煤矿乏风低浓度瓦斯热逆流氧化理论及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
瓦斯是仅次于二氧化碳的重要温室气体,单位质量的瓦斯对大气温室效应的影响相当于同质量二氧化碳的21倍。煤矿乏风是主要的瓦斯工业排放源之一,减排煤矿乏风瓦斯,可以减少温室气体排放。同时,乏风瓦斯的主要成分为甲烷,是优质洁净的气体能源。据统计,目前我国每年通过煤矿乏风排入大气中的瓦斯含量约为200亿m3,如果将此乏风进行减排和利用,相当于2500万吨标准煤,可以减排2.7亿吨当量二氧化碳。因此,合理回收利用煤矿乏风瓦斯具有环保和节能双重意义。
     煤矿乏风风排量巨大、瓦斯浓度低以及浓度不稳定,这些特点决定了煤矿乏风瓦斯很难利用传统燃烧器在没有辅助燃料的情况下直接进行燃烧。目前,热逆流氧化技术是实现煤矿乏风瓦斯有效减排和热回收利用的主要技术之一。本文通过理论分析、数值模拟及实验相结合,对煤矿乏风低浓度瓦斯热逆流氧化机理和特性开展了系统综合的研究:
     (1)通过理论分析,建立了燃烧波波速与燃烧区域最高温度的关系式,得到燃烧波波速和燃烧区域最高温度的封闭解;通过与稳态热逆流燃烧器类比,得到了多孔介质中热逆流氧化的简化理论解。
     (2)通过对蜂窝陶瓷蓄热氧化床流动过程进行理论分析,建立了包含乏风进气速度、蜂窝陶瓷通道直径(或边长)、气体粘度及其氧化床温度场等多参数影响下的三种蜂窝陶瓷氧化床冷热态下的阻力计算数学模型。
     (3)通过建立煤矿乏风低浓度瓦斯热逆流氧化的一维数学模型,并对Fluent软件进行二次开发,对煤矿乏风低浓度瓦斯热逆流氧化过程进行了数值模拟,考察了包括煤矿乏风进气速度、乏风甲烷浓度、换向半周期、壁面热损失、蜂窝陶瓷比热容及其孔隙率等工况参数对热逆流氧化温度场、甲烷转化率和氧化床阻力的影响。
     (4)基于自行设计制作的低浓度瓦斯热逆流氧化实验系统,对煤矿乏风低浓度瓦斯热逆流氧化开展了系统的实验研究。实验内容包括乏风甲烷氧化温度、装置散热损失、热启动温度场以及乏风进气速度、甲烷浓度、换向半周期、壁面热损失和蜂窝陶瓷孔隙率对热逆流氧化的影响。
     (5)采用六铝酸盐作为涂层涂覆在γ-氧化铝表面,再负载贵金属活性组分制作成蜂窝陶瓷整体式催化剂用于煤矿乏风低浓度瓦斯热逆流氧化,并通过单管固定床催化氧化试验对所制备的催化剂进行了表征、活性评价、水热稳定性测试及其抗硫中毒能力测试。
     (6)对低浓度甲烷气体进行热逆流催化氧化实验研究,对比有无催化剂作用下热逆流反应,实验结果表明催化剂的存在不仅大大降低了乏风中低浓度甲烷氧化温度,而且甲烷转化率得到明显提高,同时也提高装置处理乏风的能力。
     (7)以单台处理能力为5万m3/h的煤矿乏风氧化装置为研究对象,计算了单台装置每年摧毁甲烷产生的碳减排量及其可利用热量产生热水和蒸汽量,也对单台处理装置每年的CDM收益和能量利用收益进行了评估,并对其投资回报率进行了分析。
It is well known that methane is the second largest contributor to global warming after carbon dioxide, and it is21times more potent than carbon dioxide over a100-year timeframe in trapping heat in the atmosphere. The vetilation air methane (VAM) of coal mine is one of the primary industrial methane emission sources. The reduction of VAM will make outstanding contributions for reducing emissions that cause of global warming. Meanwhile, the main components of ventilation gas are methane, which is the high quality undefiled gas energy. According to the statistics, the gas emission to the atmosphere through ventilation air methane is about20billion m3, which is corresponding to25miliiion tons standard coal that can reduce emission270million tons equivalent carbon dioxide. Therefore; recovery and utilization of VAM has great environment protection and energy-saving significance.
     VAM is the most difficult source of methane to use as an energy source, as the air volume is large and the methane resource is dilute. At present, the thermal flow-reversal reactor is an effectively technology that realize recovery and utilization of VAM. Through theoretical analysis, numerical simulation and experiment, we made comprehensive research on the oxidation mechanism and characteristics of thermal reverse-flow oxidation of VAM:
     (l)The two relations about combustion wave and the highest combustion area temperature have been established that got the closed solution of combustion wave and combustion area. The simple theoretical solution about porous media thermal flow-reversal oxidation was also obtained.
