用于直接甲醇燃料电池的交联型质子交换膜的制备与膜性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高磺化度磺化聚芳醚酮质子交换膜的水溶胀大、机械性能以及阻醇性能差等缺点,限制了其在燃料电池中的应用。本论文从提高质子交换膜的尺寸稳定性以及阻醇性能着手,制备不同类型的交联膜并对其性能进行了测试。
     1.制备了含有氨基侧基的聚醚醚酮(Am-PEEK)并将其作为大分子交联剂,分别采用两种方式对含有羧基的高磺化度的聚芳醚酮(C-SPAEK)进行交联改性。一、通过共价-离子交联的方法,大大降低了C-SPAEK的溶胀率,膜的阻醇性能和机械性能都得到了大幅的提高。二、将Am-PEEK进行处理之后作为聚阳离子,通过层层自组装的方法,制备自组装交联膜,使膜在甲醇渗透率大幅降低的情况下仍保持了较高的质子传导率。
     2.制备了酸碱复合膜,即含有氨基侧基的磺化聚醚醚酮(Am-SPEEK)膜,并利用活性氨基侧基对聚合物进行交联。一方面,我们选取1,2-二溴乙烷,1,4-二溴丁烷,柔性环氧树脂以及四甲基联苯二酚型环氧树脂对聚合物膜进行交联,交联后,膜性能得到显著的提高。通过各系列交联膜性能的对比,研究了交联剂的结构对交联膜性能的影响。另一方面,我们制备了高性能羧基封端的苯并咪唑三聚体作为交联剂,交联后,膜的机械性能显著提高,同时保持了优良的质子传导率。
Direct methanol fuel cells (DMFCs), a kind of proton exchange membrane fuelcells (PEMFCs), which utilize methanol as a fuel generate electricity without the useof any reforming unit, have made a vigorous evolution among the fuel cells becausethey combine high efficiency with low operating temperatures. Proton exchangemembrane (PEM) is a key component of PEMFCs, and the performance of PEMaffects the progress in the applications of PEMFCs. The basic requirements of PEMswere listed as followed:1) High proton conductivity.2) Low fuel permeability.3)Strong thermal and mechanical stabilities.4) Good processability.5) Reasonablecost. As a representative of the most successful PEM materials, Nafion developed byDuPont possesses high ionic conductivity and excellent chemical stability. Due tothe excellent performances of Nafion, DMFCs based on Nafion have beenon their way of commercialization. However, there are still many non-ignorabletechnical limitations which are difficult to overcome that hinder their way ofpopularization. Among the limitations, the high cost,high methanol permeabilityand low proton conductivity over80oC are the principle ones. Thus, with adjustableproton conductivity and excellent mechanical stabilities, sulfonated aromatic mainchain polymers begin to receive growing interests and explore upsurge have been setoff.
     Among the candidates, SPEEKs have attracted much attention due to their lowcost and appropriate chemical and thermal stabilities. However, like other sulfonatedaromatic main chain polymer, the SPEEKs become more swollen and losemechanical strength with the increasing number of sulfonic acid groups which is thebasic requirement to achieve high proton conductivity. The large dimensional variations and fuel crossover render the membranes unsuitable for the applicationsin DMFCs. Thus, it is nessassery to banlance the performances of the membranesusing different methods.
     In this work, we aim to choose proper cross-linkers to improve the performanceof the membranes. There are several promising ways, such as covalernt-ionicallycross-linking, covalent cross-linking and layer-by-layer. We use different methods tomake cross-linked membranes. Firstly, we have synthesized a novel bisphenolmonomer with pendant amino groups. Then,1H NMR was used to confirm thestructure of the bisphenol monomer. Because of the activity of amino group, it couldeasily cross-link with other reagents, meanwhile it could also be used as acrosslinker. All the works are described in details as followed:
     We prepared a series of poly(ether ether ketone) with pendant amino groups(Am-PEEK). In chapter2, we synthesized a water swollen C-SPEEK as the basicmembrane, using Am-PEEK as the crosslinker to prepare covalent-ionicallycross-linked membranes. The results demonstrated that, all the cross-linkedmembranes had excellent thermal stability and mechanical stability, meanwhile thedimensional stability and methanol residence of the membranes were also improved.In particular, C-SPEEK/Am-PEEK-5had a similar proton conductivity as thepristine membrane at80oC, which comfirmed that the ionical bond could slip athigh temperature. The proton conductivity of other cross-linked membranes wasdecreased as the increasing of crosslinker contents.
     In chapter3, in order to improve the performace while maintain a goodconductivity, we prepared layer-by-layer membranes. Lowly sulfonated SPAEK-Cwith medium ionic conten was selected as the support material, and Am-PEEK wasused as a polycation, by incorporating a highly sulfonated SPAEK-C, we canproduce multilayered membranes with low methanol permeability and high protonconductivity. Then, we prepared15-bilayer cross-linked PEC by heating treatment.FT-IR and SEM indicated that the membranes were successfully modified. After test,the multilayed membranes showed low methanol permeability and high protonconductivity. The15-bilayer cross-linked membrane showed a much lower methanol permeability because of the cross-linking network.
