中国大豆不同生态类型光温效应的比较及GmFT基因表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆是喜温短日作物,短日照和高温促进大豆的生长发育,光周期和温度对不同生态类型大豆品种生长发育的影响不同。为明确不同生态类型大豆品种光周期效应、温度效应和光温互作效应,进一步揭示光周期和温度对不同类型大豆生长发育的影响及其相互关系,通过自然光照、短日照(12h)和长光照(16h)三种光周期处理,并以春播模拟低温、夏播模拟高温条件,形成长日+低温、长日+高温、短日+低温、短日+高温的光温组合,对国家大豆品种区域试验的15个不同生态类型的对照品种进行了光温反应特性研究。同时对不同类型大豆品种农艺性状、产量性状和品质性状在各种光温条件下的反应进行分析。
     GmFT基因在大豆光周期反应中起关键作用,其表达水平和表达模式受光周期直接调控。为进一步揭示大豆生长发育过程中光周期和温度的相互关系,以光周期反应钝感的黑河27和光周期反应敏感的自贡冬豆为实验材料,在人工气候室进行不同光温处理,分析GmFT基因在单叶中的表达变化与光温反应关系。
     本文主要研究结果如下:
     1.大豆品种开花前、后光周期反应敏感性及开花前短日后效应,在不同生态类型间表达强弱上具有较强的一致性,品种的光周期反应敏感性在出苗至生理成熟期间表现较稳定。缩短日照加速大豆品种生殖发育,延长日照促进营养生长。供试不同生态类型大豆品种开花前光周期的敏感性和开花前短日后效应强弱均为:南方夏大豆>黄淮海夏大豆>南方春大豆>北方春大豆区。延长初花后光照时间,使大豆品种成熟延迟。供试不同生态类型大豆品种开花后光周期敏感性强弱顺序为:南方夏大豆>南方春大豆>黄淮海夏大豆>北方春大豆,其中黄淮海夏大豆的开花后光周期敏感性与南方春大豆接近。
     2.大豆品种出苗至开花阶段,高温促进大豆发育,不同生态类型大豆品种开花前感温性表现为:南方夏大豆>南方春大豆>北方春大豆>黄淮海夏大豆。高温促进大豆种子萌发出苗,缩短播种至出苗的时间,这种效应在不同生态类型大豆品种中没有明显区别。
     3.光周期和温度对大豆发育存在明显的互作,高温能够加强短日照对发育的促进效应,低温则弱化短日照对发育的促进效应;短日照能够增强高温对发育的促进作用,长日照则减轻高温对发育的促进作用。升高温度对光周期反应敏感性的促进效应、缩短日照对温度反应敏感性的促进效应随品种适宜推广区域纬度的降低而减弱。
     4.长日照和高温使初花节位升高、植株高度和底荚高度增加、主茎节数增多。供试不同类型大豆品种初花节位、株高和主茎节数对光周期反应的敏感性强弱表现为:南方夏大豆>黄淮海夏大豆>南方春大豆>北方春大豆区。在品种能正常成熟的前提下,长日照使品种单株荚数、单株粒数、单株粒重增加;短日照使北方春大豆和黄淮夏大豆百粒重增加、南方夏大豆百粒重减小、对南方春大豆无明显影响。供试不同类型大豆品种单株产量对光周期反应敏感性强弱为南方夏大豆>黄淮夏大豆>南方春大豆>北方春大豆。缩短光照使北方春大豆的蛋白质含量下降、南方春大豆和夏大豆的蛋白质含量有小幅增加。开花前经过短日诱导、开花后延长光照使北方春大豆蛋白质含量增加、南方春大豆和夏大豆蛋白质含量降低。缩短光照使北方春大豆、黄淮海夏大豆和南方夏大豆的脂肪含量增加。开花前经过短日诱导、开花后延长光照使北方春大豆和黄淮海夏大豆脂肪含量降低、南方春大豆和夏大豆脂肪含量增加。北方春大豆蛋白质和脂肪总含量随日照长度缩短而降低;南方夏大豆蛋白质和脂肪总含量随日照长度缩短而增加。
     5.GmFT是植物PEBP基因家族FT-like亚家族的基因,具有与FT、Hd3a等FT-like基因相似的功能,为促进大豆开花的成花诱导基因。短日照促进光周期反应敏感品种自贡冬豆GmFT的表达;在短日照条件下,低温促进自贡冬豆GmFT的表达;在长日照条件下,温度的高低对自贡冬豆GmFT的表达没有明显影响。不同光周期处理对光周期反应钝感品种黑河27GmFT的表达影响较小;高温促进黑河27GmFT的表达。
Soybean (Glycine max [L.] Merr.) is a short-day crop which favors temperate weather, thus, short day (SD) and high temperature (HT) may promote its growth and development. Previous studies showed that photoperiod and temperature (photothermal) exert different effect on growth and development of soybean cultivars from different ecological regions. To define the photoperiodic, thermal and photothermal interaction effects on the soybean from different ecological regimes, to discover their effects on growth and inter-relationship of them, three photoperiodic treatments of natural day length, 12h (short day or SD) and 16h (long day or LD) were conducted and integrated with two thermal conditions, HT (sown in the summer in Beijing) and low temperature (LT) (sown in the spring), i. e., combinations of LD+ LT, LD+ HT, SD+ LT and SD HT were performed. Using 15 control cultivars of the national soybean cultivar regional trials as materials, photothermal responses of them were investigated. In addition, varietal variations in agronomic, productive and quality traits grown in different photothermal combinations were analysized.
