船舶螺旋桨鸣音时间序列混沌动力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
螺旋桨鸣音现象对舰船隐蔽性、安静性和舒适性,影响巨大。但由于其产生机理复杂,所以迄今为止,无论是传统的线性理论,还是卡门涡释放理论,都难以对其进行客观合理地描述,其真实有效地控制方程尚未建立,还有许多问题有待深入研究。
     近二十年来迅猛发展的混沌动力学理论研究表明:对时间序列分析来说,传统意义上的无规的、没有明确物理意义的随机信号在低维或较低维有可能具有确定性成分,甚至是由简单的非线性控制方程产生,即所谓的混沌现象。那么貌似纷繁复杂的螺旋桨鸣音系统是否是混沌现象,能否利用混沌理论对其进行研究?再考虑到湍流本身已被证明是一种混沌现象,而水声工程中的舰船辐射噪声和混响现象也被证明具有混沌动力特性。有鉴于此,本文分别研究了螺旋桨鸣音系统的重构相空间特性,系统的复杂度特性,利用递归图技术检验了该系统的平稳性特性,应用替代数据方法检验了其非线性特性,并进一步研究了其混沌动力特性,本文解决了螺旋桨鸣音系统“是不是”混沌现象的基本问题,对其混沌动力特性分析研究可以为今后该问题的理论分析和数值模拟研究提供指导,奠定了理论基础,其关联维数揭示了系统控制方程变量的个数,其具有正的Lyapunov指数则说明该系统具有短期可预测性与长期不可预测性的矛盾统一;另外,掌握了该系统的混沌不变量特征也为螺旋桨鸣音时间序列的信号处理、目标探测与识别等提供了技术支持。
     (1)螺旋桨鸣音系统相空间重构研究
     对于复杂的非线性系统或是混沌动力系统,可以通过对所研究系统的某一维或有限几维时间序列向更高维空间进行嵌入而获得系统的重构相空间拓扑,研究其相空间重构特性。本文分别应用互信息法和本文提出的改进的自相关函数法估计了螺旋桨鸣音系统的最佳嵌入延迟,而后应用最大特征值不变法和平均伪邻近法估计了螺旋桨鸣音系统的最小嵌入维数,并进一步利用时延法重构相空间双参数联合估计策略计算分析了螺旋桨鸣音系统的相空间重构参数。通过上述各种分析方法得到了一致的螺旋桨鸣音系统的最佳嵌入延迟t_D=1和最小嵌入维数d_E=8,此研究成果可为螺旋桨鸣音系统混沌动力特性的后续研究提供理论基础。
     (2)螺旋桨鸣音系统时间序列符号动力学研究
     应用符号序列分析方法研究螺旋桨鸣音系统时间序列,分别利用分割区间法和差值法对时间序列进行符号化,通过计算分析发现本文所研究的测量信号被噪声污染程度较低,时间序列主要确定性特征明显有效,在研究过程中对噪声可以不予考虑。进一步地,计算了螺旋桨鸣音系统符号序列的Shannon熵和不可逆转性指标,结合Shannon熵的定义,可知:螺旋桨鸣音系统具有强烈非线性特征,同时又具有确定性特征,不能用简单模型进行描述,且具有时间不可逆转性。
     应用基于Kolmogorov复杂性定义的Lempel-Ziv复杂度算法,建立了螺旋桨鸣音系统复杂性序列,计算结果表明:随着螺旋桨鸣音系统时间序列声压幅值在零点左侧和右侧频繁跳动,其复杂度序列也频繁地出现局部极大值和极小值,但其整体上还是表现为归一化复杂度在0.73左右,表明螺旋桨鸣音系统具有确定性特征,同时,又表现出复杂的非线性结构特性。
     (3)螺旋桨鸣音系统平稳性和非线性研究
     利用基于图解法的系统时间序列平稳性检验方法——递归图法,分析螺旋桨鸣音系统的平稳性,利用该方法证明了螺旋桨鸣音系统具有平稳性特征。
     在此基础之上,基于替代数据思想分析了螺旋桨鸣音系统的非线性特征:
     (a)应用零假设1和检验统计量T_1首次证明了看似随机、无规律可循的螺旋桨鸣音系统具有确定性特征;
     (b)应用零假设2和检验统计量T_2和T_3首次证明了螺旋桨鸣音系统具有非线性动力特征;
     (c)进一步地,应用零假设3和检验统计量T_(rev)证明了螺旋桨鸣音系统的非线性特征不是由静态非线性测量函数引入的,而是其本身固有的。
     通过上述分析,应用替代数据法证明了螺旋桨鸣音系统具有非线性动力特征,而系统非线性作为系统具有混沌动力特性的必要条件,上述分析结果为该系统的混沌动力特性分析研究提供了理论基础。此外,螺旋桨鸣音系统非线性动力特征的证明,也为对该系统的目标探测与识别,系统数值模拟方程组的构建等提供了技术支撑。
     (4)螺旋桨鸣音系统混沌动力特性研究
     采用相空间重构技术,利用G-P算法估计螺旋桨鸣音系统的相关维数D_2=5.1579,其计算结果为非整数,构成了系统具有混沌动力特性的必要条件。此外,根据上述分析结果,可以判定该系统的拓扑维数下界为6,即生成该复杂系统所必须的独立变量的个数不应小于6个,若要方程组封闭,则控制方程个数也不能小于6个,此研究成果可以为螺旋桨鸣音系统的进一步数值模拟研究提供理论基础。
     应用q阶Renyi熵具有单调一致性的特性计算螺旋桨鸣音系统时间序列的关联函数,利用最小二乘法技术得到Kolmogorov熵的稳定估计为K_2=0.6478,即螺旋桨鸣音系统的Kolmogorov熵约为0.6478,为正的、有限值,构成该系统具有混沌动力特性的充分条件,可以作为螺旋桨鸣音系统具有混沌动力特性的判据。
     应用最大Lyapunov指数的稳健估算方法,估计螺旋桨鸣音系统的最大Lyapunov指数为λ_(t_D)=0.0771,为正的有限值,构成了动力系统具有混沌动力特性的充分条件,据此也可以判定螺旋桨鸣音系统具有混沌动力特性。
     通过上述分析研究,首次利用基于相空间重构技术估计螺旋桨系统时间序列的混沌不变量证明了螺旋桨鸣音系统具有混沌动力特性,此研究结果为螺旋桨鸣音现象的进一步研究奠定了理论基础。
     (5)螺旋桨鸣音系统时间序列的时频特性研究:
