变位机转台倾翻液压同步控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,电液伺服同步系统具有非线性、参数变化、干扰和耦合等因素使得在建立电液伺服系统数学模型的时候很难得到准确的模型,这些因素为控制器的设计带来了难度。本文采用具有较强鲁棒性特点的模糊滑模变结构控制和神经元PID控制,使得其在控制像电液伺服同步系统这类具有非线性、参数变化、外干扰等特点的被控对象时,可以得到良好的效果。并利用MATLAB软件中的Simulink工具箱对同步系统进行数学建模和对比仿真,为同步控制器的设计与分析提供理论依据。
     论文的主要研究内容为:
     首先,介绍了液压同步系统目前的发展状况。通过对变位机的受力分析求出同步系统数学耦合关系,建立了同步控制系统耦合关系的数学模型,并利用MATLAB软件中Simulink工具箱的S函数功能分别编写了模糊滑模变结构和神经元PID控制算法的程序。为变位机同步系统运动性能的分析建立了数学模型。
    
     其次,对变位机同步系统的基本性能进行仿真分析,使得对系统有了一个基本的了解。分析了影响同步误差的一些基本因素,为控制算法加入后对系统的影响提供比较分析的依据。
     最后,分别介绍了模糊滑模变结构控制与神经元PID控制策略的确定方法,分别利用其对变位机双马达液压同步控制系统进行位置同步控制与力同步控制,利用MATLAB软件中Simulink的仿真结果进行对比分析。分析那种控制算法更适合本系统和那种反馈形式更合理。
We well known that electro-hydraulic servo system with synchronized nonlinear, parameter variations, interference, and coupling factors make the establishment of mathematical model of electro-hydraulic servo system, the time is difficult to obtain accurate models, these factors caused the controller design difficult. In this paper, has a strong characteristic of robustness of fuzzy sliding mode control and Neural PID control, making it in the control system, such as the electro-hydraulic servo synchronized with a nonlinearity, parameter variation, external disturbance and other characteristics of the controlled object , you can get good results.Using MATLAB software toolbox in Simulink synchronous system mathematical modeling and simulation comparison for the synchronous controller design and analysis theory.
     The main research content of papers such as:
     (1)The hydraulic synchronization system describes the current state of development. Postioner by mechanical analysis derived mathematical coupling between synchronous system, establishment of a synchronous control system coupling between the mathematical model and the use of MATLAB software toolbox Simulink were prepared by S-function features of fuzzy sliding mode variable structure and Neural PID control algorithm process. For postioner synchronization system performance analysis exercise to establish a mathematical model.
     (2)Synchronous system of postioner simulation and analysis of basic properties, making the system have a basic understanding. Analysis of synchronization error affecting some of the basic factors for the control algorithms on the system after the entry of the impact of providing a basis for comparative analysis.
     (3)Introduced the fuzzy sliding mode control and Neural PID control strategy to determine methods of use, respectively, its dual-motor hydraulic positioner control system of synchronous position synchronization control and synchronous control force, using MATLAB software Simulink simulation results comparative analysis. Analysis of the kind of control algorithm is more suited to the system and the feedback form that is more reasonable.
引文
1张树海,戚翠芬,侯日斌,等.中厚板精轧液压AGC系统的研究与应用[J].金属材料与冶金工程,2007,3(5):23-26.
    2吴保林,裘丽华,唐志勇,等.工程机械液压底盘模拟实验台双马达同步技术研究[J].中国机械工程,2006,17(9):899-902.
    3高原,谷良贤.导弹舵机PID一MRAC复合控制仿真研究[J].计算机仿真,2008,25(1):66-69.
    4张宝生,何润生,程洪杰.大型起竖设备双缸同步问题研究[J].机床与液压,2008,36(9):220-256.
    5吴保林,裘丽华,祁晓野,等.单泵驱动双马达速度同步控制技术研究[J].系统仿真学报,2006,18(6):1586-1588.
    6王锴,王占林,付永领,等.电液仿真转台控制系统设计与仿真研究[J].宇航学报,2007,28(1):178-182.
    7朱发明,阮健,李胜,等.电液数字伺服双缸同步控制系统[J].机床与液压,2008,36(10):49-51.