     GmFT is a key gene for soybean photoperiodic reaction, and the expression level and pattern of this gene are regulated by photoperiodism. In order to make a further illumination of the inter-relationship of photoperiod and temperature in soybean growth and development, soybean cv. Heihe 27 and Zigongdongdou (ZGDD) which are insensitive and sensitive to photoperiod, respectively, were treated with different photothermal combinations in phytotrons. The relationship of GmFT expression and photothermal response was analysized.
     The main results are summarized as below:
     1. Sensitivity of photoperiod response prior to flowering as well as post-flowering, in addition to post-effect of SD before flowering, is strongly kept in agreement between different soybean ecotypes. In addition, sensitivity of photoperiod response of varieties is stable during emergence and physiological maturity. SD hastened the reproductive development, and LD hastened vegetative growth. Photoperiod response sensitivity before flowering and of different soybean ecotypes decreased as follows: Summer Sowing Soybeans from South, Summer Sowing Soybeans from Yellow-Huai-Hai River Valleys, Spring Sowing Soybeans from South and Spring Sowing Soybeans from North.
     2. Higher temperature hastened the development of soybean from sowing to blossoming. The order of thermal sensitivity before flowering in soybean ecotypes are as below: Summer Sowing Soybeans from South > Spring Sowing Soybeans from South > Spring Sowing Soybeans from North > Summer Sowing Soybeans from Yellow-Huai-Hai River Valleys. High temperature promoted seed germination and emergence, and shorted the time from sowing to emergence. In terms of time from sowing to emergence, there is no significant difference between varieties collected from different ecological regions.
     3. Obvious interaction effects of photoperiod and temperature on soybean development were found in this study. Higher temperature enhanced the promotion effect of short day on development; while low temperature weakened this effect. Short day may enhance the promotion effect of higher temperature to development; while LD may weaken the effect. The promotion effect of elevated temperature on photoperiod response sensitivity, as well as the promotion effect of shorted day length on thermo response sensitivity, decreased as altitude of cultivar regimes.
     4. LD and high temperature led to a higher number of node to first flower, plant height, pod height at bottom, node number of main stem. Photoperiod response sensitivity of the number of node to first flower, plant height, pod height at bottom and node number of main stem in soybean varieties decreased as follows: Spring Sowing Soybeans from South > Summer Sowing Soybeans from Yellow-Huai-Hai River Valleys >Summer Sowing Soybeans from South > Spring Sowing Soybeans from North. As to the varieties that may be mature under LD, LD increased the pod number, seed number and seed weight per plant; SD treatment increased the seed weight of 100 seeds of soybean varieties from Spring Sowing Soybeans from North and Yellow-Huai-Hai River Valleys; but decreased the seed weight of 100 seeds of the Summer Sowing Soybeans from South; and no significant effect on Summer Sowing Soybeans from South. Photoperiod response sensitivity of productivity per soybean plant of different ecological regions decreased as Spring Sowing Soybeans from South > Summer Sowing Soybeans from Yellow-Huai-Hai River Valleys > Summer Sowing Soybeans from South > Spring Sowing Soybeans from North. LD led to a protein quantity of Spring Sowing Soybeans from North, however slightly increased the protein quantity of varieties from Spring Sowing Soybeans from North and Summer Sowing Soybeans from North. LD treatment after flowering in addition to SD before flowering led to a increased the protein content of varieties from Spring Sowing Soybeans from North, nevertheless, a decreased the protein content of varieties from Spring and Summer Sowing Soybeans from South. SD treatment increased the fat acid content of varieties from Spring Sowing Soybeans from North, from Yellow-Huai-Hai River Valleys and Summer Sowing Soybeans from South. LD treatment after flowering in addition to SD before flowering led to a decreased fat acid content of varieties from Spring Sowing Soybeans from North, from Yellow-Huai-Hai River Valleys, while fat acid content of varieties from Spring and Summer Sowing Soybeans from South increased. Total protein and fat acid content varieties from Spring Sowing Soybeans from North decreased as day length shortened, and it is opposite to varieties from Summer Sowing Soybeans from South.
     5. GmFT is a member of FT-like sub-family in PEBP gene family, and exhibited similar function as FT that promotes flower initiation in model plant of Arabidopsis. Expression of GmFT in photoperiod-sensitive cv. ZGDD was promoted by SD, as well as lower temperature. However, under LD condition, temperature did not affect the expression apparently. Photoperiods did not affect the expression of GmFT in Heihe 27, but HT may increase the expression of GmFT in this photoperiod-insensitive soybean variety.