     应用局域波分解技术对螺旋桨鸣音系统时间序列进行局域波分解,通过应用相空间重构技术计算了鸣音系统时间序列及其各局域波分解分量的相关维数并估计了其最大Lyapunov指数,分析研究表明:鸣音系统时间序列的各局域波分解分量的混沌动力特征能够被有效识别。然后,利用局域波时频分析技术分析了螺旋桨鸣音系统时间序列的瞬时能量谱及频谱特性,为螺旋桨鸣音系统的目标探测与识别提供了技术支撑。
     总之,本文主要回答了螺旋桨鸣音系统“是否”具有混沌动力特性的基本问题,利用实验采集到的鸣音时间序列采用基于相空间重构的思想证明了该系统具有非线性动力特性和混沌动力特性。本文的研究结果对于正确认识螺旋桨鸣音现象的混沌动力行为具有重要参考价值,也可作为对该系统数值模拟研究的理论基础——提供该系统独立变量的个数不应少于6个的重要信息。此外,本文的研究结果对螺旋桨鸣音系统的目标探测与识别具有良好的借鉴意义。
The phenomenon of the propeller singing has great influences on ship concealment, quietness and comfort. However, it has many problems which deserve further research. So far, the exact mechanism of propeller singing, which are so complex that it cannot be interpreted objectively whether by linear theory or by Kaman vortex street theory, has not been well described. Moreover, the effective control equation of propeller singing has not been established.
     In the past twenty years, the rapidly developing researches on chaotic dynamics theory have shown that many complicated phenomena which appear irregular, however have deterministic in lower dimensional space, such as for time series analysis, the irregular random signals having no definite physical significance might exist some kind of certainty or even be generated by simple nonlinear governing equations, that is so-called chaotic phenomena. Then, whether the propeller singing signal which appeared complicated is some kind of chaotic phenomena and can be studied by chaotic theory? Besides, the turbulence itself has been proved to be a kind of chaotic phenomena, and the ship-radiated noise and reverberant in underwater acoustic engineering have been certified to possess chaotic dynamic characteristics. Therefore, this article not only studied on the phase-space reconstruction of propeller singing system and its complexity but also evaluated its stability by recurrence plot technique. In this article, it is the first time to use surrogate data analysis to evaluate the nonlinear characteristics of this system and to further study its chaotic dynamics. We proved the existence of chaotic dynamics of this system based on phase-space reconstruction and the estimated result of chaotic invariants for the first time and provided theoretical basis for the signal processing, detection and recognition of the ship propeller singing. Then we also studied instantaneous energy spectrum and frequency spectrum of the time-series of propeller singing system using local wave analysis which proved technological support for the detection and recognition of the propeller singing.