     (2)The resistance mathematical model have been established in the cold and hot state of three honeycomb ceramics oxidation bed that influence by VAM intake velocity, honeycomb ceramics channel diameter (side length), gas viscosity and the temperature fields of oxidation bed that through theoretical analysis about the flowing process of the honeycomb ceramics thermal storage oxidation bed.
     (3)Based on secondary development on FLUENT, a one-dimensional mathematical mode was set up to simulate the thermal structures of the oxidation bed and the effect of operating condition parameters on the thermal structure, oxidation ratio of methane and outlet temperature, which includes flow velocity, methane concentration, half-period, thermal loss, honeycomb ceramics specific heat capacity and porosity.
     (4)According to the experiment system of VAM thermal flow-reversal oxidation made by self-designed; the comprehensive study to the VAM thermal flow-reversal oxidation hase been developed, which contains heat loss, temperature fields of hot-start, methane concentration, ventilation gas and honeycomb ceramics porosity.
     (5)Hexa-aluminate as coatings coat the surface of γ-alumina and load active components of noble metal have been used to make the honeycomb ceramics integral catalyst and use it in the VAM low concentration gas thermal flow-reversal oxidation and through single pipe fixed bed catalytic oxidation experiment testing the preparation catalyst about characterization, activity evaluation, thermal stability and sulfur poisoning ability.
     (6)Through the experiment of thermal flow-reversal catalytic oxidation of VAM, comparing with thermal flow-reversal without catalyst, it concluded that not only did the catalyst decrease the oxidation temperature of VAM, but also the conversation rate of catalyst enhanced obviously, at the same time, the catalyst improve the device's treatment capacity.
     (7)Taken the single station device treating50000m3/h VAM as research object, calculated the carbon emission reduction which produced by destroying methane with single station device per year and the quantity of hot water and steam, which were produced by the utilized heat, meanwhile, the CMD income and energy using income of single station device per year were evaluated, also, the rate of return was analyzed.
引文
[1]国际能源署.世界能源展望[M].北京:中国石化出版社,2004.
    [2]王立敏.高油价影响下的2005年世界能源市场——《BP世界能源统计2006》总览[J].国际石油经济,2006,13(7):34-39.
    [3]张贵亮.应对资源短缺形势的JNP公司发展战略研究[D].东南大学硕士学位论文,2009年.
    [4]陈勇主编.中国能源与可持续发展[M].北京:科学出版社,2007.
    [5]李瑞忠,郗凤云等.2010年世界能源供需分析——《BP世界能源统计2011》解读[J].当地石油石化,2011,199(7):30-37.
    [6]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359.
    [7]Iwao Omane. Aspects of carbon dioxide utilization[J] Catalysis Today,2006, 115:33-52.
    [8]吴昊.应对二氧化碳浓度上升问题的研究:C02的捕获、储存于利用[J].中国安全科学学报,2008,18(8):5-11.
    [9]扈鹏飞.用于煤矿通风甲烷的Swiss-roll燃烧器特性研究[D].中国科学技术大学博士学位论文,2009.
    [10]中华人民共和国国家统计局.中国统计年鉴2008[M].北京:中国统计出版社,2008.
    [11]国家煤矿安全监察局.煤矿安全规程[M].北京:煤炭工业出版社,2005.
    [12]周凤增.开滦井下瓦斯利用与减排技术研究[J].矿山测量,2008,36(3):44-46.
    [13]宁成浩,陈贵锋.我国煤矿低浓度瓦斯排放及利用现状分析[J].能源环境保护,2005,19(4):1-4.
    [14]李洪,中国煤炭企业低浓度瓦斯的安全利用[J].中国煤炭,2009,35(1):14-18.
    [15]IPCC. Climate Change 2001:The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J.T.,Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, and C.A. Johnson (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,2001.
    [16]Bogner J, M Abdelrafie Ahmed, C Diaz, A Faaij, Q. Gao, S. Hashimoto, K. Mareckova, R. Pipatti, T. Zhang, Waste Management, In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    [17]联合国.《联合国气候变化框架公约》京都议定书[M].1998.
    [18]H Sapoundjiev etc al. Ecomomic Heat Recovery and Greenhouse Gas Elimination from Ventilation Air of Underground Coal Mines[C]. International Coalbed Methane Symposium,1999:269-279.
    [19]周世宁.瓦斯发电——煤矿瓦斯利用的好途径[J].能源技术与管理,2005(1):1-1.
    [20]US EPA. Assessment of the worldwide market potential for oxidising coal mine ventilation air methane. United States Environmental Protection Agency, EPA 430-R-03-002; July 2003.
    [21]Carothers MP, Deo DM.Technieal and Economic Assessment:Mitigation of Methane Emissions from Coal Mine Ventilation Air: Coalbed Methane Outreach Program Climate Protection Division U.S. Environmental Protection Agency.2005
    [22]翁一武,苏适.煤矿通风气中甲烷减排及发电技术[J].上海电力,2005,86(6):588-594.
    [23]刘文革,张斌川等.中国煤矿区甲烷零排放[J].中国煤层气,2005,2(2):6-10.