引文
1.常汝镇.1992.大豆成熟期基因作用的遗传分析.大豆科学,11:127-132
    2.常汝镇,李星华.1993.夏播条件下大豆成熟期基因作用的研究.中国油料,(3):15-17
    3.杜维广,张桂茹,满为群,栾晓燕,陈怡,谷秀芝,赵政文.1994.光周期对春夏大豆品种生育阶段的影响.大豆科学,13(2):133-138
    4.高春霞,马永华,单宏,程爱华.2006.1999-2005年黑龙江省通过审定的大豆品种的品质及特征特性分析.黑龙江农业科学,(5):78-79
    5.韩天富.1996a.大豆开花后的光周期反应.大豆科学,15(1):69-73
    6.韩天富.大豆的光周期反应.//王连铮,郭庆元.2007.现代中国大豆.北京:金盾出版社,211-220
    7.韩天富,盖钧镒,邱家驯.1998.中国大豆不同生态类型代表品种开花前、开花后光周期反应的比较研究.大豆科学,17(2):129-134
    8.韩天富,王金陵.1995a.大豆开花后光周期反应的研究.植物学报,37(11):863-869
    9.韩天富,王金陵.1996b.中国大豆不同生态类型开花至成熟期对光周期的反应.作物学报,22(1):20-26
    10.韩天富,王金陵,范彬彬,姚文秋,杨庆凯.1996c.开花后光照长度对大豆农艺性状的影响.应用生态学报,7(2):169-173
    11.韩天富,王金陵,杨庆凯,盖钧镒.1997.开花后光照长度对大豆化学品质的影响.中国农业科学,30(2):47-53
    12.韩天富,王金陵,邹继军,杨庆凯.1995b.大豆开花后阶段对开花前不同光照处理的反应.大豆科学,14(4):284-289
    13.韩天富,吴存祥,杨华,邵桂花.2000.夏大豆品种中黄4号春播花而不实的原因分析.大豆通报,20005,(5):4
    14.郝耕.1981.大豆品种光温反应的初步分析.中国油料,(1):50-51
    15.何言章,何元农.1992.大豆光周期特性研究Ⅰ.缩短光照对大豆生育的影响.贵州农业科学,(1):15-20
    16.何言章,何元农,刘支胜.1994.大豆光周期特性研究Ⅳ.试论营养生长与生殖生长对光周期的反应及关系.贵州农业科学,(1):21-26
    17.何言章,何元农,王清华,黄建斌.1993.大豆光周期特性研究Ⅱ.不同光照对大豆各生育阶段的影响.贵州农业科学,(1):27-32
    18.何元农,何言章,阮钜尧,罗汀媛.1987.贵州大豆生态适应性及其应用研究Ⅰ.贵州大豆的光温生态.贵州农业科学,(4):14-21
    19.李福山,李向华.2003.野生大豆在自然界中光温反应的规律.作物学报,29(5):670-675
    20.李铭丰.2001.光照变化对大豆脂肪、蛋白积累的影响.第七届全国大豆学术讨论会论文集,164
    21.李宁,章建新,麻浩.2005.播期对新农菜豆1号农艺性状及品质的影响.新疆农业科学,42:315-318
    22.李卫东,卢为国,梁慧珍,王树峰,苑保军,耿臻,王素阁,范彦英,杨彩云,刘亚非,王庭峰,张辉.2004.大豆蛋白质含量与生态因子的关系.作物学报,30(10):1065-1068
    23.李卫东,王树峰,卢为国,梁慧珍,耿臻,苑保军,王素阁,范彦英,杨彩云,刘亚非.2006.大豆脂肪含量与生态因子关系的研究.大豆科学,25(2):127-132
    24.李秀菊,孟繁静.1996.不同光周期处理对大豆开花结荚进程的影响.大豆科学,15(4):289-294
    25.李永孝.1999.山东大豆.济南:山东科学技术出版社
    26.刘汉中.1979.光、温对大豆生育的影响.气象,(5):30-32
    27.刘汉中.1982.光、温对大豆生育的影响.气象,(3):1-6
    28.刘汉中.1984.光照时数对结荚后大豆生育的影响及其原因探讨.北京农业大学学报,10(1)
    29.刘汉中,梁慧贤,张金峰.1983.光照时数对大豆生育的后效应.北京农业大学学报,(1):67-72
    30.路琴华,庄炳昌,王玉民,高泉浦.1994.大豆生态研究Ⅸ.温度动态与野生大豆(G.Soja)生长发育关系的研究.吉林农业科学,(3):1-7
    31.马继凤,赵政文.1998.南方春大豆不同播季主要农艺性状的变化及其遗传研究.大豆科学,17(4):331-339
    32.米国华,李文雄.1998.转换光周期对春性小麦叶片数的影响.中国农业科学,31(2):36-40
    33.年海,卢永根,黄鹤,严小龙.1997.广州不同播季大豆品种开花前后光周期反应类型的研究.中山大学学报论丛,(5):77-82
    34.欧红梅,孙以美.2000.光周期对大豆生长发育的影响.安徽农业科学,2000,28(5):587-588
    35.潘铁夫.1989.大豆气象.北京,农业出版社,21-72,55-56
    36.潘铁夫,张德荣,张文广.1985.中国大豆气候生态条件的研究.大豆科学,4(2):105-116
    37.任全兴,盖钧镒,马育华.1987.我国大豆品种生育期生态特性的研究.中国农业科学,20(5):23-28
    38.沙爱华,蔡淑平,张晓娟,吴学军,邱德珍,周新安.2006.大豆开花基因GmCO和GmFT的克隆及表达.西北植物学报,26(10):1996-2000
    39.沙爱华,王英,刘志文,蔡铭,袁平该,陈宪成.2006.植物开花光周期反应的分子调控机制.华北农学报,21(增刊):12-15
    40.汪越胜,陈冬生,马宏惠.2000.中国大豆成熟期光温综合反应与短日照反应间关系.安徽师范大学学报,23(3):231-233
    41.汪越胜,盖钧镒.2001.中国大豆品种光温综合反应与短日照反应的关系.中国油料作物学报,23(2):40-44
    42.汪越胜,王晋华.1999.大豆开花期光温综合反应与短日照反应间关系研究.安徽农学通报,5(3):25-26
    43.王国勋,罗学华,李友华.1982.论我国南北大豆生育期生态类型及在引种工作中的应用.大豆科学,1(1):33-40
    44.王金陵,武镛祥,吴和礼,孙善澄.1956.中国南北地区大豆光照生态类型的分析.农业学报,7(2):169-180
    45.王茹芳,卢思慧,曹金峰,高广居.2007.大豆育成品种品质性状和农艺性状的相关性研究.华北农学报,22:131-134
    46.王英,韩天富.2008.大豆生育期性状的遗传及QTL定位研究.安徽农业科学,36(4):1391-1393
    47.吴存祥,刘金,李兴宗,苗以农,杨华,韩天富.2004.扁茎大豆的花序形态受光周期调控.中国油料作物学报,26(1):36-41
    48.徐豹,路琴华.1983.大豆生态研究Ⅰ中国不同纬度野生大豆的光温生态分析.大豆科学,2(3):155-168
    49.徐豹,路琴华.1988.大豆生态研究Ⅲ野生大豆(G.soja)与栽培大豆(G.max)光周期效应的比较研究.大豆科学,7(4):269-275
    50.徐六康,钟金传,刘汉中.1990.光长对大豆生育的后效应及对植株性状的影响.中国农业气象,11(1):22-28
    51.严威凯.1993.关于植物各种光温反应现象的统一模型.西北农业大学学报,23(1):21-26
    52.杨永华,盖钧镒,马育华.1994.春夏秋播种季节条件下大豆生育期遗传的差异表现.中国农业科学,27(3):1-6
    53.杨志攀,张晓娟,蔡淑平,邱德珍,王国勋,周新安.2000.大豆“短青春期”品种的光(温)反应研究Ⅰ.播季反应.中国油料作物学报,22(3):35-38
    54.杨志攀,张晓娟,蔡淑平,邱德珍,王国勋,周新安.2001a.大豆“短青春期”品种的光(温)反应研究Ⅱ.对短日照的反应.中国油料作物学报,23(2):35-39
    55.杨志攀,张晓娟,蔡淑平,邱德珍,王国勋,周新安.2001b.大豆“短青春期”品种的光(温)反应研究Ⅲ.对长日照的反应.大豆科学,20(3):191-196
    56.雍伟东,种康,许智宏,谭克辉,朱至清.2000.高等植物开花时间决定的基因调控研究.科学通报,45(5):455-466
    57.喻玉林.1990.日照长度对大刍草开花期的影响.植物生理学通讯,(2):33-35
    58.曾群,赵仲华,赵淑清.2006.植物开花时间调控的信号途径.遗传,28(8):1031-1036
    59.张桂茹.1997.光周期对大豆品种生育进程及农艺性状的影响.中国油料,19(4):37-39