     In the previous works, we utilized base-acid interaction to prepare cross-linking.Thus, in chapter4, we synthesized sulfonated poly(ether ether ketone) bearingpendant amino groups. Amino group was reactive and could react with severalgroups to creat cross-linking network, avoiding to loss sulfonated acid groups. Wechose four different kinds of cross-linkers to make cross-linked membranes. Bycomparing the results, we studied the effects of main structure of crosslinker on theperforamances of the membranes. We found that TMBP with rigid main chainstructure was the proper crosslinker, because the Am-SPEEK-TMBP showed thebest performances.
     In the last chapter, we synthesized a benzimidazole timer (rigid-BI) ascrosslinker. Then, we prepared Am-SPEEK-BI-x membranes with different BIcontents. The solubility test and FT-IR were used to confirm that the corss-linkingreaction was completed. The water uptake and swelling ratio were dramaticallyreduced, and the thermal and mechanical stability were also improved. Theselectivity of the cross-linking membranes was also improved, which was higherthan that of Nafion117.
引文
[1]. NONHLANHLA C, SUPRAKAS S R. Recent Progress on Nafion-BasedNanocomposite Membranes for Fuel Cell Applications [J]. MacromolecularMaterials and Engineering2009,294:719-738.
    [2].衣宝廉,燃料电池-高效、环境友好的发电方式,北京:化工出版社,2000.
    [3]. WANG J H, LI S H, ZHANG S B. Novel Hydroxide-ConductingPolyelectrolyte Composed of an Poly(arylene ether sulfone) Containing PendantQuaternary Guanidinium Groups for Alkaline Fuel Cell Applications [J].Macromolecules2010,43:3890-3896.
    [4]. MANABU T, MASAKI K, KENJI M. Anion Conductive Aromatic IonomersContaining Fluorenyl Groups [J]. Macromolecules2010,43:2657-2659.
    [5]. DEAN M T, ALLYSON E P, CHRISTINE M J. Synthesis and Properties ofNovel Proton-Conducting Aromatic Poly(ether sulfone)s That Contain TriazineGroups [J]. Macromolecules2009,42:1888-1896.
    [6]. WOLFGANG S, ARDALAN V. A review of the main parameters influencinglong-term performance and durability of PEM fuel cells [J]. Journal of PowerSources2008,180:1-14.
    [7]. JACQUES R, DEBORAH J J. Non-fluorinated polymer materials for protonexchange membrane cells [J]. Annual Review Materials Research2003,33:503-55.
    [8]. STEELE B C H, HEINZEL A. Materials for fuel-cell technologies [J]. Nature2001,414:345-352.
    [9]. RIKUKAWA M, SANUI K. Proton-conducting polymer electrolyte membranesbased on hydrocarbon polymers [J]. Progress Polymer Science2010,25:1463-1502.
    [10].衣宝廉.燃料电池的原理、技术状态与展望[J].电池工业,2003,8:16-22.
    [11]. WARSHAY M, PROKOPIUS P R. The fuel cell in space: yesterday, today andtomorrow [J]. Journal of Power Sources1990,29:193-200.
    [12].张春甫.德国用燃料电池及闭合循环柴油机作潜艇不靠空气的推进装置[J].1994,3:62-62.
    [13].曾跃进.美国开发用于机动车的燃料电池[J].上海金属(有色分册),1991,12(6).
    [14]. Anon. Researchers honered for work on fuel cells [J]. Chemical EngineeringNews1999,77:22.
    [15].苏威.日本正在加速磷酸型燃料电池实用化进程[J].化学工业时报,1983,5:3.
    [16].熊一权.燃料电池及其发电厂[J].中国能源,1991,04:36-37.
    [17].李国浩.方兴未艾的燃料电池技术及其应用[J].能源研究及信息,1999
    [18].吴世华.金属蒸汽法制备Ag/C燃料电池电极[J].化学通报,1991,2:36-38.
    [19]. MEHTA V, COOPER J S. Review and analysis of PEM fuel cell design andmanufacturing [J]. Journal of Power Sources,2003,114:32-53.
    [20].刘凤君.高效环保的燃料电池发电系统及其应用[M].北京:机械工业出版社,2006.
    [21]. ASENSIO J A, BORROS S. Enhanced conductivity in polyanion-contaningpolybenzimidazole. Improved materials for protonpexchange membranes andPEM fuel cells [J]. Electrochemistry Communication2003,5:967-972.
    [22]. XING P, ROBERSON G P, GUIVER M D. Synthesis and characterization ofpoly(aryl ether ketone) copolymers conraining(hexafluoroisopropylidene)-diphenol moiety as proton exchange membranematerials [J]. Polymer2005,46:3257-3263.
    [23]. HICKNER M A, GHASSEMI H, KIM Y S. Alternative Polymer Systems forProton Exchange Membranes (PEMs)[J]. Chemical Reviews,2004,104:4587-4612.
    [24]. HWANG J J, CHANG R, WENG F B. development of a small vehicular PEMfuel cell system [J]. Inrernational Joournal of Hydrogen Energy2008,33:3801-3807.