    8逄波,王占林,白国长.工程机械液压底盘试验台双马达同步的研究[J].系统仿真学报,2007,19(5):2018-2021.
    9刘春芳,周璐,吴盛林.基于解耦控制的双电液伺服系统同步技术研究[J].机床与液压,2007,35(2):181-183.
    10丁意,赵克定,于金盈.双缸同步控制系统的研究[J].流体传动与控制,2007,2(3):24-26.
    11倪敬,项占琴,潘晓弘,等.双缸同步提升电液系统建模和控制[J].机械工程学报,2007,43(2):81-86.
    12祁帅,郭晓松,于传强,等.双缸同步液压系统单神经元PID控制仿真研究[J].流体传动与控制,2008,5(9):5-8.
    13张朝亮,张河新,董伟亮,等.液压同步顶推顶升技术在桥梁施工中的应用[J].液压气动与传动,2008,8(3)65-68.
    14陈浮.液压同步整体提升控制策略设计[J].科教前沿,2008,9(2):24-26.
    15马东梅.Simulink仿真软件在自动控制原理教学中的应用[J].现代电子技术,2005,8(8):34-36.
    16芮丰,王金利,邱士浩,等.液压支架试验台升降装置中四缸同步系统的研究[J].液压与气动,2008,12(3):4-6.
    17赵光波.一种新的液压同步控制系统在地铁车门上的应用[J].液压与气动,2007,12(3):33-34.
    18 Ibrahim B Kucukdemiral,Galip Cansever.Sugeno based robust adaptive fuzzy sliding mode controller for SISO nonlinear systems[J].Intelligent & Fuzzy Systems,2006,17(6): 113-124.
    19 K. S. Matviichuk.Stability of the sliding mode in nonstationary automatic-control systemswith variable structure[J]. International Applied Mechanics,2003,39(11):137-144.
    20 I Eksin,M G u zelkaya,S Tokat.Self-tuning mechanism for sliding surface slope adjustment in fuzzy sliding mode controllers[J].Systems and Control Engineering,2002,216(8):393-407.
    21 Lon-Chen Hung,Hung-Yuan Chung.Fuzzy sliding-mode control with rule adaptation for nonlinear systems[J].Expert Systems,2006,23(9):226-241.
    22 A Hamzaoui,N Essounbouli,J Zaytoon.Fuzzy sliding mode control with a fuzzy switching function for non-linear uncertain multi-input multi-output systems[J]. Systems and Control Engineering,2004,218(2):287-299.
    23 Majid Karimi,Farid Najafi,Hossein Sadati,Mozafar Saadat.Application of a flexible structure artificial neural network on a servo-hydraulic rotary actuator[J].Manuf Technol ,2008,39(10):559-569.
    24 Hong-Ming Chen,Jyh-Chyang Renn,Juhng-Perng Su.Sliding mode control with varying boundary layers for an electro-hydraulic position servo system[J].Manuf Technol,2005,26(1):117-123.
    25 Feipeng Da.Fuzzy neural network sliding mode control for long delay time systems based on fuzzy prediction[J].Neural Comput & Applic,2008,17(10):531-539.
    26 M. Roopaei,M. Zolghadri Jahromi.Synchronization of two different chaotic systems using novel adaptive fuzzy sliding mode control[J].CHAOS,2008,18(9):1-10.
    27 Yun-Qing Zhang,Yong-Sheng Zhao,Jingzhou Yang,Li-Ping Chen.A dynamic sliding-mode controller with fuzzy adaptive tuning for an active suspension system[J]. Automobile Engineering,2006,221(12):417-429.
    28 Chien-Yi Lee,Pi-Cheng Tung,Wen-Hou Chu.Adaptive fuzzy sliding mode control for an automatic arc welding system[J].Manuf Technol,2006,29(1):481-489.
    29 Chin-Wen Chuang,Chin-Liang Haung,Chun-Dar Lee,Chih-Cheng Kao,Rong-Fong Fung.Synchronization and tension control of dual motor systems via MIMO discrete pseudo model following integral variable structure control[J].Mechanism and Machine Theory,2009,44(1):499-510.
    30 Winston Garcia-Gabin,Darine Zambrano,Eduardo F.Camacho.Sliding mode predictive control of a solar air conditioning plant[J].Control Engineering Practice,2009,17(12): 652-663.