    [24]Su S, Beath A, Guo H and Mallett C. An assessment of mine methane mitigation and utilisation technologies[J]. Prog Energy Combust Sci,2005, 31:123-170.
    [25]牛国庆.矿井回风流中低浓度瓦斯利用现状及前景[J].工业安全与环保,2002,28(3):3-5.
    [26]呈宏斌.煤层气热电联产技术[J].中国煤层气,2005,2(1):40-43.
    [27]Ledwich J, Su S. Catalytic combution of coal mine ventilation air: literature review and experimental preparation[R]. CSIRO Exploration and Mining, May 2001.
    [28]Krzysztof Warmuzinski. Harnessing methane emissions from coal mining[J]. Process Safety and Enviroment Protection,2008,86:315-320.
    [29]Peter Carothers and Milind D. Deo. Mitigation of Methane Emissions from Mine Ventilation Air[C]. Proceedings of the 8th US Mine Ventilation Symposium,2000:73-80.
    [30]WANG Peng-fei, FENG Tao. Ventilation air methane(VAM) mitigation and utilization technologies[C].2010 第二届能源与环境技术国际会议,2010: 414-419.
    [31]Su S, Beath A C, Mallett. A method and system for combution if methane[P]. Australian Patent No.2002951703,2002.
    [32]Su S, Beath A C et al. Development of ventilation air methane catalytic combustion gas turbine[C]. Third International Methane& Nitrous Oxide Mitigation Conference, Beijing,2003:17-21.
    [33]Krzysztof Warmuzinski. Harnessing methane emissions from coal mining[J]. Process Safety and Enviroment Protection,2008,86:315-320.
    [34]Peter Carothers and Milind D. Deo. Mitigation of Methane Emissions from Mine Ventilation Air[C]. Proceedings of the 8th US Mine Ventilation Symposium,2000:73-80.
    [35]King B, Traves D. Catalytic flow reversal reactor/gas turbine greenhouse gas emissions reduction technology. Neil and Gunter (Nova Scotia) Limited, presented to Atlantic Canada Environmental Business and Municipal Expo; 25-27 April 2000.
    [36]Danell R, Nunn J, Kallstrand A. Demonstration of MEGTEC Vocsidizer for methane utilization[R]. ACARP Report C9065. Brisbane; June 2002.
    [37]Shi Su and Jenny Agnew. Catalytic combustion of coal mine ventilation air methane[J]. Fuel,2006,85:1201-1210.
    [38]Cimino S, Pirone R, Russo G. Thermal stability of perpvskite-based monolithic reactors in the catalytic combustion of methane [J]. Ind Chem Res,2001,40: 80-85.
    [39]刘文和,杨若仪.低热值煤气燃气轮机联合循环发电在钢铁厂的应用[J].燃气轮机技术,2004,17(3):21-26.
    [40]尹娟,翁一武.贫燃催化燃烧燃气轮机的燃烧与系统性能分析[J].中国电机工程学报,2010,30(11):1-7.
    [41]尹娟,翁一武.贫燃催化燃烧燃气轮机的研究进展[J].热能动力工程,2010,25(3):249-253.
    [42]赵益芳,阎海英等.矿井低浓度瓦斯增浓技术的研究[J].太原理工大学学报,2002,33(1):57-60.
    [43]Boreskov G K, Matros Yu Sh. Unsteady-state performance of heterogeneous catalytic reactions[J]. Catal. Rev.Sci. Eng.1983,25(4):551-590.
    [44]Cotrell F G. Purifying Gases and Apparatus Therefor[P]. U.S. Patent 2,171,733(June 21,1938).
    [45]F.J.Weinberg. Combustion Temperature:the future[J]. Nature,1971,233: 239-241.
    [46]A.R.Jones, S.A.Lloyd and F.J. Weinberg. Combustion in heat exchanger[J]. Proc.R.Soc.Lond.A,1978,360:97-115.
    [47]Paul D.Ronney. Analysis of non-adiabatic heat-recirculating combustors[J]. Combustion and Flame,2003,135:421-439.
    [48]Kotani, Behbahani and Takeno. An excess enthalpy flame combustor for extended flow ranges[C]. Symposium(International) on Combustion,1985: 2025-2033.
    [49]Shinoda, Tanaka and Arai. Optimization of heat transfer performances of a heat-recirculating ceramic burner during methane/air and low-calorific-fuel/air combustion[J]. Energy Conv. and Manag,2002,43:1497-1491.
    [50]Hoffmann, Echigo, Yoshida and Tada. Experimental study on combustion in porous media with a reciprocating flow system[J]. Combustion and Flame, 1997,111(1-2):32-46.
    [51]张振兴.基于均匀多孔介质模型的氧化床阻力特性数值研究[D].淄博:山东理工大学硕士学位论文,2010.
    [52]刘永启,张振兴,高振强等.乏风瓦斯蓄热氧化床阻力特性的数值模拟[J].煤炭学报,2010,35(6):946-950.