    [25]. HSU W Y, GIRERKE T D. Ion transport and clustering in Nafionperfluorinated membranes [J]. Journal of Membrane Science1983,13:307-326.
    [26]. HAUBOLD H G, VAD T, JUNGBLUTH H. Nano structure of Nafion: a SAXSstudy,[J]. Electrochimica Acta2001,46:1559–1563.
    [27]. PETER O O, ALUWANI M. Characterization of direct methanol fuel cell(DMFC) applications with H2SO4modified chitosan membrane [J]. Journal ofPower Sources2010,195:4915-4922.
    [28]. CHEN X B, CHEN P, OKAMOTO K I. Synthesis and Properties of SulfonatedPoly(siloxane imide)s Bearing Dimethyl Siloxane Oligomers for Fuel CellApplications [J]. Journal of Applied Polymer Science2009,112:3560-3568.
    [29]. KHANH N T. D, KIM D. Synthesis and Characterization of HomogeneouslySulfonated Poly(ether ether ketone) Membranes:Effect of Casting Solvent [J].Journal of Applied Polymer Science.2008,110:1763-1770.
    [30]. BASIT Y, ANKE K, ANDREAS L. Highly Proton-ConductingSelf-Humidifying Microchannels Generated by Copolymer Brushes on aScaffold [J]. Angewandte Chemie International Edition2009,121:1-6.
    [31]. JIN X, BISHOP M T, ELLIS T S. A sulphonated poly(aryl ether ether ketone).[J]. British Polymer Journal1985,17:4–10.
    [32]. BISHOP M T, KARASZ F E, RUSSO P S. Solubility properties of a poly(arylether ether ketone) in strong acids.[J]. Macromolecules1985,18:86–93.
    [33]. BAILLY C, WILLIAMS D J, KARASZ F E. The sodium salts of sulphonatedpoly(aryl-ether-ether-ketone)(PEEK): preparation characterization [J]. Polymer1987,28:1009–1016.
    [34]. XING P X, ROBERTSON G P, GUIVER M D. Synthesis and characterizationof sulfonated poly(ether ether ketone) for proton exchange membranes [J].Journal of Membrane Science2004,229:95-106.
    [35]. TIAN S, MENG Y, HAY A S. Membranes from Poly(aryl ether)-BasedIonomers Containing Randomly Distributed Nanoclusters of6or12SulfonicAcid Groups [J]. Macromolecules2009,42:1153–1160.
    [36]. LIU B J, ROBERTSON G P, KIM D S. Aromatic Poly(ether ketone)s withPendant Sulfonic Acid Phenyl Groups Prepared by a Mild Sulfonation Methodfor Proton Exchange Membranes [J]. Macromolecules2007,40:1934-1944.
    [37]. LI X F, ZHAO C J, LU H. Direct synthesis of sulfonated poly(ether etherketone ketone)s (SPEEKKs) proton exchange membranes for fuel cellapplication [J]. Polymer2005,46:5820–5827.
    [38]. ZHANG Y, WAN Y, ZHANG G. Preparation and properties of novelcross-linked sulfonated poly(arylene ether ketone) for direct methanol fuel cellapplication [J]. Journal of Membrane Science2010,348:353–359.
    [39]. TIAN S H, SHU D, WANG S J. Sulfonated poly(fluorenyl ether ketone nitrile)electrolyte membrane with high proton conductivity and low water uptake [J].Journal of Power Sources2010,97:97-103.
    [40]. HARRISON W L, WANG F, MECHAM J B. Influence of the bisphenolstructure on the direct synthesis of sulfonated poly(arylene ether) copolymers.[J]. Journal of Polymer Science Part A: Polymer Chemistry2003,41:2264-2276.
    [41]. KOBAYASHI T, RIKUKAWA M, SANUI K. Proton-conducting polymersderived from poly (ether ether ketone) andpoly(4-phenoxybenzoyl-1,4-phenylene)[J]. Solid State Ionics1998,106:219-25
    [42]. MATSUMOTO K, HIGASHIHARA T, UEDA M. Locally and DenselySulfonated Poly(ether sulfone)s as Proton Exchange Membrane [J].Macromolecules2009,42:1161-1166.
    [43]. MATSUMURA S, HLIL A R, LEPILLER C. Ionomers for Proton ExchangeMembrane Fuel Cells with Sulfonic Acid Groups on the End Groups: NovelLinear Aromatic Poly(sulfide ketone)s [J]. Macromolecules2008,41:277–280.
    [44]. MATSUMURA S, HLIL A R, DU N. Ionomers for proton exchangemembrane fuel cells with sulfonic acid groups on the end-groups: Novelbranched poly(ether-ketone)s with3,6-ditrityl-9H-carbazole end-groups [J].Journal of Polymer Science Part A: Polymer Chemistry2008,46:3860–3868.
    [45]. FAURE S, MERCIER R, ALDEBERT P. Sulphonated polyimides, membranesand fuel cell, French Patent.9605707[P],1996.