     (1) Phase space reconstruction of time series in propeller singing system
     To study the property of phase-space reconstruction on the complex nonlinear system or chaotic dynamical system, the phase-space reconstruction topology of the system can be achieved by one certain dimension or several limited dimensions of the time series embedded in more dimensions of this system. In this article, we used mutural information and the modified auto-relativity method proposed by us to estimate the optimal embedded latency for propeller singing system and then we estimated the minimal dimensions embedded in propeller singing system by using the maximal eigenvalue invariant method and average false neighborhood and we used phase-space reconstruction dual-parameter joint estimation method for analyzing the reconstruction parameters of propeller singing system.
     (2) Symbolic dynamics study on time series of propeller singing system
     The symbolic sequence statistical analysis was applied to analyze the time series of propeller singing system. Based on two kinds of symbolic method (the partition method and the interpolation method), we found the propeller singing signal was almost not destroyed by the noise. Furthermore, our study showed that the propeller singing signal had the feature of intense nonlinearity and determination after calculating and analyzing the Shannon entropy and irreversible parameters.
     The complex sequences of propeller singing system were established by Lempel-Ziv complexity algorithm based on the Kolmogorov definition. The results showed that its normalization of complexity measures made narrow width fluctuations around 0.73. That meant, the complex sequences frequently appeared local maximum and minimum with the time series of propeller singing system jumping from left to right around zero point, however, it presented normalization of complexity measures around 0.73 (between 0 and 1) overall. All these indicated that the time series of propeller singing system had deterministic as well as complicated nonlinear characteristics.
     (3) Detecting Stationarity and Nonlinearity in Propeller Singing Signal
     The stationarity of propeller singing signal is tested by recurrence plot technique for the first time which is based on graphic method to test stationarity of systemic time series.
     Moreover, we used surrogate data analysis to evaluate the nonlinear characteristics of this system and further studied features of three null hypotheses and four test statistics. According to surrogate data, the singing time series is proved to have nonlinearity character.
     (a) The time series of propeller singing system which appeared random and irregular were proven to have deterministic for the first time by null hypotheses 1 and test statistics T_1.
     (b) The time series of propeller singing system were proven the existence of nonlinear dynamical features for the first time by null hypotheses 2 and test statistics T_2 and T_3.
     (c) And the nonlinearity of time series is not caused by the static nonlinear measurement function but the intrinsic character itself based on further research by null hypotheses 3 and test statistics T_(rev).
     It is the first time to prove the nonlinear dynamical characteristics of propeller singing system by surrogate data. That can be the necessary condition of chaotic dynamics and provide the theoretical foundation for further study. Moreover, the analysis results could provide the technical support for the target detection and identification of propeller singing system, and equations formation of systemic numerical simulation.
     (4) Study on chaotic dynamics of propeller singing system
     Applying for phase-space reconstructing technique, the correlation dimension of propeller singing system was estimated as D_2 = 5.1579 by G-P algorithm. The non-integral results constituted the necessary condition of chaotic dynamics. In addition, the boundary of topological dimension was considered as 6, that is, the number of independent variable was not less than 6 that could generate this complicated system.
     We calculated the correlation function of propeller singing system time series by q-order Renyi entropy which had monotonic consistency. The estimation of Kolmogorov entropy was achieved as K_2 = 0.6478 by least square method, that is, Kolmogorov entropy of propeller singing system is about 0.6478. This positive finite value provided the sufficient condition to have chaotic dynamics.
     By the estimation of maximum Lyapunov exponent, we obtained a positive and finite maximum Lyapunov exponent withλ(l_D) = 0.0771. This result was considered as the evidence to judge the propeller singing system to have chaotic dynamics.
     According to the forementioned analysis, it is the first time to prove the chaotic dynamics of propeller singing system by estimating the chaotic invariant of its time series. It might lay a theoretical foundation for further study the propeller singing phenomenon.
     (5) Research on time-frequency characteristics of propeller singing system time series
     Propeller singing system time series have been analyzed by local wave decomposition. The fractional correlation dimension and maximum Lyapunov exponent of time series and its intrinsic mode functions (IMF) have been estimated. To solve the de-noising problem, the local wave decomposition method was adopted because of its adaptive filter characteristic for distinguishing the chaotic time series and noise one. The intrinsic energy spectrum and frequency spectrum of propeller singing time series has been got, which revealed the time series has chaotic dynamical character by triple section frequency phenomenon. So it is good for target detection and identification of propeller singing system.
