高压天然气非金属玻璃钢管承载能力与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国家对天然气资源需求的快速增加,高压、含H2S、CO2天然气的腐蚀与安全防护技术已成为我国塔里木、鄂尔多斯、准噶尔等盆地主力气田安全、高效开发的关键。由于非金属钢管道具有良好的耐腐蚀性,在低中压非金属集油管道、高压注水管道中已得到了不断应用,但在高压天然气,特别是含硫天然气中尚无工业性应用。
     论文通过大量的资料和现场调研,首先在定性分析玻璃钢管道的基本性能参数及其变化规律的基础上,根据集输管道的主要管径大小和承压等级,基于多通道数采系统、激光测振仪、箔式应变计及SI3535D静态应变仪开展了无内衬环氧玻璃钢管、玻璃钢多层复合防腐管和玻璃钢内衬不锈钢管三种管材的刚度、密封性能、水压爆破试验,建立了试验过程中加载力和加载部位位移、应变与压力间满足的线性变化关系式。其次,论文研究分析了内、外螺纹连接部位的受力状况、轴向变形与啮合程度,建立了内、外螺纹连接部位及螺纹牙变形满足的变形协调方程、强度校核条件、接触压力计算公式和弹塑性接触有限元分析模型,实例计算结果与试验一致。在合理假设非金属复合管道由连续的层合结构组成、基体纤维分布均匀、增强体和基体间无相对滑移的前提下,根据几何关系知缠绕螺距l,采用柱坐标建立力平衡方程,建立了由增强纤维强度极限σbg及基体计算强度σbg表示的非金属玻璃钢管极限承载压力Pb理论计算公式,按照材料非线性Von Mises屈服准则、理想的弹塑性应力-应变关系和双线性随动强化准则建立了非金属管道极限承载有限元分析模型,通过模型应用确定了非金属玻璃管道的最佳缠绕角度角度55°,得到三种非金属管道极限承载能力与温度间的非线性计算公式Pb=-0.0017T2+ 0.1057T+40.67、Pb=-0.0039T2+0.1652T+38.077、Pb=-0.0039T2+0.1652T+38.077。基于玻璃钢管道主要失效模式、高斯烟团模型,通过坐标变换,以临界泄流为基础,建立了便于现场应用的高含硫天然气泄漏扩散的高后果区半径、扩散时间的简化计算公式并提出了相应的安全防护措施。最后,论文基于塔里木气田介质工况和环境条件,选取1km长管道为分析对象进行了应用分析,确定了管材、管径、埋深、压力等关键参数,从而为设计和生产管理部门进行非金属玻璃钢管材的选择和应用提供直接依据。
Along with the country's rapid increase in demand for natural gas, high pressure, including H2S, CO2 gas corrosion and security protection technology has become China's Tarim, Ordos, Junggar basins main gas field safety, efficient development of the key. As the non-metallic pipe has good corrosion resistance, non-metal set in the low and medium pressure oil pipeline, high pressure injection water pipeline has been constantly used, while in the high-pressure natural gas, particularly sour gas in the industrial application yet.