    [46]. GIESELMAN M B, REYNOLDS J R. Water-solublepolybenzimidazole-based polyelectrolytes [J]. Macromolecules1992,25:4832-4834.
    [47]. GIESELMAN M B, REYNOLDS J R. Aramid and imidazole basedpolyelectrolytes: physical properties and ternary phase behavior withpoly(benzimidazole)[J]. Polymers for Advanced Technologies2000,11:544-547.
    [48].张杨,用于直接甲醇燃料电池的新型磺化聚芳醚酮质子交换膜材料制备与性能研究[D].长春:吉林大学化学学院,2011
    [49]. JOHSON B C, YILGOR I, TRAN C. Synthesis and characterization ofsulfonated poly(acrylene ether sulfones)[J]. Journal of Polymer Science Part A:Polymer Chemistry1984,22:721-737.
    [50]. F. LUFRANO, SQUADRITO G, PATTI A. Sulfonated polysulfone aspromising membranes for polymer electrolyte fuel cells [J]. Journal of AppliedPolymer Science2000,77:1250-1256
    [51]. KIM Y S, WANG F, HICKNER M. Effect of acidification treatment andmorphological stability of sulfonated poly(arylene ether sulfone) copolymerproton exchange membranes for fuel-cell use above100°C [J]. Journal ofPolymer Science Part B: Polymer Physics2003,41:2816-2828.
    [52]. DIMITROVA P G, BARADIE B, FOSCALLO D. Ionomeric membranes forproton exchange membrane fuel cell (PEMFC): sulfonated polysulfoneassociated with phosphatoantimonic acid [J]. Journal of Membrane Science,2001,185:59-71.
    [53]. WANG F, HICKNER M, KIM Y S. Direct polymerization of sulfonatedpoly(arylene ether sulfone) random (statistical) copolymers: candidates for newproton exchange membranes [J]. Journal of Membrane Science2002,197:231-242.
    [54]. KANG M S, CHOI Y J, CHOI I J. Electrochemical characterization ofsulfonated poly(arylene ether sulfone)(S-PES) cation-exchange membranes [J].Journal of Membrane Science2003,216:39-53.
    [55]. GJASSEMI H, MCGRATH J E, ZAWODZINSKI T A. Multiblocksulfonated–fluorinated poly(arylene ether)s for a proton exchange membranefuel cell [J]. Polymer2006,47:4132-4139.
    [56]. LIU B J, ROBERTSON G P, KIM D S. Enhanced thermo-oxidative stability ofsulfophenylated poly(ether sulfone)s [J]. Polymer2010,51:403–413.
    [57]. KARLSSON L E, JANNASCH P. Polysulfone ionomers for proton-conductingfuel cell membranes: sulfoalkylated polysulfones [J]. Journal of MembraneScience2004,230:61–70.
    [58]. LAFITTE B, KARLSSON L E, JANNASCH P. Sulfophenylation ofPolysulfones for Proton-Conducting Fuel Cell Membranes [J]. MacromolecularRapid Communications2002,23:896–900
    [59]. LOBATO J, CANIZARES P, RODRIGO M A. Study of the influence of theamount of PBI-H3PO4in the catalytic layer of a high temperature PEMFC [J].International Journal of Hydrogen Energy2010,35:1347-1355.
    [60]. BHADRA S, KIM N H, CHOI J S. Hyperbranchedpoly(benzimidazole-co-benzene) with honeycomb structure as a membr) withhoneycomb structure as a membrane for high-temperature proton exchangemembrane fuel cells [J]. Journal of Power Sources2010,195:2470-2477.
    [61]. JONES D J, ROZIERE J. Recent advances in the functionalisation ofpolybenzimidazole and polyetherketone for fuel cell applications [J]. Journal ofMembrane Science2001,185:41-58.
    [62]. WANG J T, SAVINELL R F, WAINRIGHT J S. H2/O2Fuel Cell Using AcidDoped Polybenzimidazole as Polymer Electrolyte [J]. Electrochimica Acta1996,41:193-197.
    [63]. HAN M M, ZHANG G, LIIU Z G. Cross-linked polybenzimidazole withenhanced stability for high temperature proton exchange membrane fuel cells[J]. Journal of Material Chemistry2011,21:2187-2193.
    [64]. WANG S, ZHANG G, HAN M M. Novel epoxy-based cross-linkedpolybenzimidazole for high temperature proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy2011,36:8412-8421
    [65]. KANG M S, CHOI Y J. Electrochemical characterization of sulfonatedpoly(arylene ether sulfone)(S-PES) cation-exchange membranes [J]. Journal ofMembrane Science2003,216:39-53.
    [66]. GJASSEMI H, MCGRATH J E, ZAWODZINSKI T A. Multiblocksulfonated–fluorinated poly(arylene ether)s for a proton exchange membranefuel cell [J]. Polymer2006,47:4132-4139.
    [67]. GUO Q, PINTAURO P N, TANG H. Sulfonated and cross-linkedpolyphosphazene-based proton-exchange membranes [J]. Journal of MembraneScience1999,154:175–181.