     So the existence of chaos in propeller singing system is confirmed in experiments. The results in this dissertation are helpful to understand the nonlinear dynamics of propeller singing, and useful in the numerical simulation study. The method and algorithms about chaotic time series analysis and target detection may be referenced to dealing with other chaotic systems.
引文
[1]温家宝.国务院船舶工业调整振兴规划.2009,北京.
    [2]张利军.螺旋桨性能预报的速度势面元法研究:(博士学位论文).大连:大连理工大学,2006.
    [3]王国强,董世汤.船舶螺旋桨理论与应用.哈尔滨:哈尔滨工程大学出版社,2005.
    [4]Masahiko Okajima,Maeda Toshio.Beating in propeller singing(A).J.Acoust.Soc.Am.,1996,100(4):2733.
    [5]Hyung-Sik Park,Su-Hyun Choi,Nho-Seong Kim.Identification of Propeller Singing Phenomenon through Vibration Analysis of Propeller Blade.Proceedings of The Fifteenth(2005) International Offshore and Polar Engineering Conference,Seoul,Korea,2005.
    [6]魏以迈,郑永敏,陈韵芬.船用螺旋桨鸣音的研究.中国造船,1:12-20,1986.
    [7]华汉金.螺旋桨鸣音产生机理及防治方法.船舶,2:20-23,2002.
    [8]黄胜,苏玉民.船舶螺旋桨理论.哈尔滨:哈尔滨工程大学出版社,2003.
    [9]罗奕鑫,崔承根,廖浮莉.叶梢带端板螺旋桨的设计方法.造船技术,210(8):18-23,1997.
    [10]徐兴祺,范一飞,蔡伟.激光测速仪在空泡水筒中的应用.中国造船,4:26-34,1992.
    [11]黄胜,蒋少剑,马文彬.船舶螺旋桨后尾流速度场理论计算.哈尔滨船舶工程学院学报,10(3):278-285,1989.
    [12]谭廷寿.非均匀流场中螺旋桨性能预报和理论设计研究:(博士学位论文).武汉:武汉理工大学,2003.
    [13]董世汤.螺旋桨升力面理论边值问题的精细化处理.船舶力学,8(2):1-15,2004
    [14]朱锡清,唐登海,孙红星等.船舶螺旋桨低频噪声研究.水动力学研究与进展,15(1):74-81,2000.
    [15]胡健,黄胜,王培生.螺旋桨水动力性能的数值预报方法.江苏科技大学学报(自然科学版),22(1):1-6,2008.
    [16]熊鹰,叶金铭.用面元法预报吊舱推进器水动力性能.海军工程大学学报,19(2):41-45,2007.
    [17]郎济才,邵长青,高群涛.舰艇激振和航迹响应实验研究.船舶工程,28(4):53-55,2006
    [18]李晓东,孙晓峰,胡宗安.两个模型螺桨声场性质的实验研究.航空动力学报,8(2):121-124,1993.
    [19]高永卫,乔志德.螺旋桨风洞实验气动声学相似准则研究.西北工业大学学报,23(4):430-434,2005.
    [20]上官云信,周瑞兴,解亚军等.一种新型低噪声水下动力螺桨翼型的实验研究.流体力学实验与测量,12(2):64-73,1999.
    [21]蒋兴舟,陈喜,张静远.鱼雷气幕屏蔽和降噪的实验研究.海军工程学院学报,69(4):62-67,1994.
    [22]陈家川,单汝政.舰船自噪声场结构及其实验研究方法.声学学报.4:260-262,1981.
    [23]弗朗索瓦·吕尔萨著,马金章译.混沌.北京:科学出版社,2005.
    [24]卢侃,孙建华.混沌学传奇.上海:上海翻译出版社,1991.
    [25]H A Lorenz.Deterministic Non-periodic Flow.J.Atmos.Sci.,20:130-141,1963.
    [26]Lan Stewart.The Lorenz Attractor Exists.Nature,406(31):948-949,2000.
    [27]D Ruelle and F Takens.On the nature of turbulence.Comunications of Mathematical Physics,20:167- 192,1971.
    [28]Li T Y,Yorke J A.Period three implies chaos.Am.Math.Monthly.,82:985-992,1975.
    [29]张济忠.分形.北京:清华大学出版社,1995.
    [30]Feigenbaum M J.Universal Behavior in Nonlinear Systems.Physica D,7:16-39,1983.
    [31]Takens F.On the numerical determination of the dimension of an attractor.In:Rand D,Young L S editors.Dynamical Systems and Turbulence.Warwick,1980,Lecture Notes in Mathematics,Springer -Verlag,898:361-381,1981.
