基于脉冲压缩与二相编码激励的超声检测提高信噪比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声成像作为临床检查手段方便、有效、价格低廉,在医学诊断领域应用广泛。传统的单脉冲激励模式超声成像,受到生物组织对于超声效应受限程度的限制,脉冲幅值不能太高,因而检测深度和检测分辨率二者不可兼得。雷达系统中经常使用的大时宽带宽积信号,运用在超声检测和超声成像领域,可以较好地解决检测深度和检测分辨率这二者之间的矛盾,在保持检测分辨率的同时大大提高回波信号处理后的信噪比,增大了检测深度,提升了超声成像的质量,成为近年来医学超声诊断设备领域的研究热点。
     基于编码激励和脉冲压缩技术,针对常用超声检测换能器的等效频带特性,本文采用正弦波载频调制二相编码信号,进行超声激励的仿真和实验研究,设计激励信号的匹配滤波器和失配滤波器,从时域和频域研究超声换能器对激励信号的影响,针对信噪比增益和分辨率损失研究超声换能器对激励信号脉冲压缩结果的影响,对信噪比增益损失和主瓣展宽系数进行曲线拟合分析,探讨超声换能器与激励信号的最优匹配方式,优化调制参数后选择最佳激励信号进行多目标环境下的复杂信号回波的处理分析。
     本文的研究内容主要包括:
     (1)改进矩形方波基础码调制形成二相编码激励信号,选择使用正弦波载频调制的二相编码激励信号,分别设计了脉冲压缩所需要的匹配滤波器和失配滤波器,对回波信号进行了匹配处理和失配处理。
     (2)计算机控制任意波形发生器产生软件设计的二相编码激励信号,激励换能器,对接收到的超声回波信号分别通过匹配滤波和失配滤波进行脉冲压缩后,研究分析脉冲压缩处理后信号的信噪比增益。
     (3)针对超声换能器具有的等效带通滤波特性,采用单位码元载有不同正弦波载频周期个数的巴克码激励信号来激励换能器,在时域和频域对回波信号的特性进行仿真分析和实验验证,从信噪比增益损失和分辨率损失两方面研究换能器对理想状态下的脉冲压缩的性能影响,探索最优激励参数,优化调制参数并选用最佳激励信号。
     (4)针对多目标环境下的复杂回波,研究间距不同的四根靶线对应的回波信号,采用最优激励信号激励换能器,通过对其复杂的混叠回波信号进行脉冲压缩,恢复四根靶线的位置信息,与相应的单脉冲实验结果进行信噪比和分辨率的对照研究。
     本文的分析研究结果表明:
     (1)二相编码激励信号通过超声换能器后,信号频带宽度和能量都有所减小;与不考虑超声换能器影响的理想状态脉冲压缩性能相比较,脉冲压缩结果的信噪比增益有所下降,压缩后的脉冲主瓣系数有所展宽(分辨率下降),并综合信噪比增益损失和分辨率损失两个参数,针对超声换能器的特性优化调制参数,选用单位码元载有3个正弦波载频周期数的13位巴克码调制信号最佳,作为超声换能器的最佳激励信号。
     (2)本文采用正弦波调制的二相编码信号激励超声换能器,在多目标复杂环境下,选用最佳激励信号,对不同间距四根靶线的复杂回波混叠信号分别进行匹配滤波处理和失配滤波处理,脉冲压缩失配处理结果的主旁瓣比值接近-40dB。比较传统单脉冲激励,二相编码激励在保证系统分辨率的同时,信噪比有了很大的提高,可以检测到传统设备很难检测到的淹没在噪声中的微弱信号,该激励方案可以很好的应用在超声检测领域。
Ultrasonic imaging is considered to be an convenient、effective、cheap diagnosing means,and it has been widely used in the domain of medical diagnosing.Due to the limitation of the tissue's bioeffets,the amplitude of the single pulse used in traditional single pulse excitation mode is limited, the penetration depth and resolution can not be obtained in the same time.Through using the large time-bandwidth product signal which is usually applied in radar system,the paradox of the penetration depth and resolution can be well resolved in ultrasonic detection and ultrasonic imaging,the SNR(signal to noise ratio)of the echo can be enhanced significantly after pulse compression with the same resolution compared with the single pulse excitation,and the penetration depth is been increased, the quality of the traditional ultrasonic imaging is been elevated,and coded excitation has become a hot spot in the medical ultrasonic diagnosing research.
     In this study, considering the equivalent bandpass filterting property of the transducer, a series of bi-phase coding signals have been used to excite the transducer in simulation and experiment research, the matched filter and mismatched filter have been designed. The transducer effect on the exciting signals in time and frequency domain is analyzed,and curve fitting is used to analyze the SNR gain loss and the resolution loss caused by the trandcucer effect on the pulse compression result.The optimum exciting signal is chosen to experiment in the multi-target environment after the modulation parameter is optimized.