    [53]郑斌,刘永等.煤矿乏风的蓄热逆流氧化[J].煤炭学报,2009,34(11):1475-1478.
    [54]张振兴,刘永启,高振华等.陶瓷蓄热体的流动与传热特性模拟研究[J].内燃机与动力装置,2010,20(2):19-22.
    [55]马晓钟.煤矿乏风氧化装置的研制[J].煤矿安全与环保,2011,38(1):16-19.
    [56]Chaouki J, Guy C, Sapundzhiev C, Kusohorsky D. Combustion of methane in a cyclic catalytic reactor[J]. Ind. Eng. Chem. Res.1994,33(12):2957-2963.
    [57]Salomons S, Hayes R E, Poirier M, Sapoundjiev H.Flow reversal reactor for the catalytic combustion of lean methane mixtures[J]. Catalysis Today,2003. 83(1-4):59-69.
    [58]Salomons S, Hayes R E, Poirier M, Sapoundjiev H. Modeling a reverse flow reactor for the catalytic combustion of fugitive methane emissions [J]. Computers and Chemical Engineering,2004,28(9):1599-1610.
    [59]C. Devals, A. Fuxman, F. Bertrand, etc. Combustion of Lean Methane in a Catalytic Flow Reversal Reactor[C]. COMSOL Users Conference,2006.
    [60]王盈.低浓度甲烷流向变换催化燃烧制热技术基础研究[D].北京化工大学硕士学位论文,2006.
    [61]王盈,朱吉钦等.低浓度甲烷流向变化催化燃烧的研究[J].燃料化学学报,2005,33(6):760-762.
    [62]J.Kirchnerova, D. Klvana. Design criteria for high-temperature combustion catalysts[J]. Catal.Lett.,2002,67:175-81.
    [63]李彤.六铝酸盐及其金属基整体式催化剂的甲烷催化燃烧研究[D].天津大学博士学位论文,2007.
    [64]阎子峰,薛锦珍等Pd/SiO2催化剂上甲烷活化的TPSR研究[J].天然气化工,1997,22(1):19-23.
    [65]R.Burch, D.J.Crittle, M.J.Hayes. C-H bond activation in hydrocarbon oxidation on heterogeneous catalysts[J] Catal.Today,1999,47(3):229-234.
    [66]岑可法,姚强,骆仲泱等主编.高等燃烧学[M].杭州:浙江大学出版社,2002.
    [67]E.Pocoroba, L.J.Pettersson, J.Agrell, et al. Exhaust gas catalysts for heavy-duty applications:influence of the Pd particle size and particle size distribution on the combustion of natural gas and biogas[J]. Topics in Catal.,2001,16(5): 407-412.
    [68]H.Widjaja, K.Sekizawa, K.Eguchi. Oxidation of methane over Pd/mixed oxides for catalytic combustion[J]. Catal.Today,1999,47:95-101.
    [69]L.F.Liotta, G.Deganello, D.Sannino, et al. Influence of barium and cerium oxides on alumina supported Pd catalysts for hydrocarbon combustion[J]. Appl. Catal. A:Gen.,2002,29:217-227.
    [70]K.Sekizawa, H.Widjaja, S.Maeda, et al. Low temperature oxidation of methane over Pd/SnO2 catalyst[J]. Appl. Catal.A:Gen.,2000,20:211-217.
    [71]C.K.Ryu, M.W.Ryoo, I.S.Ryu, et al. Catalytic combustion of methane over supported bimetallic Pd catalysts:Effect of Ru or Rh addition[J]. Catal.Today, 1999,47:141-147.
    [72]K.Sekizawa, H.Widjaja, S.Maeda, et al. Low temperature oxidation of methane over Pd catalyst supported on metal oxides[J]. Catal.Today,2000,59:69-74.
    [73]杨玉霞,肖利华,徐贤伦.负载型钯催化剂上甲烷催化燃烧的研究进展[J].工业催化,2004,12(3):1-5.
    [74]K.R.Barnard, K.Foger, T.W.Turney, et al. Lanthanum cobalt oxide oxidation catalysts derived from mixed hydroxide precursors[J]. Catal,1990,125: 265-275.
    [75]K.Tabata, M.Misono. Elimination of pollutant gases-oxidation of CO, reduction and decomposition of NO[J]. Catal.Today,1990,8:249-261.
    [76]J.L.G. Fierro. Structure and composition of perovskite surface in relation to adsorption and catalytic properties[J]. Catal. Today,1990,8:153-174.
    [77]J.O. Petunchi, E.A. Lombardo. The effect of bulk and surface reduction upon the catalytic behavior of perovskite oxides[J]. Catal.Today,1990,8:201-219.
    [78]N. Mizuno. Supported perovskites[J]. Catal. Today,1990,8:221-230.
    [79]N. Yamazoe, Y. Teraoka. Oxidation catalysis of perovskites-relation to bulk structure and composition(valency,defect,etc.)[J]. Catal. Today,1990,8: 175-199.
