Physiol., 2001,42: 499-507
    
    41. Coker J S, Davies E, Selection of candidate housekeeping controls in tomato plants using EST data. Biotechniques 2003, 35: 740-744
    
    42. Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G, FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science, 2007, 316: 1030-1033
    
    43. Cremer F, Lonnig W E, Saedler H, Huijser P, The delayed terminal flower phenotype is caused by a conditional mutation in the CENTRORADIALIS gene of snapdragon. Plant Physiol., 2001, 126:1031-1041
    
    44. Czechowski T, Stitt M, Altmann T, Udvardi M K, Scheible W R, Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol., 2005,139:5-17
    
    45. Danilevskaya O N, Meng X, Hou Z, Ananiev E V, Simmons C R, A genomic and expression compendium of the expanded PEBP gene family from maize. Plant Physiol, 2008, 146: 250-264
    
    46. Dheda K, Huggett J F, Bustin S A, Johnson M A, Rook G, Zumla A, Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques, 2004, 37: 112-114, 116,118-119
    
    47. Dill A, Sun T, Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics, 2001, 159: 777-785
    
    48. Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A, Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev., 2004, 18: 926-936
    
    49. E1-Din E1-Assal S, Alonso-Blanco C, Peeters A J, Wagemaker C, Weller J L, Koornneef M, The role of cryptochrome 2 in flowering in Arabidopsis. Plant Physiol, 133: 1504-1516
    
    50. Endo M, Mochizuki N, Suzuki T, Nagatani A, CRYPTOCHROME2 in vascular bundles regulates flowering in Arabidopsis. Plant Cell, 2002, 19: 84-93
    
    51. Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, Omura M, Ectopic expression of an FT homolog from citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Res., 2005, 14: 703-712
    52. Eriksson S, Bohlenius H, Moritz T, Nilsson O, GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell, 2006, 18: 2172-2181
    
    53. Exposito-Rodriguez M, Borges A A, Borges-Perez A, Perez J A, Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Bioi, 2008,8: 131
    
    54. Faccioli P, Ciceri G P, Provero P, Stanca A M, Morcia C, Terzi V, A combined strategy of "in silico" transcriptome analysis and web search engine optimization allows an agile identification of reference genes suitable for normalization in gene expression studies. Plant Mol Biol., 2007, 63:679-688
    
    55. Faure S, Higgins J, Turner A, Laurie D A, The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare). Genetics, 2007, 176: 599-609
    
    56. Foucher F, Morin J, Courtiade J, Cadioux S, Ellis N, Banfield M J, Rameau C, DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER 1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea. Plant Cell, 2003, 15: 2742-2754
    
    57. Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J, GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J, 1999, 18: 4679-4688
    
    58. Frayne J, Ingram C, Love S, Hall L, Localisation of phosphatidylethanolamine-binding protein in the brain and other tissues of the rat. Cell Tissue Res., 1999, 298: 415-423
    
    59. Giavalisco P, Kapitza K, Kolasa A, Buhtz A, Kehr J, Towards the proteome of Brassica napus phloem sap. Proteomics, 2006, 6: 896-909
    
    60. Gomez-Mena C, Pineiro M, Franco-Zorrilla J M, Salinas J, Coupland G, Martinez-Zapater J M, Early bolting in short days: an Arabidopsis mutation that causes early flowering and partially suppresses the floral phenotype of leafy. Plant Cell, 2006, 13: 1011-1024
    
    61. Gould P D, Locke J C, Larue C, Southern M M, Davis S J, Hanano S, Moyle R, Milich R, Putterill J, Millar A J, Hall A, The molecular basis of temperature compensation in the Arabidopsis circadian clock. Plant Cell, 2006, 18: 1177-1187
    
    62. Guo H, Duong H, Ma N, Lin C, The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-transcriptional mechanism. Plant J, 1999, 19: 279-287
    