    [32]匡锦瑜,邓昆,黄荣怀.利用时空混沌同步进行数字加密通信.物理学报,50(10):1856-1861,2001.
    [33]谢鲲,雷敏,冯正进.一种超混沌系统的加密特性分析物理学报.物理学报,54(3):1265-1272,2005.
    [34]方锦清,王中生,陈关荣.若干束晕-混沌的非线性控制方法的稳定性分析.中国原子能科学研究院年报,2004:106-107,2004.
    [35]方锦清.高科技发展的新领域--驾驭混沌的应用前景.科学导报,10:3-6,2003.
    [36]王林翔,陈鹰,路甬祥.二次流实现流体混沌混合的数值研究.化工学报,50(4):449-455,1999.
    [37]郑会永,肖田元,韩向利等.心电信号的混沌分形特性分析.清华大学学报,39(9):103-105,1999.
    [38]宋莹,田心.脑电的非线性动力学高维特性及研究现状与展望.国外医学生物医学工程分册,23(4):198-202.
    [39]刘耀宗.碰摩转子混沌振动识别与控制技术研究:(博士学位论文).长沙:国防科技大学,2001.
    [40]何斌,杨灿军,陈鹰.混沌周期解提高测量灵敏度算法及抗干扰分析.电子学报,31(1):68-70,2003.
    [41]蒋海峰,王鼎媛,张仲义.短时交通流的非线性动力学特性.中国公路学报,21(3):91-96,2008.
    [42]王东风,韩璞,于朝辉.电力系统中的混沌研究与混沌应用.电力科学与工程,3:74-78,2003.
    [43]郭建青,李彦,王洪胜等.利用混沌优化算法确定河流水质模型参数.水力发电学报,23(4):92-96,2004.
    [44]修日晨,张自历,刘爱菊.海洋激流的观测实验及分析讨论.海洋学报,26(2):118-124,2004.
    [45]周平,罗小华,陈海燕.一个混沌电路及其实验结果.物理学报,54(11): 5048-5052,2005.
    [46]Moon F C,Holmes P J.A Magnetoelastic Strange Attractor,Journal of Sound and Vibration,65(2):275-296,1979.
    [47]Moon F C.Experiments on chaotic motions of a forced nonlinear oscillator:strange attractors.ASME Journal of Applied Mechanics,47:638-644,1980.
    [48]Sha,S W,Holmes P J.Periodically Forced Linear Oscillator with Impacts:Chaos and Long-Period Motions.Physical Review Letters,51(8):623-626,1983.
    [49]Shaw S W,Holmes P J.A Periodically Forced Piecewise Linear Oscillator.Journal of Sound of Vibration,91(1):129-155,1983.
    [50]李银山,李欣业,刘波.分岔混沌非线性振动及其在工程中的应用.河北工业大学学报,33(2):96-103,2004.
    [51]CHEN Yu-shu,Andrew Y T,Leng.Bifurcation and Chaos in Engineering.London:Springer-Verlog,1998.
    [52]张淑芹,姚翠珍.Euler-Bernoulli梁在自激励边界反馈下的动力行为.数学的实践与认识,34(7):67-71,2004.
    [53]胡春林,彭华中,程昌钧.材料及结构参数对基桩非线性纵向振动的影响.武汉理工大学学报,28(4):71-74,2006.
    [54]金基铎,邹光胜,闻邦椿.参-强激励联合作用下输流管的分岔和混沌行为研究.应用力学学报,22(1):111-113,2005.
    [55]欧阳茹荃,朱继懋.船舶横摇运动的非线性振动与混沌.水动力学研究与进展,14(3):334-340,1999.
    [56]姜荣俊,朱石坚,何琳.混沌隔振装置的设计.海军工程大学学报,15(1):35-37,2003.
    [57]韩正铜,张永忠,黄民.磨削过程振动特征的实验研究.制造技术与机床,2:63-65,2004.
    [58]王跃科,林嘉宇,黄芝平等.语音信号非线性分析与处理.通信技术,108(1):61-65,2000.
    [59]黄玉盈,邹时智,钱勤等.输液管的非线性振动、分叉与混沌--现状与展望.力学进展,28(1):30-42,1998.
    [60]李亚安,贾雪松,孙进才.基于局部投影理论的水声信号降噪处理研究.西北工业大学学报,23(2):147-151,2005.
    [61]朱石坚.舰艇减振降噪系统中的混沌隔振技术研究:(博士学位论文).长沙:国防科技大学,2006.