    [80]H. Arai, T.Yamaha, K. Eguchi, et al. Catalytic combustion of methane over various perovskite-type oxides, Appl. Catal.,1986,26:265-276.
    [81]刘源,王颖.钙钛矿型稀土复合氧化物整体式催化剂的研究进展[J].稀土,2002,23(4):54-58.
    [82]黄端平,徐庆,江金国等.钙钛矿型复合氧化物La1-x,SrxFe1-_yCoyO3的制备与应用[J].材料导报,2002,16(8):48-50.
    [83]翁端,丁红梅,吴晓东等.LaMnO3稀土纳米材料及催化活性[J].物理化学学报,2001,17:248-251.
    [84]刘源,秦永宁.钙钛矿型复合氧化物用作深度氧化催化剂[J].天然气化工,1997,22(6):47-51.
    [85]G. Saracco, G. Scibilia, A. Iannibello, et al. Methane combustion on Mg-doped LaCoO3 perovskite catalysts[J]. Appl.Catal. B:Envir.,1996,8:229-244.
    [86]夏治强.汽车废气净化方法和催化剂的分类[J].中国环保产业,1996,6(4):26-28.
    [87]翁端,丁红梅,徐鲁华等.锶和铈对LaMnO3+x稀土纳米钙钛矿材料性能的影响[J].中国稀土学报,2001,19(4):339-342.
    [88]S. Ponce, M. A. Pena, J. L G. Fierro. Surface properties and catalytic performance in methane combustion of Sr-substituted lanthanum manganites[J]. Appl. Catal. B:Envir.,2000,24:193-205.
    [89]A. Baiker, P. E. Marti, P. Keusch. Influence of the A-site cation in ACoO3 (A=La, Pr, Nd, Gd)perovskite-type oxides on catalytic activity for methane combustion[J]. J. Catal.,1994,146:268-276.
    [90]M. Alifanti, J. Kirchnerova, B. Delmon. Effect of substitution by cerium on the activity of LaMnO3 perovskite in methane combustion[J]. Appl.Catal.A:Gen., 2003,245:231-243.
    [91]肖益鸿,詹瑛瑛,蔡国辉等.镧锰系钙钛矿可脱附氧与催化氧化活性[J].华侨大学学报,2000,21(4):399-403.
    [92]张桂英,张志强,敖炳秋.汽车尾气转换器中的催化材料[J].内燃机,1997,6(6):21-24.
    [93]A. Gonzalez, M. Tamayo, B. Porter, et al. Synthesis of high surface area perovskite catalysts by non-conventional routes[J]. Catal.Today,1997,33: 361-369.
    [94]钟子宜,曹学强,曾跃等.纳米钙钛矿型氧化物LaFe1-yAly03制备及催化性能[J].分子催化,1997,11(2):95-101.
    [95]N. K. Labhsetwar, A. Watanabe, R. B. Biniwale, et al. Alumina supported perovskite oxide based catalytic materials and their auto-exhaust application [J]. Appl. Catal. B:Envir.,2001,33:165-173.
    [96]Z. Y. Zhong, L. G. Chen, O. J. Yan, et al. Study on the preparation of nanometer perovskite type complex oxide LaFeO3 by sol-gel method[J]. Stud.Surf.Sci. Catal.,1995,91:647-653.
    [97]翟永青,姚子华,丁士文等EDTA络合溶胶-凝胶法制备Lao.8Sr02Fe03纳米粉体[J].稀有金属,2002,26(1):69-73.
    [98]I. Rossetti, L. Forni. Catalytic flameless combustion of methane over perovskites prepared by flame-hydrolysis[J]. Appl.Catal.B:Envir,2001,33: 345-352.
    [99]R. Leanza, I. Rossetti, L. Fabbrini, et al. Perovskite catalysts for the catalytic flameless combustion of methane Preparation by flame-hydrolysis and characterization by TPD-TPR-MS and EPR[J]. Appl.Catal.B:Envir,2000,28: 55-64.
    [100]L. Fabbrini, I. Rossetti, L. Forni. La2O3 as primer for supporting La0.9Ce0.1CoO3±δ on cordieritic honeycombs[J]. Appl. Catal.B:Envir.,2005,56: 221-227.
    [101]N. Iyi, S. Takekawa, S. Kimura. Crystal chemistry of hexaaluminates:β -alumina and magnetoplumbite structure[J]. Solid State Chem.,1989,83:8-19.
    [102]张俊英,张中太,唐子龙.六铝酸盐基荧光粉的发光性能[J].材料科学与工艺,2002,10:213-219.
    [103]C. M. Jantzen, P. R. Neurganonkar. Solid-state reaction in the system Al2O3-Nd2O3-CaO:a system pertinent to radioactive disposal,Mater[J]. Res. Bull.,1981,16:519-524.
    [104]J. Kirchnerova, D. Klvana, Design criteria for high-temperature combustion catalysts[J]. Catal. Lett.,2000,67:175-181.
    [105]D. L. Trimm. Materials selection and design of high temperature catalytic combustion units[J]. Catal.Today,1995,26:231-238.