    63. Gutierrez L, Mauriat M, Guenin S, Pelloux J, Lefebvre J F, Louvet R, Rusterucci C, Moritz T, Guerineau F, Bellini C, Van Wuytswinkel O, The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol J, 2008, 6: 609-618
    
    64. Gyllenstrand N, Clapham D, Kallman T, Lagercrantz U, A Norway spruce FLOWERING LOCUS T homolog is implicated in control of growth rhythm in conifers. Plant Physiol, 2007, 144: 248-257
    65. Hagenblad J, Nordborg M, Sequence variation and haplotype structure surrounding the flowering time locus FRI in Arabidopsis thaliana. Genetics, 2002, 161: 289-298
    
    66. Hattasch C, Flachowsky H, Kapturska D, Hanke M V, Isolation of flowering genes and seasonal changes in their transcript levels related to flower induction and initiation in apple (Malus domestica). Tree Physiol., 2008, 28: 1459-1466
    
    67. Haung M D, Yang C H, EMF genes interact with late-flowering genes to regulate Arabidopsis shoot development. Plant Cell Physiol, 1998, 39: 382-393
    
    68. Hayama R, Agashe B, Luley E, King R, Coupland G, A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in Pharbitis. Plant Cell, 2007, 19: 2988-3000
    
    69. Hayama R, Coupland G, Shedding light on the circadian clock and the photoperiodic control of flowering. CurrOpin Plant Biol., 2003, 6: 13-19
    
    70. Hayama R, Coupland G, The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiol, 2004, 135: 677-684
    
    71. Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K, Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature, 2003, 422: 719-722
    
    72. Helliwell C A, Wood C C, Robertson M, James Peacock W, Dennis E S, The Arabidopsis FLC protein interacts directly in vivo with SOCl and FT chromatin and is part of a high-molecular-weight protein complex. Plant J, 2006, 46: 183-192
    
    73. Henderson I R, Liu F, Drea S, Simpson G G, Dean C, An allelic series reveals essential roles for FY in plant development in addition to flowering-time control. Development, 2005, 132: 3597-3607
    
    74. Hengst U, Albrecht H, Hess D, Monard D, The phosphatidylethanolamine-binding protein is the prototype of a novel family of serine protease inhibitors. J Biol Chem., 2001, 276: 535-540
    
    75. Hepworth S R, Valverde F, Ravenscroft D, Mouradov A, Coupland G, Antagonistic regulation of flowering-time gene SOCl by CONSTANS and FLC via separate promoter motifs. EMBO J, 2002, 21:4327-4337
    
    76. Hisamatsu T, King R W, The nature of floral signals in Arabidopsis. Ⅱ. Roles for FLOWERING LOCUS T (FT) and gibberellin. J Exp Bot., 2008, 59: 3821-3829
    
    77. Hong S Y, Seo P J, Yang M S, Xiang F, Park C M, Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR. BMC Plant Biol., 2008, 8: 112
    
    78. Hori N, Chae K S, Murakawa K, Matoba R, Fukushima A, Okubo K, Matsubara K, A human cDNA sequence homologue of bovine phosphatidylethanolamine-binding protein. Gene, 1994, 140: 293-294
    
    79. Hsu CY, Liu Y, Luthe D S, Yuceer C, Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell, 2006, 18: 1846-1861
    
    80. Huang T, Bohlenius H, Eriksson S, Parcy F, Nilsson O, The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science, 2005, 309: 1694-1696
    