     By large amounts of data and field research in the paper, qualitative analysis of the first glass pipe in the basic performance parameters and change the law based on the major diameter gathering pipeline size and pressure rating, based on multi-channel data acquisition systems, laser measurement vibration meter, foil strain gauges and strain gauge SI3535D conducted static-free epoxy glass lined steel, glass, steel and glass multi-layer composite pipe, steel pipe lined with stainless steel three kinds of stiffness, sealing performance, burst test, the test procedure established loading capacity and loading position displacement, strain and pressure to meet the linear inter-relationship. Second, paper analyzes the internal and external screw connection portions stress conditions, the degree of axial deformation and engagement is established, the external thread and the thread tooth deformation of joints to meet the deformation equation, strength checking condition, contact pressure calculation formula and elastic-plastic contact finite element analysis model, examples of calculated and experimental line. Reasonable assumption in non-metallic composite pipe by the continuous laminated structure composed of fibers based distribution, reinforcement, and no relative slip between the matrix under the premise of knowledge according to the geometric relationship between winding pitch, using cylindrical coordinates the establishment of force balance equations of by the ultimate strength of reinforced fiber and matrix strength of said non-metallic glass calculated ultimate bearing pressure pipe calculation formula, in accordance with the material nonlinear Von Mises yield criterion, the ideal elastic-plastic stress - strain relations and bilinear kinematic hardening guidelines for the establishment of a non-metallic pipe breaking load finite element analysis model, by model application to determine the best non-metallic glass pipe winding angle of angle 55o, get three non-metallic pipelines carrying capacity and temperature limits between the non-linear formula Pb=-0.0017T2+0.1057T+40.67, Pb=-0.0039T2+0.1652 T+38.077, Pb=-0.0039T2+0.1652 T+38.077. Based on the main failure mode of glass pipes, gaussian puff model, and coordinate transformation, to the critical discharge based site set up to facilitate the application of high-sulfur natural gas leak and diffusion of high consequence area radius, diffusion time of the simplified formula and put forward the corresponding security measures. Finally, the paper medium based on the Tarim gas field, working conditions and environmental conditions, select the 1km long pipeline has been applied for the analysis of objects analyzed to determine the pipe diameter, depth, pressure and other key parameters for the design and production management for non-metallic FRP pipe to provide a direct basis for the selection and application.
引文
[1].曾自强,张育芳.天然气集输工程[M].北京:石油工业出版社,2008.
    [2].中国石油天然气总公司.SY/T6621-2005输气管道系统完整性管理[S].北京:石油工业出版社,2006.
    [3]. Abi Blyth. Health, safety and environment specification Quantitative Risk Assessment (QRA)[M]. Oman:Petroleum Development Oman, LLC,2002.
    [4].王东鹏.钢塑复合管一种新型管材.宁夏科技.2002,(2):46-47
    [5].方琼.钢塑复合管成型和应用中常见的问题.石油化工设备技术.1997,18(4):52-56
    [6]. 陆刚.谈复合材料及其发展和关注的热点(下).金属世界.2005,(5):49-51
    [7]. 王者友,蒋学忠.增强材料面面观.玻璃钢.2003,(4):22-26
    [8]. 杜晓云.供水工程管材的比较.科技情报开发与经济.2005,15(10):272-273
    [9]. 孔庆宝.纤维缠绕玻璃钢管应用与发展.纤维复合材料.1997,2:35
    [10].刘声祥.玻璃钢管道在油气集输系统中的应用.石油工程建设.2002.28(5):24-30
    [11].陈永武.“西气东输”展现中国管道工业辉煌[[J].天然气工业.2003,23(4),1-5.
    [12].解红军,罗震,卢东风.不锈钢-玻璃钢复合管在油田上的应用.油气田地而工程,2000,19(1):43
    [13].钱乐中.内衬不锈钢复合钢管介绍.焊管,2005,28(6):35-38
    [14].黎泽权,苏维刚,李伟.玻璃钢管道的施工技术和质量控制[J].石油工程建设,2006,(03)
    [15].苏焕荣,刘鸿升.玻璃钢管道在胜利油田采油工程中的应用[J].石油工程建设,.997,(02)
    [16].雷文.玻璃钢管道的技术特点及在我国的应用现状分析[J].玻璃钢/复合材料,1999,(01)
    [17].张春刚.玻璃钢管道在油气集输行业中的应用[J].油气田地面工程,2002,(03)
    [18].王祖权,耿运贵,刘志超,陶永让,陈保国.矿用玻璃钢管道快速接头设计[J].中州煤炭,1994,(04)
    [19].陶云宝ASTM有关玻璃钢管及管件的标准介绍[J].纤维复合材料,1989,(03)
    [20]. M.Xia, H.Takayanagi, K.Kemmochi. Bending Behavior Of Filament-wound Fiber-reinforced Sandwich Pipes. Composite Structures.2002,56:201-210.