    [106]M. Machida, K. Eguchi, H. Arai. Effect of additives on the surface area of oxide supports for catalytic combustion[J], J.Catal.1987,103:385-393.
    [107]J. G. Park, A. N. Cormack. Crystal/Defect structure and phase stability in Ba hexaaluminates[J]. Solid State Chem.,1996,121:278-290.
    [108]徐占林.六铝酸盐AMA111019催化剂上甲烷二氧化碳重整制合成气反应研究[D].吉林大学博士学位论文,2000.
    [109]孙诚,吴东方,周建成.六铝酸盐型天然气燃烧催化剂的进展[J].精细石油化工进展,2007,8(12):16-21.
    [110]Arai H, Machida M, Eguchi K. Hig Temperature Catalytic Combustion over Cation-substituted Barium Hexaaluminate[J]. Chem Lett,1987,185(4): 767-770.
    [111]Artizzu D P, Millet J M, Guilhaume N, et al. Catalytic Combustion for Methane on Substituted Barium Hexaaluminates[J]. Catal Today,2000,59(1): 63-177.
    [112]Naoufal D, Millet J M, Garbowski E, et al. Synthesis, Structure and Catalytic Properties of Fe-substitued Barium Hexaaluminates[J]. Catal Lett,1998,54(1): 141-148.
    [113]Artizzu D P, Brulle Y, Gaillard F, et al. Catalytic Combustion of Methane over Copper and Manganese Substitued Barium Hexaaluminates[J]. Catal Today, 1999,54(1):181-190.
    [114]Eguchi K, Takanhara H, Inoue H, et al. Catalytic Activity of Hexaaluminate Catalyst for High Temperature Methane Combustion [J]. Mater Res Soc sym Pro,1999,549(1)105-117.
    [115]Groppi G, Cristiani C, Forzatti P. Preparation, Characterization and Catalytic of Pure and Substituted La-hexxalumuante Systems for High Temperature Catalytic Combustion[J]. Appl catal B:Environ,2001,35(2):137-148.
    [116]Yeh T F, Lee H G, Chu K S, et al. Characterization and Catalytic Combustion of Methane over Hexxalumiantes. Mater Sci,2004,384(2):324-330.
    [117]Yeh T F, Lee H G, Chu K S, et al. Phase Transformation and Catalytic Activity of Hexaaluminates upon High Temperature Pretreatment[J]. J Alloy Compd, 2006,425(2):353-356.
    [118]Kikuchi R, Takeda K, Sekizawa K, et al. Thich-film Coating of Hexaaluminate Catalyst on Ceramic Substrates and Its Catalytic Activity for High-temperature Methane Combustion [J]. Apple Catal A:Gen,2001,218(1) 101-111.
    [119]Sohn J M, Kang S K, Woo S I. Catalytic Properties and Characterization of Pd Supported on Hexaaluminate in High Temperature Combustion[J]. J Mol Catal A:Chem.2002,186(1)135-144.
    [120]官芳,卢晗锋,黄海凤等.六铝酸盐作涂层的蜂窝陶瓷型La0.8Sr0.2MnO3催化剂热稳定性[J].高校化学工程学报,2008,22(6):954-959.
    [121]官芳,卢晗锋,张燕等.蜂窝陶瓷型La0.8Sr0.2MnO3催化剂VOCs催化燃烧反应活性[J].浙江工业大学学报,2009,37(1):23-27.
    [122]中华人民共和国煤炭工业部制定.煤矿安全规程[M].北京:煤炭工业出版社,2009.
    [123]张国枢主编.通风安全学[M].徐州:中国矿业大学出版社,2000.
    [124]刘文革,韩甲业,赵国权等.我国通风瓦斯(VAM)利用潜力及经济性分析[C]. Proceedings of the 9-(th) International Symposium on CBM/CMM in China,2009,137-147.
    [125]胡予红.加强通风瓦斯利用,实现减排目的[J].中国煤炭,2009,35(5):79-82.
    [126]刘文革,韩甲业,赵国权.我国矿井通风瓦斯利用潜力及经济性分析[J].中国煤层气,2009,6(6):3-8.
    [127]刘伟主编.多孔介质传热理论及应用[M].北京:科学出版社,2006.
    [128]林瑞态主编.多孔介质传热传质引论[M].北京:科学出版社,1995.
    [129]张振兴.基于均匀多孔介质模型的氧化床阻力特性数值研究[D].山东理工大学硕士学位论文,2009.
    [130]杜礼明.稀薄预混气体在多孔介质中超绝热燃烧的研究[D].大连理工大学博士学位论文,2003.
    [131]高增丽,高振强,刘永启等.矿井乏风瓦斯治理利用现状与发展[J].冶金 能源,2010,29(5):43-46.
    [132]王鑫阳,杜金.浓度低于1%的矿井瓦斯氧化技术现状及前景[J].煤炭技术,2008,27(9):1-3.