     This study covers the following aspects:
     (1) Different from the bi-phase coding signal modulated by base code in the traditional coded excitation imaging, this study uses the bi-phase coding signal modulated by the sine carrier to excite the transdcucer, and the matched filter and mismatched filter used for pulse compression is designed. Considering the bi-phase coding signal's property, also the echo signal is processed by matched filter and mismatched filter.
     (2) The bi-phase coding signal used in experiment is produced by the arbitrary waveform editing software which can control the arbitrary waveform generator through personal computer to transmit the designed signal to excite the transducer. Then the received echo signal is processed through matched filter and mismatched filter,the SNR gain after pulse compression is analyzed.
     (3) Considering the equivalent bandpass filterting property of the transducer, the barker code signals with each chip modulated by different period number of sine carrier are used to excite the transducer, for simulation and experiment the echo is processed in time and frequency domain. Considering the SNR gain and resolution loss,the transducer effect on the pulse compression result is analyzed.The optimum exciting signal is chosen for the following research.
     (4) Considering the complex echo during the multi-target environment, the transducer is excited by the optimum signal, and the echo signal reflected by four target wires is processed through pulse compression technique. After pulse compression, four narrow pulse which has large amplitude is obtained, and the result of the SNR and resolution after pulse compression compared with the single pulse mode is analyzed.
     The results of this study shows that:
     (1) From the analysis result of the transducer effect on both the exciting signal itself and the pulse compression result,we can infer that the frequency spectrum and energy of the exciting signal decreases after passing the transducer.Compared with the ideal pulse compression result without considering the transducer effect,the property of the actual pulse compression result is degraded, its SNR gain and resolution both decrease.After the modulation parameter is optimized considering the transducer frequency spectrum property,the 13 bit barker code signal with each chip modulated by 3 period sine carrier is chosen to be the optimum signal to excite the transducer.
     (2) The optimum signal is chosen to excite the transducer during the multi-target environment, after using the matched filter and mismatched filter to compress the echo reflected by four target wires, we can obtain the compressed signal which has nearly-40dB PSL.The SNR of the echo can be enhanced significantly with the same resolution using bi-phase coded excitation and pulse compression technique compared with the traditional single pulse excitation mode,it can detect the weak signal submerged in the background noise,it proves that coded excitation and pulse compression technique can be well applied in the domain of ultrasonic imaging system.
引文
[1]冯若.超声手册[M].南京:南京大学出版社,2002.867-875.
    [2]曾锦晖,杨军,王延群.超声换能器在医学成像中的发展[J].国外医学生物医学工程分册,2005,28(5):310-313.
    [3]蔚建斌,齐晓慧,陈自力.脉冲压缩在超宽带雷达中的应用[J].电光与控制,2006,13(1):87-89.
    [4]王守权,李淑华,冯勇.数字脉冲压缩在某型机载火控雷达中的应用[J].火力与指挥控制,2008,33(8):102-108.
    [5]张宏伟,封吉平,蔡金燕.脉冲压缩技术在火控雷达中的应用[J].火力与指挥控制,2001,26(3):60-62.
    [6]Matthew O'Donnell. Coded excitation system for improving the penetration of real-time phased-array imaging systems [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,1992,39(3):341-351.
    [7]Pai-chi Li, Emad Ebbini, Matthew O'Donnell. A new filter design technique for coded excitation systems[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,1992,39(6):693-699.
    [8]Ihor Trots, Andrzej Nowicki. Transducer bandwidth influence on the Golay encoded ultrasound echoes. Proceedings of the Ultrasonics Symposium[C]. New York, USA: IEEE,2007.1274-1277.
    [9]Chang-hong Hu, Qi-fa Zhou. Mismatched-filter design for biphase-coded pulse for high frequency ultrasound imaging. Proceedings of the Ultrasonics Symposium[C]. Vancouver, Canada:IEEE,2006.2222-2225.
    [10]愈俊鑫.超声测量血流速度中的编码技术研究[D].上海:复旦大学,2009.
    [11]鲍静.医学超声成像系统的编码激励技术研究[D].天津:天津大学,2007.
    [12]赵珩.超声彩色血流成像中编码激励技术的研究[D].北京:清华大学,2006.
    [13]彭虎,杜宏伟,韩雪梅,张作生.巴克码在高帧率超声成像系统中应用的仿真研究[J],2004,23(4):251-253.
    [14]谷金宏,王素品.调频信号发射超声成像的参数优化与成像实验[J].测试技术学报,2006,20(4):288-293.
    [15]谷金宏,王素品,万明习.发射调频信号提高医学超声图像的信号噪声比[J].西安交通大学学报,2006,6(41):741-745.
    [16]陈晓冬,周浩,李明,温世杰,郁道银.用于医学超声内窥成像的编码激励技术[J].纳米技术与精密工程,2009,7(6):505-509.
    [17]刘凯,高上凯.编码激励超声成像系统中二进制最优编码序列的研究[J].中国生物医学工程学报,2007,26(1):42-47.
    [18]彭旗宇,高上凯.医学超声成像中的编码激励技术及其应用[J].生物医学工程学杂志,2005,22(1):175-180.
    [19]魏庆国,万国金,刘晔,吴建华.编码激励医学超声成像的仿真[J].南昌大学学报,2007,31(2):201-204.