    [68]. KRALSSON L E, JANNASCH P. Polysulfone ionomers for proton-conductingfuel cell membranes: sulfoalkylated polysulfones [J]. Journal of MembraneScience2004,230:61–70.
    [69]. LAFITTE B, KARLSSON L E, JANNASCH P. Sulfophenylation ofPolysulfones for Proton-Conducting Fuel Cell Membranes [J]. MacromolecularRapid Communications2002,23:896–900.
    [70]. FU Y Z, LI W, MANTHIRAM A. Sulfonated polysulfone with1,3-1H-dibenzimidazole-benzene additive as a membrane for direct methanolfuel cells [J]. Journal of Membrane Science2008,310:262-267.
    [71]. ZHONG S L, CUI X J, FU T Z. Modification of sulfonated poly(ether etherketone) proton exchange membrane for reducing methanol crossover [J].Journal of Power Sources2003,180:23-28.
    [72]. SMITHA B, SRIDHAR S, KHAN A A. Chiston-sodium alginate polyiocomplexes as fuel cell membranes [J]. European Polymer Journal2005,41:859-1866..
    [73]. MEDVEDEV A V, BARMATOV E B, MEDVEDEV A S. Phase Behaviorand Photooptical Properties of Luqid Crystalline Functionalized Copolymerswith Low-Molecular-Mass Dopants Stabilized by Hydrogen Bonds [J].Macromolecules2005,38:2223-2229.
    [74]. KIM S, HONG I. Membrane performance comparison in a proton exchangemembrane fuel cell (PEMFC) stack [J]. Journal of Industrial and EngineeringChemistry2010,16:901-905.
    [75]. HUNSOM M, PIUMSOMBOON P, PRUKSATHORN K. Novel applicationof Hicon Black in PEMFC microporous sublayer: Effects of composition andsubsequent membrane selection [J]. Renewable Energy2010,36:369-373.
    [76]. INTARAPRSIT N, KONGKACHUICHAY P. Preparation and properties ofsulfonateed poly(ether ether ketone)/Analcime composite membrane for aproton exchange membrane fuel cell (PEMFC)[J]. Journal of the TaiwanInstitute of Chemical Engineers2010,42:190-195.
    [77]. ZHIANL M, GHARIBI H, KAKAEL K. Optimization of Nafion content inNafion-polyaniline nano-composite modified cathodes for PEMFC application[J].International Journal of Hydrogen Energy2010,35:9261-9268.
    [78]. NI J, ZHANG G, ZHAO C J. Crosslinked hybrid membranes based onsulfonatedpoly(etheretherketone)/gamma-methacryloxypyltrimethoxysilane/phosphotungstic acid by in situ sol-gel process for direct methanol fuel cells [J].Journal of Material Chemistry2010,20:6352-6358.
    [79]. WATANABE M, UCHIDA H, EMORI M. Analysis of self-humidification andsuppression of gas crossover in Pt-dispersed polymer electrolyte membranes forfuel cells [J]. Journal of Electrochemistry Society1998,145:1137-1141.
    [80]. WANG H, HOLMBERG B A, HUANG L. Nafion-bifunctional silicacomposite proton conductivity membranes [J]. Journal of Material Chemistry,2002,12:834-837.
    [81]. WONG E W, SHEEHAN PE, LIBER C M. Nanobeam mechanics: elassticity,strengh, and toughness of nanorods and nanotubes [J]. Science1997,277:1971-1975.
    [82]. EBBESEN T W, LEZEE H J, HIURA H. Eal conductivity of individual carbonnanotubes [J]. Nature1996,382:54-56.
    [83].朱绍文,贾志杰,李钟泽.碳纳米管及其应用前景[J].科技导报1999,12:7-9.
    [84]. SHAFFER M S P, WINDLE A H. Fabrication and characterization of carbonnanotube/poly (vinyl alcohol)composite [J].Advanced Materials,1999,11:937-941.
    [85].余颖,刘冰,王卫军. PA6/碳纳米管复合材料的力学性能与结构塑料工业[J].2002,30:15-19.
    [86].王新鹏,梁琳俐,赵辉鹏. UHMWPE/CNTs复合纤维的结晶行为研究[J].合成技术及应用,2005,20;16-20.
    [87].张刚,用于质子交换膜燃料电池的膜材料制备与性能研究[D].长春:吉林大学化学学院,2009.
    [88]. ASLAN A, CELIK S, SEN U. Intrinsically proton-conductingpoly(1-vinyl-1,2,4-triazole)/triflic acid blends [J]. Electrochimica Acta2009,54:2957-2961.
    [89]. AINLA A, BRANDELL D. Nafion–polybenzimidazole (PBI) compositemembranes, for DMFC applications [J]. Solid State Ionics2007,178:581-585.
    [90]. ZHANG F, LI N W, CUI Z M. Novel acid–base polyimides synthesized frombinaphthalene dianhydrie and triphenylamine-containing diamine as protonexchange membranes [J]. Journal of Membrane Science2008,314:24-32.