    81. Huggett J, Dheda K, Bustin S, Zumla A, Real-time RT-PCR normalisation; strategies and considerations.Genes Immun,2005,6:279-284
    82.Igasaki T,Watanabe Y,Nishiguchi M,Kotoda N,The FLOWERING LOCUS T/TERMINAL FLOWER 1 family in Lombardy poplar.Plant Cell Physiol.,2008,49:291-300
    83.Imaizumi T,Kay S A,Photoperiodic control of flowering:not only by coincidence.Trends Plant Sci.,2006,11:550-558
    84.Iskandar H M,Simpson R S,Casu R E,Bonnett G D,MacLean D J,Manners J M,Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane.Plant Mol Biol Rep.,2004,22:325-337
    85.Izawa T,Oikawa T,Sugiyama N,Tanisaka T,Yano M,Shimamoto K,Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice.Genes Dev.,2002,16:2006-2020
    86.Jacobsen S E,Olszewski N E,Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction.Plant Cell,1993,5:887-896
    87.Jaeger K E,Wigge P A,FT protein acts as a long-range signal in Arabidopsis.CurrBiol.,2007,17:1050-1054
    88.Jain M,Nijhawan A,Tyagi A K,Khurana J P,Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR.Biochem.Biophys.Res.Commun.,2006,345:646-651
    89.Jang S,Marchal V,Panigrahi K C,Wenkel S,Soppe W,Deng X W,Valverde E Coupland G,Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response.EMBO J,2006,27:1277-1288
    90.Jensen C S,Salchert K,Nielsen K K,A TERMINAL FLOWERI-like gene from perennial ryegrass involved in floral transition and axillary meristem identity.Plant Physiol.,2007,125:1517-1528
    91.Jian B,Liu B,Bi Y,Hou W,Wu C,Han T,Validation of internal control for gene expression study in soybean by quantitative real-time PCR.BMC Mol.Biol.,2008,9:59-65
    92.Johanson U,West J,Lister C,Michaels S,Amasino R,Dean C,Molecular analysis of FRIGIDA,a major determinant of natural variation in Arabidopsis flowering time.Science,2000,290:344-347
    93.Jung J H,Seo Y H,Seo P J,Reyes J L,Yun J,Chua N H,Park C M,The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis.Plant Cell,2007,19:2736-2748
    94.Kang B,Grancher N,Koyffmann V,Lardemer D,Burney S,Ahmad M,Multiple interactions between cryptochrome and phototropin blue-light signalling pathways in Arabidopsis thaliana.Planta,2008,227:1091-1099
    95.Kardailsky I,Shukla V K,Ahn J H,Dagenais N,Christensen S K,Nguyen J T,Chory J,Harrison M J,Weigel D,Activation tagging of the floral inducer FT.Science,1999,286:1962-1965
    96.Karsai I,Szucs P,Meszaros K,Filichkina T,Hayes P M,Skinner J S,Lang L,Bedo Z,The Vm-H2locus is a major determinant of flowering time in a facultative x winter growth habit barley (Hordeum vulgare L.) mapping population.Theor.Appl.Genet.,2005,110:1458-1466
    97. Kikuchi R, Kawahigashi H, Ando T, Tonooka T, Handa H, Molecular and functional characterization of PEBP genes in barley reveal the diversification of their roles in flowering. Plant Physiol., 2009, 149: 1341-1353
    
    98. Kim B R, Nam H Y, Kim S U, Kim S I, Chang Y J, Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnol Lett., 2003, 25: 1869-1872
    
    99. Kim G T, Tsukaya H, Uchimiya H, The CURLY LEAF gene controls both division and elongation of cells during the expansion of the leaf blade in Arabidopsis thaliana. Planta, 1998, 206: 175-183
    
    100. Kim H J, Hyun Y, Park J Y, Park M J, Park M K, Kim M D, Lee M H, Moon J, Lee I, Kim J, A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana. Nat. Genet., 2004, 36: 167-171
    
    101.King K E, Moritz T, Harberd N P, Gibberellins are not required for normal stem growth in Arabidopsis thaliana in the absence of GAI and RGA. Genetics, 2001, 159: 767-776
    
    102.King R W, Hisamatsu T, Goldschmidt E E, Blundell C, The nature of floral signals in Arabidopsis. I. Photosynthesis and a far-red photoresponse independently regulate flowering by increasing expression of FLOWERING LOCUS T (FT). J Exp. Bot., 2008, 59: 3811-3820
    
    103. Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T, A pair of related genes with antagonistic roles in mediating flowering signals. Science, 1999, 286: 1960-1962
    