    [133]刘永启,刘瑞祥,高振强.矿井乏风瓦斯热逆流氧化装置[P].中国专利:200810249860.3,2010-3-10.
    [134]冯涛,王鹏飞,郝小礼等.一种瓦斯氧化的组合式氧化床[P].中国专利:201120007948.1.
    [135]Takeno T, Sato K. An excess enthalpy flame theory[J]. Combustion Science and Technology,1979,20:73-84.
    [136]Takeno T, Sato K. A theoretical study on an excess enthalpy flame, Eighteenth symposium (international) on combustion, The combustion institute[C].1981, pp465-472.
    [137]Kotani, Y and Takeno, T. An experimental study on stability and combustion characteristics of an excess enthalpy flame[C].1981, pp1503-1509.
    [138]杜礼明,解茂昭.预混气体在多孔介质中往复流动下超绝热燃烧的理论探讨[J].能源工程,2003,23(5):6-11.
    [139]Stephen R. Turns著,姚强,李水清,王宇译.燃烧学导论:概念与应用[M].北京:清华大学出版社,2008.
    [140]史俊瑞.多孔介质中预混气体超绝热燃烧机理及其火焰特性的研究[D].大连理工大学博士学位论文,2007.
    [141]Zhdanok S, Kennedy L A, Koester G. Superadiabatic combustion of methane air mixtures under filtration in a packed bed[J]. Combustion and Flame,1995, 100:221-231.
    [142]史俊瑞,解茂昭,李刚.稀混合气低速过滤燃烧燃烧的数值模拟与理论分析[J].燃烧科学与技术,2008,14(1):79-85.
    [143]吕兆华,王志东,孙思成.多孔陶瓷燃烧器火焰温度的测定[J].发电设备,11(2):35-38.
    [144]解茂昭,杜礼明,孙文策.多孔介质往复流动下超绝热燃烧技术的进展与前景[J].燃烧科学与技术,2002,8(6):520-524.
    [145]史俊瑞,解茂昭.多孔介质内往复流动超绝热燃烧的简化解[J].热能动力工程,2006,21(4):383-388.
    [146]Hoffmann J G, Echigom R, Yoshida H et al. Experimental study on combustion in porous media with a reciprocating flow system[J]. Combution and Flame,1997,111(12):32-46.
    [147]史俊瑞,解茂昭,周磊.往复式惰性多孔介质燃烧器的可燃极限及最大半周期[J].化工学报,2007,58(8):1984-1988.
    [148]吕兆华.泡沫型多孔介质等效导热系数的计算[J].南京理工大学学报,2001,25(3):257-261.
    [149]王鹏飞,冯涛等.煤矿乏风瓦斯蜂窝蓄热氧化床阻力特性研究[J].环境与安全学报,2011,11(5):180-183.
    [150]刘应中主编.高等流体力学[M].上海:上海交通大学出版社,2002.
    [151]马世虎,解茂昭,邓洋波.多孔介质往复流动燃烧的一维数值模拟[J].热能动力工程,2004,(19)4:384-388.
    [152]杜礼明,解茂昭.预混气体在多孔介质中往复式超绝热燃烧的数值研究[J].燃烧科学与技术,2005(11)3:230-335.
    [153]吕兆华.泡沫型多孔介质等效导热系数的计算[J].南京理工大学学报,2001,25(3):257-261.
    [154]张俊霞.化学动力学机理耦合EDC燃烧模型对湍流扩散火焰的数值模拟[J].工业炉,2007,29(1):41-44.
    [155]Hsu P-F, Howell J. Measurements of thermal conductivity and optical properties of porous partially stabilized zirconia[J]. Experiment Heat Transfer, 1993,5:293-313.
    [156]Hedricks T J, Howell J R. Absorption/scattering coefficients and scattering phase functions in reticulated porous ceramics[J]. J. Heat Trans,1996,118,(1).
    [157]葛绍岩,那鸿悦编著.热辐射性质与其测量[M].北京:科学出版社,1989.
    [158]王恩宇.气体燃料在渐变型多孔介质中的预混燃烧机理研究[D].浙江大学博士学位论文,2004.
    [159]周娴.煤矿乏风低浓度甲烷氧化处理实验研究[D].中国科学院研究生院硕士学位论文,2009.
    [160]Sheintuch M. Analysis of design sensitivity of flow-reversal reactors: Simulations, approximations and oxidation experiments [J]. Chemical Engineering Science,2005,60(11):2991-2998.
    [161]马世虎.往复流动下预混气体在多孔介质超绝热燃烧的数值模拟[D].大连理工大学硕士学位论文,2004.
    [162]王关晴,程乐鸣,杨春等.往复式热循环多孔介质燃烧系统冷态阻力特性[J].2007,27(26):52-58.
    [163]高阳,雍海泉,徐志鹏.蜂窝陶瓷蓄热体传热与阻力特性的热态实验研究[J].2008,27(5):25-27.
    [164]杜军,饶文涛,李朝详等.陶瓷蓄热体阻力特性的实验研究[J].工业炉,2002,24(1):6-9.