    60.张桂茹,杜维广,栾晓燕,满为群,陈怡,谷秀芝.1998.黑龙江省主要大豆品种光周期反应差异及其稳定性.大豆科学,17(3):231-234
    61.张敬涛,周丰锁,褚宏艳,王成,郑天琪,窦河,刘文波.2002.大豆生育阶段动态模型的研 究.大豆科学,2002,21(3):203-207
    62.赵存,张性坦,柏惠侠,朱有光,陈修文,杨万桥,张进兴.1997.短日照处理大豆营养期各阶段的效应.大豆科学,16(1):66-69
    63.周以飞,周德银.2005.春播菜用大豆生育期、农艺性状与品质性状的典范相关分析.福建农林大学学报,34:11-17
    64.朱之垠.1984.光温条件对大豆器官建成及生长的影响.大豆科学,3(1):27-35
    65.庄炳昌,徐豹,路琴华.1986.大豆生态研究Ⅱ中国不同纬度不同进化类型大豆对昼夜温度反应的研究.大豆科学,5(4):289-298
    66.Abe J,Kan O K,Shimamoto Y.2003.Assignment of the E4 locus to soybean classical linkage group 4.Soybean Genetics Newsletter,30:1-6
    67.Abe M,Kobayashi Y,Yamamoto S,Daimon Y,Yamaguchi A,Ikeda Y,Ichinoki H,Notaguchi M,Goto K,Araki T.2005.FD,a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex.Science,309:1052-1056
    68.Acock B,Pachepsky Y A,Acock M C and Reddy V R.1997.Modeling soybean cultivar development rates,using field data from the Mississippi Valley.Agronomy Journal,89:994-1002
    69.Agele S O,Adenawoola A R and Doherty M.2004.Growth response of soybean lines contrasting photothermal and soil moistuer regimes in a Nigerian tropical rainforest.International Journal of Biotronics,33:49-64
    70.Asumadu H,Summerfield R J,Ellis R H and Qi A.1998.Variation in the Durations of the Photoperiod-sensitive and Photoperiod-insensitive Phases of Post-first Flowering Development in Maturity Isolines of Soyabean[Glycine max(L.) Merrill]'Clark'.Annals of Botany,82:773-778
    71.Benitez E R,Funatsuki H,Kaneko Y,Matsuzawa Y Bang S W and Takahashi R.2004.Soybean maturity gene effects on seed coat pigmentation and cracking in response to low temperatures.Crop Science,44:2038-2042
    72.Board J E,Settimi J R.1986.Photoperiod effect before and after flowering on branch development in determinate soybean.Agronomy journal,78:995-1002
    73.Bonato E R,Vello N A.1999.E6,a dominant gene conditioning early flowering and maturity in soybean.Genet.Mol.Biol.,22:229-232
    74.Bowman JL,Alvarez J,Weigel D,Meyerowitz EM,Smyth DR.1993.Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes.Development,119:721-743
    75.Bradley D,Ratcliffe O,Vincent C,Carpenter R,Coen E.1997.Inflorescence commitment and architecture in Arabidopsis.Science,275:80-83
    76.Brown D M.1960.Soybean ecology:I.Development-temperature relationships from controlled environment studies.Agronomy Journal,52:493-496
    77.Buzell R I.1971.Inheritance of soybean flowering response to fluorescent-daylength conditions.Can.J.Genet.Cytol.,13:703-707
    78.Buzzell R I and Voldeng H D.1980.Inheritance of insensitivity to long daylengths.Soybean Genet New si,7:26-29
    79.Byth D E.1968.Comparative photoperiodic responses for several soyabean varieties of tropical and temperate origin.Aust.J.agric.Res.,19: 879-890
    80.CAMARA G M S,Sediyama T,Dourado-Neto D and Bernardes M S.1997.Influence of photoperiod and air temperature on the growth,flowering and maturation of soybean.Scientia Agricola,54:149-154
    81.Caffaro S V,Martignone R A,Torres R and Nakayama F.1988.Photoperiod regulation of vegetative growth and meristem behavior toward flower initiation of an indeterminate soybean.Botanical Gazette,149 (3): 311-316
    82.Carpentieri-Pipolo V,Almeida L A,Kiihl R A S and Rosolem C A.2000.Inheritance of long juvenile period under short day conditions for the BR80-6778 soybean [Glycine max (L.) Merrill]line.Euphytica,112 (2): 203-209
    83.Chailakhyan M H.1937.Concerning the hormonal nature of plant development process.C.R.(Dokl.).Acad.Sci.URSS,16: 227-230
    84.Chardon F and Damerval C.2005.Phylogenomic analysis of the PEBP gene family in cereals.J Mol.Evol.,61: 579-590
    85.Cober E R,Stewart D W and Voldeng H D.2001.Photoperiod and temperature responses in early-maturing,near-isogenic soybean lines.Crop Science,41: 721-727