    104. Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M, Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol., 2002, 43: 1096-1105
    
    105.Komiya R, IKegami A, Tamaki S, Yokoi S, Shimamoto K, Hd3a and RFT1 are essential for flowering in rice. Development, 2008, 135:767-774
    
    106. Koornneef M, Alonso-Blanco C, Peeters A J, Soppe W, Genetic Control of Flowering Time in Arabidopsis. Annu Rev Plant Physiol Plant Mol. Biol., 1998, 49: 345-370
    
    107. Koornneef M, Hanhart C J, van der Veen J H, A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet., 1991, 229: 57-66
    
    108. Kotoda N, Wada M, MdTFL1, a TFL1-like gene of apple, retards the transition from the vegetative to reproductive phase in transgenic Arabidopsis. Plant Science, 2005, 168
    
    109. Kroslak T, Koch T, Kah1 E, Hollt V, Human phosphatidylethanolamine-binding protein facilitates heterotrimeric G protein-dependent signaling. J Biol. Chem., 2001, 276: 39772-39778
    
    110. Lee I, Aukerman M J, Gore S L, Lohman K N, Michaels S D, Weaver L M, John M C, Feldmann K A, Amasino R M, Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis. Plant Cell, 1994, 6: 75-83
    
    111. Lee J H, Yoo S J, Park S H, Hwang I, Lee J S, Ahn J H, Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev., 2007, 21: 397-402
    
    112. Lee P D, Sladek R, Greenwood C M, Hudson T J, Control genes and variability: absence of ubiquitous reference transcripts in diverse mammalian expression studies. Genome Res., 2002, 12:292-297
    113. Levy Y Y, Mesnage S, Mylne J S, Gendall A R, Dean C, Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science, 2002, 297: 243-246
    
    114. Li C, Zhang K, Zeng X, Jackson S, Zhou Y, Hong Y, A cis element within flowering locus T mRNA determines its mobility and facilitates trafficking of heterologous viral RNA. J Virol., 2009, 83: 3540-3548
    
    115. Libault M, Thibivilliers S, Bilgin D, Radwan O, Benitez M, Clough S, Stacey G, Identification of four soybean reference genes for gene expression normalization. The Plant Genome, 2008, 1: 44-54
    
    116. Lifschitz E, Eshed Y, Universal florigenic signals triggered by FT homologues regulate growth and flowering cycles in perennial day-neutral tomato. J Exp. Bot., 2006, 57: 3405-3414
    
    117. Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z, Alvarez J P, Eshed Y, The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc Natl Acad Sci USA, 2006, 103: 6398-6403
    
    118. Lin M K, Belanger H, Lee Y J, Varkonyi-Gasic E, Taoka K, Miura E, Xoconostle-Cazares B, Gendler K, Jorgensen R A, Phinney B, Lough T J, Lucas W J, FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell, 2007, 19: 1488-1506
    
    119. Liu L J, Zhang Y C, Li Q H, Sang Y, Mao J, Lian H L, Wang L, Yang H Q, COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell, 2008, 20: 292-306
    
    120. Lossos I S, Czerwinski D K, Wechser M A, Levy R, Optimization of quantitative real-time RT-PCR parameters for the study of lymphoid malignancies. Leukemia, 2003, 17: 789-795
    
    121. Ma H, Flowering time: from photoperiodism to florigen. Curr. Biol., 1998, 8: R690-692
    
    122. Macknight R, Bancroft I, Page T, Lister C, Schmidt R, Love K, Westphal L, Murphy G, Sherson S, Cobbett C, Dean C, FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell, 1997, 89: 737-745
    
    123. Martinez-Zapater J M, Somerville C R, Effect of Light Quality and Vernalization on Late-Flowering Mutants of Arabidopsis thaliana. Plant Physiol., 1990, 92: 770-776
    
    124. Martin-Tryon E L, Kreps J A, Harmer S L, GIGANTEA acts in blue light signaling and has biochemically separable roles in circadian clock and flowering time regulation. Plant Physiol., 2007,143:473-486
    