    [62]宋春云,丁士圻,雷亚辉.基于相空间重构理论的水中混响特性提取.哈尔滨工程大学学报,28(5):515-518,2007.
    [63]丁旺才,谢建华.碰撞振动系统分岔与混沌研究进展.力学进展,35(4):513-524,2005.
    [64]姜可宇.基于非线性动力学分析的抗混响技术研究:(博士学位论文).武汉:海军工程大学,2008.
    [65]郝柏林.混沌和物理学.见:杨立等编.混沌对科学和社会的冲击.长沙:湖南科学技术出版社,2001.
    [66]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用.武汉:武汉大学出版社,2002.
    [67]David Ruelle.混沌对数学的冲击.见:杨立等编.混沌对科学和社会的冲击.长沙:湖南科学技术出版社,2001.
    [68]陈士华,陆君安.混沌动力学初步.武汉:武汉水利电力大学出版社,1998.
    [69]王兴元.复杂非线性系统中的混沌.北京:电子工业出版社,2003.
    [70]刘式达,分形和分维引论.北京:气象出版社,1993.
    [71]王海燕,卢山.非线性时间序列分析及其应用.北京:科学出版社,2006.
    [72]宋爱国,陆佶人.基于极限环的舰船噪声信号非线性特征分析及提取.声学学报,24(4):407-415,1999.
    [73]高翔,陆佶人.舰船辐射噪声的分形布朗运动.声学学报,24(1):18-28,1999.
    [74]章新华,张晓明,林良骥.舰船辐射噪声的混沌现象研究.声学学报,23(2):134-140,1998.
    [75]丁庆海,庄志洪,祝龙石等.混沌、分形和小波理论在被动声信号特征提取中的应用.声学学报,24(2):197-203,1999.
    [76]Camichael D R,Linnett L M,Clarke S D,Seabed classification through multifractal analysis of sidescan sonar imagery.IEEE Proceedings:Radar,Sonar and Navigation,143(3):140-148,1996.
    [77]陈捷,陈克安,孙进才.基于多重分形的舰船辐射噪声特征提取.西北工业大学学报,18(2):241-244,2000.
    [78]伍言真,丘水生.非线性系统理论及混沌研究的动态和评述.电路与系统学报,2(3):62-66,1997.
    [79]Kadtke J,Kremliovsky M.Signal classification using global dynamical modals,Part Ⅰ:Theory.American Institute of physics:189-202,1996.
    [80]Kremliovsky M,Kadtke J.Signal classification using global dynamical modals,Part Ⅱ:SONAR data analysis.American Institute of physics:205-216,1996.
    [81]Gardner S.Chaotic modeling by polynomial neural network.Proceedings of IEEE,4:393-399,1991.
    [82]Leung H,Titus L.Chaotic radar signal processing over the sea.IEEE Journal of Oceanic Engineering,18(3):287-295,1993.
    [83]Haykin S,Li Xiao Bo.Detection of singals in chaos.Proceeding of the IEEE,83(1):95-122,1995.
    [84]林红波,李月,马海涛等.混沌噪声背景下检测微弱信号的神经网络方法分析.地球物理学进展,18(4):743-747,2003
    [85]Cawley R,Hsu G H.Local-geometric-projection method for noise reduction in chaotic maps and flows.Physical Review A,46(6):3057-3082,1992.
    [86]Krzystof U,Janusz A H.Noise reduction in chaotic time series by a local projection with nonlinear constraints.Acta Physica Polonica B,35(9):2175-2198,2004.
    [87]Alexandros L,Tassos B,Jenny P.An adaptive way improving noise reduction using local geometric projection.Chaos,14(1):106-110,2004.
    [88]Yang Zong Kai,Zheng Lin,Hu Jing.A new noise reduction method for chaotic singals:improved local-projection algorithm.Proceeding of IEEE TENCON' 02: 1389-1392.
    [89]Broomhead D S,Huke J P,Potts M A S.Cancelling deteministic noise by constructing nonlinear inverses to linear filters.Physica D,89(3-4):439-458,1996.
    [90]Sauer T.A noise reduction method for signals from nonlinear systems.Physica D,58(1):193-201,1992.
    [91]Marteau P F,Abarbanel H D I.Noise reduction in chaotic time series using scaled probabilistic methods.Journal of Nonlinear Science,1:313-343,1991.
    [92]Farmer J D,Sidorowich J J.Predicting chaotic time series.Physical Review Letters,59(8):845-848,1981.