    86.Cober E R,Tanner J W And Voldeng H D.1996a.Genetic control of photoperiod response in early-maturing,near-isogenic soybean lines.Crop Science,36: 601-605
    87.Cober E R,Tanner J W And Voldeng H D.1996b.Soybean photoperiod-sensitivity loci respond differentially to ligh t quality.Crop Science,36: 606-610
    88.Cober E R and Voldeng HD.2001a.A new soybean maturity and photoperiod sensitivity locus linked to E1 and T.Crop Science,41: 698-701
    89.Cober E R and Voldeng HD.2001b.Low R: FR light quality delays flowering of E7E7 Soybean Lines.Crop science,41: 1823-1826
    90.Conti L,Bradley D.2007.TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis architecture.Plant Cell,19: 767-778
    91.Criswell J G,Hume D J.1972.Variation in sensitivity of photoperiod among early maturing soybeans trains.Crop Science,12:657-660
    92.Danilevskaya ON,Meng X,Hou Zl,Ananiev EV,Simmons CR.2008.A genomic and expression compendium of the expanded PEBP gene family from maize.Plant Physiology,146: 250-264
    93.Ellis R H,Asumadu H,Qi A and Summerfield R J.2000.Effects of photoperiod and maturity genes on plant growth,partitioning,radiation use efficiency and yield in soyabean [Glycine max (L.) Merrill]'Clark'.Annals of Botany,85: 335-343
    94.Ellis R H,Collinson S T,Hudson D and Patefield W M.1992.The analysis of reciprocal transfer to estimate the duration of the photoperiod-sensitive and photoperiod insensitive phases of plant development: an example in soya bean.Annals of Botany,70: 87-92
    95.Fehr W R,Caviness C E.1977.Stages of soybean development.Special Report 80,Cooperative Extension Service,Agriculture and Home Economic Experiment Station.Ames,Iowa: Iowa State University,1-11
    96.Fehr W R.1971.Stage of development of description for soybean [Glycine max(L.) Merrill].Crop Science,11:929-931
    97.Foucher F,Morin J,Courtiade J,Cadioux S,Ellis N,Banfield MJ,Rameau C.2003.DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1I CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea.Plant Cell,15: 2742-2754
    98.Garner W W and Allard H A.1920.Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants.J.Agric.Res.,18(2): 553-606
    99.Garner W W and Allard H A.1923.Further studies in photoperiodism,the response of the plants to relative length of day and night.J.Agri.Res.,23: 871-921
    100.Garner W W and Allard H A.1930.Photoperiodic response of soybean in relation to temperature and other environmental factors.J.Agric.Res.,41: 719-735
    101.Gregan P B and Hartwing E E.1984.Characterization of flowing response to photoperiod in diverse soybean genotypes.Crop science.24: 659-662
    102.Grimm S S,Jones J W,Boote K J and Herzog D C.1994.Modelling the occurrence of reproductive stages for four soybean cultivars.Agronomy Journal,86: 31-38
    103.Juan Jos(?) Guiam(?)t and Ferm(?)n Nakayama.1984.Varietal responses of soybeans [Glycine max (L.) Mem]to long days during reproductive growth.Japan Journal of Crop Science,53: 299-306
    104.Hadley P,Roberts E H,Summerfield R.J.and Minchin F R.1984.Effects of temperature and photoperiod on flowering in soybean: a quantitative mode.Annals of Botany,53: 669-681
    105.Han T,Wu C,Mentreddy R S,Zhao J and Gai J.2005.Post-flowering photoperiod effects on reproductive development and agronomic traits of long-day and short-day crops.Journal of Agronomy and Crop Science,191(4): 255-262
    106.Han T.,Wu C,Tong Z.,Mentreddy R.S.,Tan K.and Gai J.2006.Postflowering photoperiod regulates vegetative growth and reproductive development of soybean.Environmental and Experimental Botany,55(1-2):120-129
    107.Hanzawa Y,Money T,Bradley D.2005.A single amino acid converts a repressor to an activator of flowering.Proceedings of the National Academy of Sciences,102 (21): 7748-7753