    [165]蒋林.生物质热解液化流化床内流动特性的研究[D].重庆大学硕士学位论文,2006.
    [166]王关晴.往复式热循环多孔介质燃烧系统特性研究与数值模拟[D].浙江大学硕士学位论文,2007.
    [167]吕元,姜凡,肖云汉.煤矿通风瓦斯氧化处理实验装置设计[J].环境工程,2011,29(4):90-94.
    [168]吕元,姜凡,肖云汉.煤矿通风瓦斯甲烷热氧化装置实验研究[J].2011,36(6):973-977.
    [169]王一坤,刘银河,车得福.通风瓦斯处理系统燃烧特性研究[J].2011,32(1):169-172.
    [170]马晓钟.煤矿乏风氧化装置的研制[J].矿业安全与环保,2011,28(1):17-20.
    [171]李洪宇.蓄热室热工特性及优化设计研究[D].昆明理工大学硕士学位论文,2005.
    [172]杨博.可逆式催化燃烧器特性研究[D].华北电力大学硕士学位论文,2006.
    [173]DESHMUKH S R, VLACHOS D G. A reduced mechanism for methane and one-step rate expressions for fuel-lean catalytic combustion of small alkanes on noble metals [J]. Combustion and Flame,2007,149(4):366-383.
    [174]SU S, AGNEW J. Catalytic combustion of coal mine ventilation air methane [J]. Fuel,2006,85:1201-1210.
    [175]蒲舸,李文俊,闫云飞.超低浓度甲烷气体催化燃烧数值模拟[J].重庆大学学报,2010,(33)4:60-64.
    [176]马盟.微通道内甲烷催化燃烧的数值模拟研究[D].重庆大学硕士学位论文,2007.
    [177]钟北京,洪泽恺.微燃烧器内甲烷催化燃烧的数值模拟[J].热能动力工程,2003,18(6):584-588.
    [178]钟北京,伍亨.甲烷在逆流换热微燃烧器内催化燃烧的数值模拟[J].工程热物理学报,2005,26(2):351-353.
    [179]钟北京,洪泽恺.甲烷微尺度催化燃烧的数值模拟[J].工程热物理学报,2003,24(1):173-176.
    [180]DEUTSCHMANN O, SCHMID T R, BEHRENDT F, et al. Numerical modeling of catalytic ignition. Symposium (International) on Combustion, 1996, pp:1747-1754.
    [181]王尚弟,孙俊全编著.催化剂工程导论[M].北京:化学工业出版社,2006.
    [182]Jung Min Sohn, Sung Kyu Kang, Seong Ihl Woo. Catalytic properties and characterization of Pd supported on hexaaluminate in high temperature combustion[J]. Journal of Molecular Catalysis A:Chemical,2002,186: 135-144.
    [183]Beata Stasinska, Andrzej Machochi, Katarzyna Antoniak et al. Importance of palladium dispersion in Pd/A12O3 catalysts for complete oxidation of humid low-methane-air mixtures[J]. Catalysis Today,2008,137:329-334.
    [184]成青华,余倩,余林等.六铝酸盐催化剂制备的研究进展[J].工业催化,20025,13(11):62-65.
    [185]李顺清,邹国军,王晓来.不同金属取代六铝酸盐的制备及其对甲烷燃烧的催化性能研究[J].中国稀土学报,2006,24(5):523-526.
    [186]翟彦青,李永丹,孟明.高温燃烧催化剂一六铝酸盐的结构、性质及制备[J].2004,25(5):58-62.
    [187]郑建东.掺杂六铝酸盐高温燃烧催化剂的制备及其在甲烷催化燃烧中性能研究[D].北京化工大学博士学位论文,2008.
    [188]王幸宜主编.催化剂表征[M].上海:华东理工大学出版社,2008.
    [189]马丽景,王林宏,李殿卿等.Mn、Fe取代六铝酸盐的结构和甲烷催化燃烧性能[J].化工学报,2006,57(11):2604-2609.
    [190]孙锦宜主编.工业催化剂的失活与再生[M].北京:化学工业出版社,2006.
    [191]王鑫阳.矿井乏风回收利用技术研究[D].辽宁工程技术大学硕士学位论文,2008.
    [192]张波.中国钢铁工业CDM项目可持续发展研究[D].中国社会科学院硕士学位论文,2009.
    [193]刘文革.我国煤矿区煤层气CDM项目的开发现状与潜力[J].中国能源,2006,28(8):
    [194]赵盟,康艳兵,冯升波等.我国CDM项目的发展动态、问题与建议[J].中国能源,2011,33(4):16-20.
    [195]刘盟.我过煤矿风排瓦斯发电的CDM应用研究[D].北京化工大学硕士学位论文,2003.
    [196]易杨.国际市场中的碳减排交易研究——以CDM市场为例[D].中国人民大学硕士学位论文,2009.
    [197]马丽佳.清洁发展机制(CDM)在中国的应用[D].大连理工大学硕士学位论文,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700