    [91]. ZHANG H Q, LI X F, ZHAO C J. Composite membranes based on highlysulfonated PEEK and PBI: Morphology characteristics and performance [J].Journal of Membrane Science2008,308:66–74
    [92]. GUO M M, LIU B J, LIU Z. Novel acid–base molecule-enhancedblends/copolymers for fuel cell applications [J]. Journal of Power Sources2009,189:894-90.
    [93]. ZHANG Y, WAN Y, ZHANG G. Preparation and properties of novelcross-linked sulfonated poly(arylene ether ketone) for direct methanol fuel cellapplication [J]. Journal of Membrane Science2010,348:353–359.
    [94]. LI H T, ZHANG G, WU J. A facile approach self-cross-linkabe sulfonatedpoly(ether ether ketone) membranes for direct methanol fuel cells [J]. Journal ofPoer Sources2010,195:8061-8066.
    [95]. JANG W, SUNDAR S, CHOI S. Acid-base polyimide blends for theapplication as electrolyte membrane for fuel cells [J]. Journal of MembraneScience2006,280:321-329.
    [96]. GASA J V, WEISS R A, SHAW M T. Ionic crosslinking of ionomer polymerelectrolyte membranes using barium cations [J]. Journal of Membrane Science2007,304:173-180.
    [97]. LUO H Z, VAIVARS G, MATHE M. Covalent-ionically cross-linkedpolyetheretherketone proton exchange membrane for direct methanol fuel cell[J]. Journal of Power Sources2010,195:5197-5200.
    [98]. HAN M M, ZHANG G, LI M Y. Sulfonated poly(ether etherketone)/polybenzimidazole/oligmer/epoxy resin composite membranes in situpolymerization for direct methanol fuel cell usages [J]. Journal of PowerSources2011,196:9916-9923.
    [99]. LIN H D, ZHAO C J, MA W J. Low water swelling and high methanolresistant proton exchange membrane fabricated by cross-linking of multilayeredpolyelectrolyte complexes [J] Journal of Membrane Science2009,345,242-248.
    [100]. LEE K S, JEONG M H, LEE J P. End-Group Cross-Linked Poly(aryleneether) for Proton Exchange Membranes [J]. Macromolecules2009,42:584–590.
    [101]. XU D, ZHANG G, ZHANG N. Surface modification of heteropolyacid/SPEEK membranes by polypyrrole with a sandwich structure for directmethanol fuel cells [J]. Journal of Materials Chemistry2010,20:9239–9245.
    [1]. CUI W, KERRES J, EIGENBERGER G. Development and characterization ofion-exchange polymer blend membranes, Sep. Purif. Technol1998,14:145-154.
    [2]. KERRES J, ULLRICH A, MEIER F. Synthesis and characterization of novelacid–base polymer blends for application in membrane fuel cells [J]. Solid StateIonics1999,125:243-249.
    [3]. JANG W, SUNDAR S, CHOI S. Acid–base polyimide blends for theapplication as electrolyte membranes for fuel cells [J]. Journal of MembraneScience2006,280;321-329..
    [4]. MIKHAILENKO S D, ROBERTSON G P, GUIVER M D. Properties of PEMsbased based on cross-linked sulfonated poly(ether ether ketone)[J]. Journal ofMembrane Science2006,285;306-316.
    [5]. ZHANG C, GUO X, FANG J. A new and facile approach for the preparation ofcross-linked sulfonated poly(sulfide sulfone) membranes for fuel cellapplication [J]. Journal of Power Sources2007,170:42-45.
    [6]. KERRES J. Covalent-ionically Cross-linked Poly(Etheretherketone)-BasicPolysulfone Blend Ionomer Membranes [J]. Fuel Cells2006,06:251-260.
    [7]. ZHANG Y, SHAO K, ZHAO C J. Novel sulfonated poly(ether ether ketone)with pendant benzimidazole groups as a proton exchange membrane for directmethanol fuel cells [J]. Journal of Power Sources2009,194;175-181.
    [8]. ELSENBERG A. Clustering of Ions in Organic Polymers. A TheoreticalApproach [J]. Macromolecules1970,3:147-154.
    [9]. KORNYSHEV A A, KUZNETAOV A M, SPOHR E. Kinetics of ProtonTransport in Water [J]. Journal of Physical Chemistry B2003,107:3351-3366.
    [10]. CAI H L, SHAO K, ZHONG S L. Propertiesof composite membranes based onsulfonated poly(ether ether ketone)s(SPEEK)/phenoxy resin (PHR) for directmethanol fuel cells usages [J]. Journal of Membrane Science2007,297;162–173.
    [11]. ZHONG S L, CUI X J, CAI H L. Crosslinked SPEEK/AMPS blendmembranes with high proton conductivity and low methanol diffusioncoefficient for DMFC applications [J]. Journal of Power Sources2007,168;154-161.
    [12]. DING F C, WANG S J, XIAO M. Cross-linked sulfonatedpoly(phathalazinone ether ketone)s for PEM fuel cell application asproton-exchange membrane [J]. Journal of Power Sources2007,164:488-495.
    [13]. ZHONG S L, CUI X J, CAI H L. Crosslinked sulfonated poly(ether etherketone) proton exchange membranes for direct methanol fuel cell applications[J]. Journal of Power Sources2007,164:65-72.