    108.Hartwig E E,Kiih 1 R A S.1979.Identification and utilization of a delayed flowering character in soybean for short-day conditions.Field Crops Research,2:145-151
    109.Hayama R,Yokoi S,Tamaki S,Yano M and Shimamoto K.2003.Adaptation of photoperiodic control pathways produces shortday flowering in rice .Nature,422: 719 - 722
    110.Hecht V,Foucher F,Ferrandiz C,Macknight R,Navarro C,Morin J,Vardy ME,Ellis N,Beltran JP,Rameau C,Weller JL.2005.Conservation of Arabidopsis flowering genes in model legumes.Plant Physiology,137(4): 1420-1434
    111.Hodges T and French V.1985.Soyphen: Soybean growth stages modeled from temperature,daylength,and water availability.Agronomy Journal,77: 500-505
    112.Hsu C-Y,Liu Y,Luthe DS,Yuceer C.2006.Poplar FT2 shortens the juvenile phase and promotes seasonal flowering.Plant Cell,18: 1846-1861
    113.Imaizumi T,Tran H G,Swartz T E,Briggs W R,Kay S A.2003.FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis.Nature,426: 302-306
    114.Lifschitz E,Eshed Y.2006.Universal florigenic signals triggered by FT homologues regulate growth and flowering cycles in perennial dayneutral tomato.J Exp Bot,57: 3405-3414
    115.Kantolic A G and Slafer G A.2001.Photoperiod sensitivity after flowering and seed number determination in indeterminate soybean cultivars.Field Crops Research,72(2): 109-118
    116.Kantolic A G and Slafer G A.2005.Reproductive development and yield components in indeterminate soybean as affected by post-flowering photoperiod.Field Crops Research,93(2-3):212-222
    117.Kantolic A G,Slafer G A.2007.Development and seed number in indeterminate soybean as affected by timing and duration of exposure to long photoperiods after flowering.Annals of Botany,99(5):925-933
    118.Kardailsky I,Shukla VK,Ahn JH,Dagenais N,Christensen SK,Nguyen JT,Chory J,Harrison MJ,Weigel D.1999.Activation tagging of the floral inducer FT.Science,286: 1962-1965
    119.Kiihl R A S.1976.Inheritance studies for two characters in soybean [Glycine max (L.) Merrill]: I.Resistance to soybean mosaic virus.Ⅱ.Late flowering under short-day conditions.Mississippi State University,Starkville: Ph.D.Thesis
    120.Knott J E.1934.Effect of localized photoperiod on spinach.Proc.Am.Soc.Hortic.Sc,31: 152-154
    121.Kobayashi Y,Kaya H,Goto K,Iwabuchi M,Araki T.1999.A pair of related genes with antagonistic roles in mediating flowering signals.Science,286: 1960-1962
    122.Kojima S,Takahashi Y,Kobayashi Y,Monna L,Sasaki T,Araki T,Yano M.2002.Hd3a,a rice ortholog of the Arabidopsis FT gene,promotes transition to flowering downstream of Hdl under short-day conditions.Plant Cell Physiol,43: 1096-1105
    123.Kotoda N,Wada M.2005.MdTFLl,a TFL1-like gene of apple,retards the transition from the vegetative to reproductive phase in transgenic Arabidopsis.Plant Science,168: 95-104
    124.Kumudini S V,Pallikonda P K and Steele C.2007.Photoperiod and E-genes Influence the Duration of the Reproductive Phase in Soybean.Crop Science,47: 1510-1517
    125.Major D J,Johnson D R,Tanner J W and Anderson I C.1975.Effects of daylength and temperature on soybean development.Crop Science,15: 174-179
    126.Major D J.1980.Photoperiod response characteristics controlling flowering of nine crop species.Can.J.Plant Science,60: 777-784
    127.McBlain B A and Bernard R L.1987.A new gene affecting the time of flowering and maturity in soybeans.The Journal of Heredity,78 (3): 160-162
    128.McBlain B A,Hesketh J D and Bernard R L.1987.Genetic effects on reproductive phenology in soybean isolines differing in maturity genes.Canadian journal of plant science,67: 105-116
    129.Messina C D,Jones J W,Boote K J and Vallejos C E.2006.A Gene-Based Model to Simulate Soybean Development and Yield Responses to Environment.Crop Science,46: 456-466