    [20]綦磊,张涛,蒲诚.编码激励带宽对超声气体流量测量性能的影响[J].2010,33(6):50-53.
    [21]Yao Wang, Kurt Metzger. Coded excitation with spectrum inversion (CEXSI) for ultrasound array imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2003,50(7):805-823.
    [22]Richard Y Chiao, Xiao-hui Hao. Coded excitation for diagnostic ultrasound:a system developer's perspective. Proceedings of the Ultrasonics Symposium[C]. Milwaukee, USA:IEEE,2006.437-448.
    [23]Matthew O'Donnell, Yao Wang. Coded excitation for synthetic aperture ultrasound imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2005,52(2):171-176.
    [24]Heng Zhao, Larry Y Mo, Shang-kai Gao. Barker-coded ultrasound color flow imaging:theoretical and practical design[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2005,52(2):319-331.
    [25]白净.医学超声成像机理[M].北京:清华大学出版社,1996.
    [26]黄凯,他得安,王威琪.准规则生物组织超声背散射信号的仿真[J].仪器仪表学报,2008,29(9):1898-1902.
    [27]陈一骄,汪源源,他得安,王威琪.几种超声NDE信号降噪方法的性能比较[J].声学技术,2007,26(2):217-222.
    [28]万明习.生物医学超声学[M].北京:科学出版社,2009.
    [29]郭建中,林书玉.超声检测中维纳逆滤波解卷积方法的改进研究[J].应用声学,2005,24(2):97-102.
    [30]王威琪,周国辉,汪源源,他得安,余建国.关于人体信号和医学超声信号[J].现代临床医学生物工程学杂志,2006,12(15):383-388.
    [31]谷金宏,万明习,王素品,宗瑜瑾,陈萍.基于调频信号发射的超声造影剂谐 波成像方法[J].声学学报,2006,31(3):240-246.
    [32]谷金宏,王素品,万明习.调频信号发射脉冲逆转超声造影剂谐波成像方法[J].西安交通大学学报,2006,40(10):1161-1162.
    [33]Chen Xiao-hua, J Oksman. A new algorithm to optimize barker code sidelobe suppression filters[J]. IEEE Transactions on Space and Electronic Systems,1990, 26(4):673-677.
    [34]易正红.相位编码雷达信号特征研究[J].电子对抗技术,2002,17(2):7-10.
    [35]蔚建斌,齐晓慧,陈自力.脉冲压缩在超宽带雷达中的应用[J].电光与控制,13(1):87-89.
    [36]于超鹏,郝亮飞,谢金华.线性调频和巴克码组合调制雷达信号[J].探测与控制学报,2009,31(5):20-24.
    [37]杨晓东,杨宇翔.SAW 13‘位巴克码相关器在伪码引信中的应用.压电与声光[J],2009,31(1):1-3.
    [38]盛建锋.相位编码雷达信号处理及其性能分析[D].南京:南京理工大学,2004.
    [39]杨静.相位编码信号的脉冲压缩及旁瓣抑制[D].南京:南京理工大学:2007.
    [40]张艳艳.雷达相位编码信号的研究和应用[D].西安:西安电子科技大学,2007.
    [41]陈浩.二相编码信号特征分析.舰船电子对抗[J].2006,29(3):22-24.
    [42]谷金宏,王素品,万明习.发射调频信号提高医学超声图像的信号噪声比[J].西安交通大学学报,2006,6(41):741-745.
    [43]张碧星,陆铭慧.用时间反转法在水下波导介质实现自适应聚焦的研究[J].声学学报,2002,27(6):541-548.
    [44]马庆云,杨辉.激励脉冲宽度对超声发射能量的影响[J].矿业研究与开发,2000,20(5):38-40.
    [45]Thanassis Misaridis, Jorgen A Jensen. Use of modulated excitation signals in medical ultrasound. Part II:design and performance for medical imaging applications[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2005,52(2):192-206.
    [46]Jose R Sanchez, Michael L Oelze. A novel coded excitation scheme to improve spatial and contrast resolution of quantitative ultrasound imaging[J]. IEEE Transactions on Ultrasonic, Ferroelectrics, and Frequency Control,2009,56(10): 2111-2123.
    [47]Bruno Haider, Peter A Lewin, Kai E Thomenius. Pulse elongation and deconvolution filtering for medical ultrasonic imaging[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,1998,45(1):98-113.
    [48]Wei-chun Wang, Roberta Scholtz. Sequence design for IIR inverse filter pulse compression[J].IEEE Transactions on Space and Electronics Systems,1995,31(2): 670-684.
    [49]Thanassis Misaridis. An effective coded excitation scheme based on a pre-distorted FM signal and an optimized digital filter. Proceedings of the Ultrasonics Symposium[C]. USA:IEEE,1999.1589-1593.
    [50]Michael L Oelze. Improved axial resolution using pre-enhanced chirps and pulse compression. Proceedings of the Ultrasonics Symposium[C]. Vancouver, Canada: IEEE,2006.1084-1086.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700