    [14]. MEIER F, DENZ S, WELLER A. Analysis of Driect Methanol Fuel Cell(DMFC)-Performance vis FTIR Spectroscopy of Cathode Exhaust [J]. FuelCells2003,3:161-168.
    [1]. DECHER G. Fuzzy nanoassemblies: toward layered polymericmulticomposites[J]. Science1997,277:1232-1237.
    [2]. CLARK S L, MONTAGUE M F, HAMMOND P T. The effect of ion type andionic content on templating patterned ionic multilayers. In Organic Thin Films,1998, vol695, pp206-219.
    [3]. SHIRATORI S S, RUBNER M F. pH-Dependent Thickness Behavior ofSequentially Adsorbed Layers of Weak Polyelectrolytes [J]. Macromolecules2000,33:4213-4219.
    [4]. ECKLE M, DECHER G. Turning the Performance of Layer-by-LayerAssembled Organic Light Emitting Diodes by Controlling the Position ofIsolating Clay Barrier Sheets [J]. Nano Letters2001,1:45-49.
    [5]. YAMADA M, SHIRATORI S S. Smoke sensor using mass controlledlayer-by-layer self-assembly of polyelectrolytes films [J]. Sensors and ActuatorsB: Chemical2000,64:124-127.
    [6]. DELONGCHAMP D, HAMMOND P T. Layer-by-layre assembly ofPEDOT/polyaniline electrochromic devices [J]. Advanced Materials2001,13:1455-1457.
    [7]. BRUST M, BETHELL D, KIELY C J. Self-Assembled Gold Nanoparticle ThinFilms with Nonmetallic Optical and Electronic Properties [J]. Langmuir1998,14;5425-5429.
    [8]. HUA F, SHI J, LVOV Y. Patterning of Layer-y-layer Self-assembly MultipeTypes of Nanoparticle Thin Films by Lithographic Technique [J]. Nano Letters2002,2;1219-1222.
    [9]. KOTOV N A, MAGONOV S, TROPSHA E. Layer-by-layer Self-Assembly ofAlumosilicate-Polyelectrolyte Composites: Mechanism of Deposition, CrackResistance, and Perspectives for Novel Membrane Materials [J]. Chemistry ofMaterials1998,10:886-895
    [10]. WANG L, WANG Z, ZHANG X. A new approach for the fabrication of analternating multilaye film of poly(4-vinypyridine) and poly(acrylic acid) basedon hydrogen bonding [J]. Macromolecular Rapid Communications1997,18:509-514.
    [11]. STOCKTON W B, RUBNER M F. Molecular-Level Processing of ConjugatedPolymers Layer-by-layer Manipulation of Polyaniline via Hydrogen-bondingInteractions [J]. Macromolecules1997,30:2717-2725.
    [12]. QUINN J F, CARUSO F. Facile Tailoring of Film Morphology and ReleaseProperties Using Layer-by-layer Assembly of Thermoresponsive Materials [J].Langmuir2004,20:20-22.
    [13]. SUKHISHVILI S A, GRANICK S. Layered, Erasable, Ultrathin PolymerFilms [J]. Journal of American Chemistry Society2000,122:9550-9551.
    [14]. DCROCHER J P, MAO P, HAN J Y, RUBNER M F. Layer-by-LayerAssembly of Polyelectrolytes in Nanofluidic Devices [J]. Macromolecules2010,43:2430-2437.
    [15]. MICHEL M, TAYLOR A, SEKOL R. High-Performance NanostructuredMebranes Electrode Assemblies for Fuel Cells Made by Layer-by-layerAssembly of Carbon Nanocolloid [J]. Advanced Meteriacls2007,19:3859-3864
    [16]. LIN H D, ZHAO C J, CUI Z M. Novel sulfonated poly(arylene ether ketone)copolymers bearing carboxylic or benzimidazole pendant groups for protonexchange membranes [J]. Journal of Power Sources2009,193:507–514.
    [17]. KREUER K D, RABENAU A, WEPPNER W. A new model for theinterpretation of the conductivity of fast proton conductors [J]. AngewandteChemie International Edition1982,21:208–209.
    [1]. WANG J, ZHAO C J, ZHANG G. Novel covalent-ionically cross-linkedmembranes with extremely low water swelling and methanol crossover fordirect methanol fuel cell applications [J]. Journal of Membrane Science2010,363:112-119.
    [2]. GUO M M, LIU B J, LI L. Preparation of sulfonated poly(ether ether ketone)scontaining amino groups/epoxy resin composite membranes and their in situcrosslinking for application in fuel cells [J]. Journal of Power Sources2010,195:11-20.
    [3]. XU N,.GUO X X, FANG J H. Preparation and Properties of CrosslinkedSulphonated Poly(sulphide sulphone)Membranes for Fuel Cell Applications [J].Fuel Cells2009,9:363-371.
    [4]. TEASDALE R I, ELIZABETH C H, PAOLO C. Photochemically Cross-LinkedPoly(aryl ether ketone)[J]. Macromolecular Rapid Communication2006,27:2032-2037.