    130.Mimida N,Goto K,Kobayashi Y,Araki T,Ahn JH,Weigel D,Murata M,Motoyoshi F,Sakamoto W.2001.Functional divergence of the TFLl-like gene family in Arabidopsis revealed by characterization of a novel homologue.Genes Cells,6: 327-336
    131.Morandi E N,Casano L M and Reggiardo L M.1988.Post-flowering photoperiodic effect on reproductive efficiency and seed growth in soybean.Field Crops Research,18: 227-241
    132.Nakagawa M,Shimamoto K,Kyozuka J.2002.Overexpression of RCN1 and RCN2,rice TERMINAL FLOWER Ⅱ CENTRORADIALIS homologs,confers delay of phase transition and altered panicle morphology in rice.Plant J,29:743-750
    133.Ni M,Tepperman J M and Quail P H.1999.Binding of phytochrome B to it s nuclear signalling partner PI F3 is reversibly induced by light.Nature,400: 781 - 784
    134.Nissly C R,Bernard R L,Hittle C N.1981a,Variation in photoperiod sensitivity for time of flowering and maturity among soybean strains of maturity group Ⅲ.Crop Science,21: 833-836
    135.Nissly C R,Bernard RL,Hittle C N.1981b.Daylength sensitivity studies with maturity group Ⅲ soybean germplasm.Soybean Genetics Newsletter, 8: 14-15
    136.Piper E L and Boote K I.1999.Temperature and cultivar effects on soybean seed oil and protein concentrations.Journal of the American Oil Chemists' Society,76: 1233-1241
    137.Piper E L,Boote K J,Jones J W and Grimm S S.1996.Comparison of two phenology models for predicting flowering and maturity date of soybean.Crop Science,36: 1606-1614
    138.Pnueli L,Carmel-Goren L,Hareven D,Gutfinger T,Alvarez J,Ganal M,Zamir D,Lifschitz E.1998.The SELFPRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1.Development,125:1979-1989
    139.Poison D E.1972.Day-neutrality in soybeans.Crop Science,12: 773-776
    140.Rahman M M,Hampton J G and Hill M J.2005a.Soybean seed yield as affected by time of sowing in a cool temperate environment.Journal of New Seeds,7(4): 1-15
    141.Rahman M M,Hampton J G and Hill M J.2005b.Soybean development under the cool temperate environment of Canterbury,New Zealand.Journal of New Seeds,7 (4): 17-36
    142.Raper C D and Thomas J F.1978.Photoperiodic alteration of dry matter partitioning and seed yield in soybeans.Crop Science,18 (4): 654-656
    143.Ratcliffe OJ,Amaya I,Vincent CA,Rothstein S,Carpenter R,Coen ES,Bradley DJ.1998.A common mechanism controls the life cycle and architecture of plants.Development,125: 1609-1615
    144.Ray J D,Hinson K,J.E.Bidja Mankono and Malo M F.1995.Genetic cotrol of a long-juvenile trait in soybean.Crop Science,35:1001-1006
    145.Roberts R H.1939.Further studies of the effects of temperature and other environmental factors upon the photoperiodic responses of plant.J.Agric Res.,59: 699-709
    146.Saindon G,Voldeng H D,Beversdorf W D and Buzzell R I.1989.Genetic control of long daylength response in soybean.Crop Science,29:1436-1439
    147.Shanmugasundaram S.1979.Variation in the photoperiodic response on several characters in soybean,Glycine Max(L.) Merrill.Euphytica,28: 495-507
    148.Smith M B,Horner H T and Palmer R G.2001.Temperature and photoperiod effects on sterility in a cytoplasmic male-sterile soybean.Crop Science,41(3): 702-704
    149.Spehar C R.1995.Impact of strategic genes in soybean on agricultural development in the Brazilian Tropical Savannahs.Field Crops Research,41: 141-146
    150.Stewart D W,Cober E R and Bernard R L.2003.Modeling genetic effects on the photothermal response of soybean phenological development.Agronomy Journal.95: 65-70
    151.Summerfield R J,Asumadu H,Ellis R H,Qi A.1998.Characterization of the photoperiodic response of post-fowering development in maturity isolines of soyabean [Glycine max (L.) Merrill]'Clark'.Annals of Botany,82: 765-771