    31温彩霞,陈天及,孙毅刚.神经元PID在空调机组性能试验室温度控制中的建模与仿真[J].制冷与空调,2007,7(2):31-34.
    32程启明,郑勇,杨晓,等.球磨机单神经元自适应PID解耦控制系统仿真[J].上海电力学院学报,2008,24(9):207-210.
    33姚培,郑恩让.内模解耦单神经元自适应PID仿真研究[J].计算机仿真,2008,25(7):155-157.
    34于强,石柱,吕旭涛.晶体生长炉神经元网络PID解耦控制系统[J].航天控制,2008,26(4):59-62.
    35林瑞全,杨富文,邱公伟.基于性能准则的自适应神经元PID可调参数选取方法[J].福州大学学报(自然科学版),2005,33(10):592-594.
    36傅平,郭吉丰,丁敬,等.基于神经元自适应PID的超声波电机速度位置控制[J].电工技术学报,2007,22(2):28-33.
    37郑劭馨,薛薇,薛艳君.基于改进的神经元PID的网络化控制系统[J].控制工程,2008,15(5):232-234.
    38周锦姝.基于Simulink的神经元PID控制建模与研究[J].仪器仪表用户,2006,13(1):3-5.
    39高希明,孟彦京.一种基于神经元的解耦控制算法研究[J].陕西科技大学学报,2009,27(2):110-113.
    40 R T Burton,P R Ukrainetz,P N Nikiforuk et al.Neural networks and hydraulic control—from simple to complex applications[J].Mech Engrs,1999,213(4):349-358.
    41 Q M Zhu,K Warwick.A neural network enhanced generalized minimum variance self-tuning proportional, integral and derivative control algorithm for complex dynamic systems[J].Systems and Control Engineering,2002,216(2):265-274.
    42 L Z Guo,Q M Zhu,K Warwick.Design of a minimum variance multiple input–multiple output neuro self-tuning proportional-integralderivative controller for non-linear dynamic systems[J].Systems and Control Engineering,2007,211(7):75-89.
    43 T. Slanvetpan,R. Barat.Staged Combustor Control Using Artificial Neural Network-Based Process Models[J].Taylor & Francis,2006,193(7):386-401.
    44 K K Ahn,D Q Truong,T Q Thanh et al.Online self-tuning fuzzy proportional–integral–derivative control for hydraulic load simulator[J].Systems and Control Engineering,2007,222(12):81-96.
    45 Cheng-Yi Chen,Li-Qiang Liu,Chi-Cheng Cheng,George T.-C. Chiu.Fuzzy controller design for synchronous motion in a dual-cylinder electro-hydraulic system[J].Control Engineering Practice,2008,16(9):658-673.
    46 Prut Nakkarat,Suwat Kuntanapreeda.Observer-based backstepping force control of an electrohydraulic actuator[J].Control Engineering Practice,2009,17(2):895-902.
    47张大庆,付小梅.单神经元PID控制器仿真及其PLC实现[J].电源技术应用,2009,12(12):3-6.
    48杨磊,吴勇,武卫,等.基于单神经元PID的航空发动机解耦控制[J].微计算机信息,2010,26(1):57-59.
    49严侠,牛宝良,米晓兵.一种单神经元PID控制的液压振动台数字伺服控制系统[J].航天器环境工程.2009,12(26)109-111.
    50乌建中,侯贤士,陈吉.分布式神经元PID在不均衡系统同步控制中的应用[J].科技导报,2009,26(12):53-56.
    51王锐,赵昊阳,张乐,等.船用舵机电液伺服单元单神经元自适应PID控制的研究[J].齐齐哈尔大学学报,2009,25(9):1-4.
    52吕楠楠,曾荣周,肖珊.基于单神经元模糊自适应PID控制的加热炉温度控制器设计[J].现代电子技术,2009,23(3):161-163.
    53孙旭东,王卫红.改进单神经元PID控制器在伺服系统中的应用[J].系统仿真学报,2006,18(8):880-881.
    54关静丽,李娟.基于单神经元自适应PID控制的位置扰动型电液伺服施力系统[J].机床与液压,2005,(7):139-141.
    55赵勇.单神经元自适应PID算法在液位控制系统中的应用[J].西安邮电学院学报,2009,14(5):52-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700