    [5]. PHU D S, LEE C H, PARK C H. Synthesis of Crosslinked SulfonatedPoly(phenylene sulfide sulfone nitrile) for Direct Methanol Fuel CellApplications [J]. Macromolecular Rapid Communication2009,30:64-68.
    [6]. HAN M M, ZHANG G, SHAO K. Carboxyl-terminated benzimidazole-assistedcross-linked sulfonated poly(ether ether ketone)s for highly conductive PEMwith low water uptake and methanol permeability [J]. Journal of MaterialsChemistry2010,20:3246-3252.
    [7]. LI QF, PAN C, JENSEN J O. Cross-Linked Polybenzimidazole Membranes forFuel Cells [J]. Chemical Materials2007,19:350-352.
    [8]. LI H T, ZHANG G, WU J. A novel sulfonated poly(ether ether ketone) andcross-linked membranes for fuel cells [J]. Journal of Power Sources2010,195:6443-6449.
    [9]. ZHAO C J, LIN H D, NA H. Novel cross-linked sulfonated poly (arylene etherketone) membranes for direct methanol fuel cell [J]. International Journal ofHydrogen Energy2010,35:2176-2182.
    [10]. HEO K B, LEE H J, KIM H J. Synthesis and characterization of cross-linkedpoly(ether sulfone) for a fuel cell membrane [J]. Journal of Power Sources2007,172:215-219.
    [11]. LI H T, ZHANG G, WU J. A facile approach self-cross-linkabe sulfonatedpoly(ether ether ketone) membranes for direct methanol fuel cells [J]. Journal ofPower Sources2010,195:8061-8066.
    [12]. KIM D S, ROBERSON G P, KIM Y S. Copoly(arylene ether)s ContainingPendant Sulfonic Acid Groups as Proton Exchange Membranes [J].Macromolecules2009,42:957-963.
    [13]. LIU B J, ROBERSON G P, KIM D I. Aromatic Poly(ether ketone)s withPendant Sulfonic Acid Phenyl Groups Prepared by a Mild Sulfonation Methodfor Proton Exchange Membranes [J]. Macromolecules2007,40:1934-1944.
    [14]. GUO M M, LIU B J, LI L. Preparation of sulfonated poly(ether ether ketone)scontaining amino groups/epoxy resin composite membranes and their in situcrosslinking for application in fuel cells[J]. Journal of Power Sources2010,195:11-20.
    [15]. ZHONG S L, CUI X J, CAI H L. Crosslinked sulfonated poly(ether etherketone) proton exchange membranes for direct methanol fuel cell applications[J]. Journal of Power Sources2007,164:65-72.
    [16]. ZHANG Y, WAN Y, ZHANG Y. Preparation and properties of novelcross-linked sulfonated poly(arylene ether ketone) for direct methanol fuel cellapplication [J]. Journal of Membrane Science2010,348:353-359.
    [1]. STECK E A, NACHOD F C, EWING G W. Absorption Spectra of HeterocyclicCompounds. Some Benzimidazole Derivative [J]. Journal of AmericanChemical Society1948,70:3406-3410.
    [2]. VOGEL H, MARVEL C S. Polybenzimidazole, new thermally stable polymers[J]. Journal of Polymer Science1961,50:511-539.
    [3]. HAN M M, ZHANG G, SHAO K. Carboxyl-terminated benzimidazole-assistedcross-linked sulfonated poly(ether ether ketone)s for highly conductive PEMwith low water uptake and methanol permeability [J]. Journal of MaterialsChemistry2010,20:3246-3252.
    [4]. HAN M M, ZHANG G, LI M Y. Considerations of the morphology in the designof proton exchange membranes: Cross-linking sulfonated poly(ether etherketone)s using a new carboxyl-terminated benzimidazole as the cross-linker forPEMFCs [J]. International journal of hydrogen energy2011,36:2197-2206.
    [5]. LIN H D, ZHAO C J, MA W J. Layer-by-layer self-assembly of in situpolymerized polypyrrole on sulfonated poly(arylene ether ketone) membranewith extremely low methanol crossover [J]. International journal of hydrogenenergy2009,34:9795-9801.
    [6]. TSANG E M W, ZHANG Z B, SHI Z Q. Considerations of macromolecularstructure in the design of proton conducting polymer membranes: graft versusdiblock polyelectrolytes [J]. Journal of American Chemical Society2007,129:15106-15107.
    [7]. KREUER K D, PADDISON S J, SPOHR E. Transport in proton conductors forfuel-cell applications: Simulations, Elementary reactions, and phenomenology[J]. Chemical Review2004,104:4637-4678.
    [8]. PECKHAM T J, SCHMEISSER J, RODGERS M. Main-chain, statisticallysulfonated proton exchange membranes: the relationships of acid concentrationand proton mobility to water content and their effect upon proton conductivity[J]. Journal of Material Chemistry2007,17:3255-68.
    [9]. KIM J D, HONMA I. Crystallographic changes and thermal properties oflanthanum-strontium ferromanganites between RT and700oC [J]. Solid StateIonics2005,176:9-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700