    152.Summerfield R J,Lawn R J,Qi A,Ellis R H,Roberts E H,Chay P M,Brouwer J B,Rose L,Shanmugasundaram S,Yeates S J and Sandover.1993.Towards the reliable prediction of time to flowering in six annual crops.Ⅱ.Soybean [Glycine Max L.].Experimental Agriculture,29: 253-289
    153.Summerfield R J,Roberts E H,Ellis R H and Lawn R J.1991.Towards the reliable prediction of time to flowering in six annual crops.I.The development of simple models for fluctuating field environments.Experimental Agriculture,27:11-31
    154.Sysoeva M I and Markovskaya E F.2006.Photothermal Model of Plant Development.Russian Journal of Developmental Biology,2006,37:16-21
    155.Tasma I M,Lorenzen L L,Green D E and Shoemaker R C.2001.Mapping genetic loci for flowering time,maturity,and photoperiod insensitivity in soybean.Molecular Breeding,8: 25-35
    156.Thomas J.F.,Raper Jr C D.1976.Photoperiodic control of seed filling for soybeans.Crop Science,16: 667-672
    157.Thomas J F,Raper Jr C D.1983a.Photoperiod effects on soybean growth during the onset of reproductive development under various temperature regimes.Botanical Gazette,1983a,144: 471-476
    158.Thomas J F,Raper Jr C D.1983b.Photoperiod and temperature regulation of floral initiation and anthesis in soybean.Annals of Botany,51: 481-489
    159.Tisselli J R O.1981.Inheritance study of the long-juvenile characteristic in soybeans under long and short-day conditions.Misissippi State University,Starkville: Ph.D.thesis
    160.Tomkins J P and Ship E R.1996.Soybean growth and agronomic performance in response to the Long-Juvenile trait.Crop Science,36: 1144-1149
    161.Tomkins J P and Ship E R.1997.Environmental adaptation of Long-Juvenile Syobean cultiars and elite strains.Aagronomy Journal,89: 257-262
    162.Upadhyay A P,Ellis R H,Summerfield R J,Roberts E H and Qi A.1994.Characterisation of photothermal flowering responses in maturity isolines of soybean [Glycine max]cv.Clark.Annals of Botany,74: 87-96
    163.Villarroel D,Wallace T P,Watson C E1.1995.Inheritance of a long-juvenile trait in soybean [Glycine max (L.)Merr.].J of the Mississippi Academy of Sciences,40(2): 9-11
    164.Wallace D H,Yourstone K S,Masaya P N and Zobel R W.1993.Photoperiod gene control over partitioning between reproductive and vegetative growth.Theoretical and Applied Genetics,86(1):6-16
    165.Wallace D H.1985.Physiological genetics of plant maturity,adaptation and yield.Plant Breeding Review,3:21-166
    166.Wang Z C,Reddy V R and Acock M C.1998.Testing for early photoperiod insensitivity in soybean.Agronomy Journal,90: 389-392
    167.Weigel D,Alvarez J,Smyth D R,Yanofsky M F,Meyerowitz E M.1992.LEAFY controls floral meristem identity in Arabidopsis.Cell,69: 843-859
    168.White J W and Laing D R.1989.Photoperiod Response of Flowering in Diverse Genotypes of Common Bean [Phaseolus vulgauis L.].Field Crops Research,22(2): 113-128
    169.Wilkerson G G Jones J W,Boote K J and Buol G S.1989.Photoperiodically sensitive interval in time to flower of soybean.Crop Science,29: 721-726
    170.Wu C,Ma Q,Yam K-M,Cheung M-Y,Xu Y,Han T,Lam H-M,Chong K.2006.In situ expression of the GmNMH7 gene is photoperiod-dependent in a unique soybean (Glycine max [L.]Merr.) flowering reversion system.Planta,223: 725-735
    171.Yamaguchi A,Kobayashi Y,Goto K,Abe M,Araki T.2005.TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT.Plant Cell Physiology,46: 1175-1189
    172.Yoo SY,Kardailsky I,Lee JS,Weigel D,Ahn JH.2004.Acceleration of flowering by overexpression of MFT (MOTHER OF FT AND TFL1).Molecule Cells,17: 95-101
    173.Zhang L,Wang R and Hesketh J D.2001.Effects of photoperiod on growth and development of soybean floral bud in different maturity.Agronomy Journal,93: 944-948

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700