    [93]Navone H D,Ceccatto H A.Forecasting chaos from small data sets:a comparison of different nonlinear algorithms.Physics A:Mathematical and General,28(12):3381-3388,1995.
    [94]Aguirre L A,Bilings S A.Identification of models for chaotic systems from noisy data:implications for performance and nonlinear filtering.Physica D,85(1-2):239-258,1995.
    [95]Colace L,Giona M,Coli M.Parallel implementation of general purpose functional predictor for chaotic time series.Signal Processing,41(1):1-15,1995.
    [96]Nisbei K C,Mulgrew B,Mclaughin S.Reduced state methods in nonlinear prediction.Signal Processing,48(1):37-49,1996.
    [97]Rauf F,Ahmed H M.New nonlinear adaptive filter with to applications to chaos.International Journal of Bifuration and Chaos,7(8):1791-1809,1997.
    [98]Costa J P,Pronzatio L,Thierry E.Nonlinear prediction by kriging,with application to noise cancellation.Signal Processing,80:553-566,2000.
    [99]Freeland G C,Durrani T S.Multipredictor modeling with application to chaotic signals.Proceedings of IEEE ICASSP-93,3:133-136.
    [100]Kechriotis G I,Manolakos E S.Using networks for nonlinear and chaotic signal processing.Proceedings of IEEE ICASSP-93,4:465-468.
    [101]Cao Liangyue,Hong Yiguang,Haiping Fang et al.Predicting chaotic time series with wavelet networks.Physica D,85(1-2):225-238,1995.
    [102]Haykin S,Li Liang.Nonlinear adaptive prediction of nonstationary signals.IEEE Transaction on Signal Processing,43(2):526-535,1995.
    [103]张家树,肖先赐.混沌时间序列的Volterra自适应预测.物理学报,49(3):403-408,2000.
    [104]张家树,肖先赐.混沌时间序列的自适应高阶非线性滤波预测.物理学报,49(7):1221-1227,2000.
    [105]Zhang Jia Shu,Xiao Xian Ci.Predicting hyper-chaotic time series using adaptive higer-order nonlinear filters.Chinese Physics Letters,18(3):337-340,2001.
    [106]张家树,肖先赐.用一种少参数非线性自适应滤波器预测混沌时间序列.物理学报,49(12):2333-2339,2000.
    [107]Ott E,Grebogi C,York J A.Controlling chaos.Physical Review Letter,64(11):1196-1199,1990.
    [108]Ditto W D,Rauseo S N,Spano M L.Experimental control of chaos.Physical Review Letter,65(26):3211-3214,1990.
    [109]Ricardo Lima,Marco Pettini.Suppression of chaos by resonant parametric perturbations.Physical Review Letter,41(2):726-733,1990.
    [110]Bo Peng,Valery Petrov,Kenneth Showalter.Controlling chemical chaos.The Journal of Physical Chemistry,95(13):4957-4959,1991.
    [111]Jackson E A.Control of dynamic flows with attractors.Physical Review A,44:4839-4853,1991.
    [112]Huberman B A,Lumer E.Dynamics of adaptive systems.IEEE Transactions on Circuits and Systems,37(4):547-550,1990.
    [113]Frison T W,Abarbanel H D I,Cembrola J et al.Chaos in ocean environment:an experimental study.IEEE Journal of Oceanic Engineering,20(1):56-64,1995.
    [114]Frison T W.Chaos in Ocean Ambient "Noise" J.Acoust.Soc.Am.,99(3):1527-1539,1996.
    [115]唐劲松,蒋兴舟,苑秉成.高频湖底混响具有混沌性的探讨.海军工程大学学报,84(3):1-6,1998.
    [116]蔡志明,郑兆宁,杨士莪.水中混响的混沌属性分析.声学学报,27(6):497-501,2002.
    [117]Iomin A,Yu Bliokh.Wave Localization as a Manifestation of Ray Chaos in Underwater Acoustics.Communications in Nonlinear Science and Numerical Simulation,8(3-4):389-399,2003.
    [118]Yen K.Investigating Chaos In Ocean Acoustics.AD Report(Grant No.N00014-95-10443),1997.
    [119]王海斌,吴立新.混沌调频M-ary方式在远程水声通信中的应用.声学学报,29(2):161-166,2004.
    [120]梁峰,相敬林,顾中国.基于混沌理论的水声研究进展.中国科技论文在线.
    [121]徐丰.混沌在水声信号检测中的应用:(硕士学位论文).西安:西北工业大学,2001.
    [122]Camichael D R,Linnett L M,Clarke S D.Seabed classification through multifractal analysis of sidescan sonar imagery.IEEE Proceedings:Radar,Sonar and Navigation,143(3):140-148,1996.