    [21]. C. S. Chouchaoui, O. O. Ochoa. Similitude study for a laminated cylindrical tube under tensile, torsion, bending, internal and external pressure. Part Ⅰ:governing equations. Composite Structures. 1999, (44):221-229
    [22]. C. S. Chouchaoui, O. O. Ochoa. Similitude study for a laminated cylindrical tube under tensile, torsion, bending, internal and external pressure. Part Ⅱ:scale modes.Composite Structures.1999, (44):231~236
    [23]. J. Q. Tarn, Y M. Wang. Laminated composite tubes under extension, torsion,bending, shearing and pressuring:a state space approach. International Journal of Solids and Structures.2001, (38):9053~9075
    [24].张越,樊新民,孔德仁.复合层合管力学模型的研究.南京理工大学学报.1999,23(5):446-449
    [25]. C. A. Gargiulo, M. A. Marchetti, A. A. Rizzo. Prediction of failure envelopes of composite tubes subjected to biaxial loadings. Acta Astronautica.1996,39(5):355~368
    [26].张越,樊新民,孔德仁.复合层合管强度的理论计算.弹道学报.2002,14(1):54-57
    [27].宋爱红.FRP(玻璃钢)管的连接形式及其破坏特性.纤维复合材料,1997(3):39-42
    [28].沈坤元译.德国聚酯玻璃钢管连接标准.玻璃钢,1990:(2)
    [29].高连新,金烨.套管连接螺纹的受力分析与改善措施.上海交通大学学报,2004,28(10):1729-1732
    [30].山本晃.螺纹连接的理论与计算.郭可谦.高素娟.王晓凤等译.上海:上海科学技术文献出版社.1984:30-55
    [31].王祖诚,汪家才编.弹性和塑性理论及有限元法.北京:冶金工业出版社,1983
    [32].沈柏林.玻璃钢螺纹的连接结构与制造.材料与工艺
    [33].习俊通,聂钢,梅雪松等.套管螺纹全参数化几何模型与旋合仿真.重型机械,1998,221(6):28-31
    [34]. Fukuoka T.Mechanical properties of threaded regions in an eyebolt and an eyenut.JSME International Journal,1991,34(4):505~510
    [35].王治国,张毅.API圆螺纹油管接头上扣与拉伸过程的有限元应力分析.钢管.2001,30(3):20-25
    [36]. WAXG Ren, X10XG ZhuHuan, HUANG WenBin. Plastic mechanics foundertion. BeiJing: Science Press,1982(In Chinese)(工仁.熊祝华.黄文彬.塑性力学基础.北京:利学出版社.1982).
    [37].李斌,杨智春。圆螺纹套管接头的抗压缩极限载荷分析.机械强度.2004.25(2)167-169
    [38].习俊通,聂钢,梅雪松等.套管螺纹接头连接性能的接触有限元分析.西安交通大学学报.1999.33(11):63-66
    [39].陈宏,石永久等.梁柱节点受力性能的弹塑性有限元分析2000 ANSYS中国用户年会论文集.2000:129-133
    [40].张亚平,牛建军,张淑琼.有毒化学物质瞬时泄漏无风大气扩散的危害后果模拟分析[J].职业卫生与应急救援,2007,25(1):5-9.
    [41].王英伟,吴琦,隋祥,刘振伟.应用Excel模拟高斯烟团模式计算危险气体泄漏[J].环境科学与管理,2008,33(5):173-176.
    [42].丁信伟,王淑兰,徐国庆.可燃及毒性气体扩散研究[J].化学工程,2000,28(1):33-36.
    [43].王淑兰,喻健良,丁信伟,徐国庆.易燃气和毒气泄放扩散浓度计算[J].化工装备技术,2001,22(4):22-25.
    [44].邱奎,庞晓红,刘定东.高含硫天然气井喷的扩散范围估计与防范对策[J].石油天然气学报(江汉石油学院学报),2008,30(2):114-118.
    [45].国家环境保护局.HJ/T 2.2-93环境影响技术评价导则大气环境[S].
    [46].罗志云.天然气管道泄漏H2S扩散及影响区域的数值模拟与分析[D].北京工业大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700