    125. Mathieu J, Warthmann N, Kuttner F, Schmid M, Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr. Biol., 2007, 17: 1055-1060
    
    126. Michaels S D, Amasino R M, FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell, 1999, 11: 949-956
    
    127. Michaels S D, Amasino R M, Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell, 2001, 13: 935-941
    
    128. Michaels S D, He Y, Scortecci K C, Amasino R M, Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis. Proc Natl Acad Sci USA,2003,100:10102-10107
    129.Mimida N,Goto K,Kobayashi Y,Araki T,Ahn J H,Weigel D,Murata M,Motoyoshi F,Sakamoto W,Functional divergence of the TFL1-like gene family in Arabidopsis revealed by characterization of a novel homologue.Genes Cells,2001,6:327-336
    130.Mimida N,Kidou S,Kotoda N,Constitutive expression of two apple(Malus x domestica Borkh.)homolog genes of LIKE HETEROCHROMATIN PROTEIN1 affects flowering time and whole-plant growth in transgenic Arabidopsis.Mol Genet Genomics,2007,278:295-305
    131.Mimida N,Kotoda N,Ueda T,Igarashi M,Hatsuyama Y,Iwanami H,Moriya S,Abe K,Four TFL1/CEN-like genes on distinct linkage groups show different expression patterns to regulate vegetative and reproductive development in apple(Malus x domestica Borkh.).Plant Cell Physiol.,2009,50:394-412
    132.Mizoguchi T,Coupland G.ZEITLUPE and FKF1:novel connections between flowering time and circadian clock control.Trends Plant Sci.,2000,5:409-411
    133.Mizoguchi T,Wheatley K,Hanzawa Y,Wright L,Mizoguchi M,Song H R,Carre I A,Coupland G,LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis.Dev.Cell,2002,2:629-641
    134.Moon J,Lee H,Kim M,Lee I,Analysis of flowering pathway integrators in Arabidopsis.Plant Cell Physiol.,2005,46:292-299
    135.Moon J,Suh S S,Lee H,Choi K R,Hong C B,Paek N C,Kim S G,Lee I,The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis.Plant J,2003,35:613-623
    136.Nakagawa M,Shimamoto K,Kyozuka J,Overexpression of RCN1 and RCN2,rice TERMINAL FLOWER 1/CENTRORADIALIS homologs,confers delay of phase transition and altered panicle morphology in rice.Plant J,2002,29:743-750
    137.Nicot N,Hausman J F,Hoffmann L,Evers D,Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress.J Exp.Bot.,2005,56:2907-2914
    138.Nilsson O,Lee I,Blazquez M A,Weigel D,Flowering-time genes modulate the response to LEAFY activity.Genetics,1998,150:403-410
    139.Notaguchi M,Abe M,Kimura T,Daimon Y,Kobayashi T,Yamaguchi A,Tomita Y,Dohi K,Mori M,Araki T,Long-distance,graft-transmissible action of Arabidopsis FLOWERING LOCUS T protein to promote flowering.Plant Cell Physiol.,2008,49:1645-1658
    140.Oliverio K A,Crepy M,Martin-Tryon E L,Milich R,Harmer S L,Putterill J,Yanovsky M J,Casal J J,GIGANTEA regulates phytochrome A-mediated photomorphogenesis independently of its role in the circadian clock.Plant Physiol.,2007,144:495-502
    141.Onouchi H,Igeno M I,Perilleux C,Graves K,Coupland G,Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes.Plant Cell,2000,12:885-900
    142.Ordidge M,Chiurugwi T,Tooke F,Battey N H,LEAFY,TERMINAL FLOWER1 and AGAMOUS are functionally conserved but do not regulate terminal flowering and floral determinacy in Impatiens balsamina. Plant J, 2005, 44: 985-1000
    
    143. Otto S P, Yong P, The evolution of gene duplicates. Adv. Genet., 2002, 46: 451-483
    
    144. Page T, Macknight R, Yang C H, Dean C, Genetic interactions of the Arabidopsis flowering time gene FCA, with genes regulating floral initiation. Plant J, 1999, 17: 231-239
    
    145. Parcy F, Bomblies K, Weigel D, Interaction of LEAFY, AGAMOUS and TERMINAL FLOWER1 in maintaining floral meristem identity in Arabidopsis. Development, 2002, 129: 2519-2527
    
    146. Park D H, Somers D E, Kim Y S, Choy Y H, Lim H K, Soh M S, Kim H J, Kay S A, Nam H G, Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science, 1999,285: 1579-1582
    
    147. Pillitteri L J, Lovatt C J, Walling L L, Isolation and characterization of a TERMINAL FLOWER homolog and its correlation with juvenility in citrus. Plant Physiol., 2004, 135: 1540-1551
    
    148. Pnueli L, Carmel-Goren L, Hareven D, Gutfinger T, Alvarez J, Ganal M, Zamir D, Lifschitz E, The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development, 1998, 125: 1979-1989
    
    149. Poduska B, Humphrey T, Redweik A, Grbic V, The synergistic activation of FLOWERING LOCUS C by FRIGIDA and a new flowering gene AERIAL ROSETTE 1 underlies a novel morphology in Arabidopsis. Genetics, 2003, 163: 1457-1465
    
    150. Putterill J, Flowering in time: genes controlling photoperiodic flowering in Arabidopsis. Philos Trans R Soc Lond B Biol Sci., 2001, 356: 1761-1767
    
    151. Putterill J, Laurie R, Macknight R, It's time to flower: the genetic control of flowering time. Bioessays, 2004, 26: 363-373
    
    152. Putterill J, Robson F, Lee K, Simon R, Coupland G, The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell, 1995, 80: 847-857
    
    153. Quesada V, Macknight R, Dean C, Simpson G G Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. EMBO J, 2003, 22: 3142-3152
    
    154. Ratcliffe O J, Bradley D J, Coen E S, Separation of shoot and floral identity in Arabidopsis. Development, 1999, 126: 1109-1120
    
    155. Reid K E, Olsson N, Schlosser J, Peng F, Lund S T, An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol., 2006, 6: 27-34
    
    156. Remans T, Smeets K, Opdenakker K, Mathijsen D, Vangronsveld J, Cuypers A, Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta, 2008, 227: 1343-1349
    
    157. Rouse D T, Sheldon C C, Bagnall D J, Peacock W J, Dennis E S, FLC, a repressor of flowering, is regulated by genes in different inductive pathways. Plant J, 2002, 29: 183-191
    
    158. Samach A, Onouchi H, Gold S E, Ditta G S, Schwarz-Sommer Z, Yanofsky M F, Coupland G Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science, 2000,288: 1613-1616
    
    159. Sanda S L, Amasino R M, Interaction of FLC and late-flowering mutations in Arabidopsis thaliana. Mol Gen Genet., 1996, 251: 69-74
    
    160. Schepens I, Duek P, Fankhauser C, Phytochrome-mediated light signalling in Arabidopsis. Curr. Opin. Plant Biol., 2004, 7: 564-569
    
    161. Searle I, Coupland G, Induction of flowering by seasonal changes in photoperiod. EMBO J, 2004, 23: 1217-1222
    
    162. Shannon S, Meeks-Wagner D R, A Mutation in the Arabidopsis TFL1 Gene Affects Inflorescence Meristem Development. Plant Cell, 1991, 3: 877-892
    
    163. Sheldon C C, Burn J E, Perez P P, Metzger J, Edwards J A, Peacock W J, Dennis E S, The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell, 1999, 11: 445-458
    
    164. Sheldon C C, Conn A B, Dennis E S, Peacock W J, Different regulatory regions are required for the vernalization-induced repression of FLOWERING LOCUS C and for the epigenetic maintenance of repression. Plant Cell, 2002, 14: 2527-2537
    
    165. Sheldon C C, Hills M J, Lister C, Dean C, Dennis E S, Peacock W J, Resetting of FLOWERING LOCUS C expression after epigenetic repression by vernalization. Proc Natl Acad Sci USA, 2008,105: 2214-2219
    
    166. Sheldon C C, Rouse D T, Finnegan E J, Peacock W J, Dennis E S, The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci USA, 2000,97: 3753-3758
    
    167. Simpson G G, Dijkwel P P, Quesada V, Henderson I, Dean C, FY is an RNA 3' end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell, 2003, 113: 777-787
    
    168. Skot L, Humphreys J, Humphreys M O, Thorogood D, Gallagher J, Sanderson R, Armstead I P,Thomas I D, Association of candidate genes with flowering time and water-soluble carbohydrate content in Lolium perenne (L.). Genetics, 2007, 177: 535-547
    
    169. Sohn E J, Rojas-Pierce M, Pan S, Carter C, Serrano-Mislata A, Madueno F, Rojo E, Surpin M, Raikhel N V, The shoot meristem identity gene TFL1 is involved in flower development and trafficking to the protein storage vacuole. Proc Natl Acad Sci USA, 2007, 104: 18801-18806
    
    170. Solanas M, Moral R, Escrich E, Unsuitability of using ribosomal RNA as loading control for Northern blot analyses related to the imbalance between messenger and ribosomal RNA content in rat mammary tumors. Anal Biochem, 2001, 288: 99-102
    
    171. Somers D E, Kim WY, Geng R, The F-box protein ZEITLUPE confers dosage-dependent control on the circadian clock, photomorphogenesis, and flowering time. Plant Cell, 2004, 16: 769-782
    
    172. Staiger D, Circadian rhythms in Arabidopsis: time for nuclear proteins. Planta, 2002, 214: 334-344
    
    173. Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G, CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 2001, 410:1116-1120
    174.Sun T P,Kamiya Y,The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis.Plant Cell,1994,6:1509-1518
    175.Sung S,Amasino R M,Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3.Nature,2004,427:159-164
    176.Suzuki T,Higgins P J,Crawford D R,Control selection for RNA quantitation.Biotechniques,2000,29:332-337
    177.Takada S,Goto K,Terminal flower2,an Arabidopsis homolog of heterochromatin protein1,counteracts the activation of flowering locus T by constans in the vascular tissues of leaves to regulate flowering time.Plant Cell,2003,15:2856-2865
    178.Talon M,Koornneef M,Zeevaart J A D,Accumulation of C19-gibberellins in the gibberellin-insensitive dwarf mutant gai of Arabidopsis thaliana(L) Heynh,Planta,1990,182:501-505
    179.Tamaki S,Matsuo S,Wong HL,Yokoi S,Shimamoto K,Hd3a protein is a mobile flowering signal in rice.Science 2007:316:1033-1036
    180.Teper-Bamnolker P,Samach A,The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in A rabidopsis leaves.Plant Cell,2005,17:2661-2675
    181.Thellin O,Zorzi W,Lakaye B,De Borman B,Coumans B,Henne G,Grisar T,Igout A,Heinen E,Housekeeping genes as internal standards:use and limits.J Biotechnol,1999,75:197-200
    182.Thomas B,Light signals and flowering.J Exp Bot.,2006,57:3387-3393
    183.Trottein F,Cowman A F,The primary structure of a putative phosphatidylethanolamine-binding protein from Plasmodium falciparum.Mol Biochem Parasitol,1995,70:235-239
    184.Turck F,Fornara F,Coupland G,Regulation and identity of florigen:FLOWERING LOCUS T moves center stage.Annu.Rev.Plant Biol.,2008,59:573-594
    185.Vallee B,Teyssier C,Maget-Dana R,Ramstein J,Bureaud N,Schoentgen F,Stability and physicochemical properties of the bovine brain phosphatidylethanolamine-binding protein.Eur J Biochem.,1999,266:40-52
    186.Valverde F,Mouradov A,Soppe W,Ravenscroft D,Samach A,Coupland G,Photoreceptor regulation of CONSTANS protein in photoperiodic flowering.Science,2004,303:1003-1006
    187.Vandesompele J,De Preter K,Pattyn F,Poppe B,Van Roy N,De Paepe A,Speleman F,Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes.Genome Biol.,2002,3(7):research0034.1-0034.11
    188.Weigel D,Alvarez J,Smyth D R,Yanofsky M F,Meyerowitz E M,LEAFY controls floral meristem identity in Arabidopsis.Cell,1992,69:843-859
    189.Werner J D,Borevitz J O,Uhlenhaut N H,Ecker J R,Chory J,Weigel D,FRIGIDA-independent variation in flowering time of natural Arabidopsis thaliana accessions.Genetics,2005,170:1197-1207
    190.Wigge P A,Kim M C,Jaeger K E,Busch W,Schmid M,Lohmann J U,Weigel D,Integration of spatial and temporal information during floral induction in Arabidopsis.Science,2005,309:1056-1059
    191.Wilson R N,Heckman J W,Somerville C R,Gibberellin Is Required for Flowering in Arabidopsis thaliana under Short Days.Plant Physiol,1992,100:403-408
    192.Yamanaka N,Ninomiya S,Hoshi M,Tsubokura Y,Yano M,Nagamura Y,Sasaki T,Harada K,An informative linkage map of soybean reveals QTLs for flowering time,leaflet morphology and regions of segregation distortion.DNA Res.,2001,8:61-72
    193.Yamazaki T,Nakano H,Hayakari M,Tanaka M,Mayama J,Tsuchida S,Differentiation induction of human keratinocytes by phosphatidylethanolamine-binding protein.J Biol.Chem.,2004,279:32191-32195
    194.Yan L,Fu D,Li C,Blechl A,Tranquilli G,Bonafede M,Sanchez A,Valarik M,Yasuda S,Dubcovsky J,The wheat and barley vernalization gene VRN3 is an orthologue of FT.Proc Natl Acad Sci USA,2006,103:19581-19586
    195.Yan L,Loukoianov A,Biechl A,Tranquilli G,Ramakrishna W,SanMiguel P,Bennetzen J L,Echenique V,Dubcovsky J,The wheat VRN2 gene is a flowering repressor down-regulated by vernalization.Science,2004,303:1640-1644
    196.Yoo B C,Kragler F,Varkonyi-Gasic E,Haywood V,Archer-Evans S,Lee Y M,Lough T J,Lucas W J,A systemic small RNA signaling system in plants.Plant Cell,2004,16:1979-2000
    197.Yoo S K,Chung K S,Kim J,Lee J H,Hong S M,Yoo S J,Yoo S Y,Lee J,Ahn J H,CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis.Plant Physiol,2005,139:770-778
    198.Yoo S Y,Kardailsky I,Lee J S,Weigel D,Ahn J H,Acceleration of flowering by overexpression of MFT(MOTHER OF FTAND TFL1).Mol Cells,2004,17:95-101
    199.Zeevaart J A,Leaf-produced floral signals.Curr.Opin.Plant Biol.,2008,11:541-547
    200.Zhang J Z,Li Z M,Liu L,Mei L,Yao J L,Hu C G,Identification of early-flower-related ESTs in an early-flowering mutant of trifoliate orange(Poncirus trifoliata) by suppression subtractive hybridization and macroarray analysis.Tree Physiol.,2008,28:1449-1457
    201.Zhang S,Hu W,Wang L,Lin C,Cong B,Sun C,Luo D,TFL1/CEN-like genes control intercalary meristem activity and phase transition in rice.Plant Science,2005,168:1393-1408
    202.Zhao Z,Yu Y,Meyer D,Wu C,Shen W H,Prevention of early flowering by expression of FLOWERING LOCUS C requires methylation of histone H3 K36.Nat Cell Biol.,2005,7:1256-1260

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700