    [123]Tuovila S M,Nelson S R.Using fractal features to perform automated detection of mines in cluttered sonar image.NSWC Expeditionary Warfare Technical Digest,1996.
    [124]李亚安,张效民,徐德民.水下目标信号的混沌检测研究.探测与控制学报,22(4):36-40,2000.
    [125]Hinich M J.Detection of non-Gaussian signals in non-Gaussian noise using the bispectrum.IEEE Trans.on ASSP,38(7):1126-1131,1990.
    [126]唐震,程玉胜.舰船辐射噪声的非高斯特性和非线性检验.青岛大学学报,15(3):63-65,2002.
    [127]陈向东,宋爱国,高翔等.基于相空间重构理论的舰船辐射噪声非线性特性研究.声学学报,24(1):12-18,1999.
    [128]陈向东,高翔,陆佶人.基于相似序列重复度的舰船辐射噪声时域特性的研究.东南大学学报,28(6):17-23,1998.
    [129]侯平魁,龚云帆,史习智等.水下目标辐射噪声的非线性检验.声学学报,26(2):135-139,2001.
    [130]陈捷.基于分形与混沌理论的水下目标特征提取研究:(博士学位论文).西安:西北工业大学,2000.
    [131]李亚安,徐德民,张效民.基于混沌理论的水下目标信号特征提取研究.兵工学报,23(2):279-281.2002.
    [132]Takens F.On the numerical determination of the dimension of an attractor.In:Rand D,Young L S editors.Dynamical Systems and Turbulence.Warwick,1980,Lecture Notes in Mathematics,Springer-Verlag,898:361-381,1981.
    [133]Whitney H.Differentiable manfolds.Annals of Mathematics,37:645-680,1936.
    [134]Sauer T.,Yorke J.A.,and Casdagli M..Embedology.Journal of Statistical Physics,65:579-617,1991.
    [135]Shannon C E and Weaver W.The Mathematical Theory of Communication.Urbana:University of Illinois Press,1949.
    [136]Kennel M B,Brown R,Abarbanel H D I.Determining embedding dimension for phase space reconstruction using a geometrical construction.Physical Review A,45(6):3403-3411,1992.
    [137]Gallager R G.Information Theory and Reliable Communication.New York:Wiley,1968.
    [138]Fraser A M and Swinney H L.Independent Co-ordinates for Strange Attractors from Mutual Infromation.Physical Review A,33:1134-1140,1986.
    [139]Abarbanel H.D.I.,Brown R,Sidorowich J.J.et al.The analysis of observed data in physical systems.Reviews of Modern Physics,65(4):1331-1392,1993.
    [140]Mane R.On the dimension of the compact invariant sets of certain nonlinear maps.In:Rand D,Young L S editors.Dynamical Systems and Turbulence.Warwick,1980,Lecture Notes in Mathematics,Springer-Verlag,898:230-242,1981.
    [141]Ding M Z,Grebogi C,Ott E et al.Estimating correlation dimension from a chaotic time series:when does plateau occur? Physica D,69:404-424,1993.
    [142]Grassberger P,Procaccia Ⅰ.Characterization of strange attractors.Physical Review Letters,50(5):346-349,1983.
    [143]胡哓棠.转子系统中的非线性时间序列预测方法研究.长沙:国防科技大学硕士学位论文,2000
    [144]Cao L Y.Practical method for determining the minimum embedding dimension of a scalar time series.Physica D,110(5):43-50,1997.
    [145]基于改进的C-C方法的相空间重构参数选择.系统仿真学报,19(11):2527-2529,2007.
    [146]Richard E M.Random signals and systems.Wiley,New York,1987.
    [147]郑伟谋,郝柏林.实用符号动力学.上海科技教育出版社.上海,1992.
    [148]张雨.符号化时间序列分析.湘潭矿业学院学报,19(1):75-79,2004.
    [149]金宁德,李伟波,赵鑫,周艳.利用符号时间序列分析法表征垂直上升管中油水两相流流型[J].化工学报,56(1):116-120,2005.
    [150]张佃中.Lempel-Ziv复杂度算法中粗粒化方法分析及改进.计算物理,25(4):499-504,2008.
    [151]Daw C S,Finney C E A,Kennel M B.Symbolic approach for measuring temporal "irreversibility".Physical Review E,62(2):1912-1.921,2000.
    [152]Finney C E A,Nguyen K,Daw CS,et al.Symbolic sequence statistics for monitoring fluidization[A].International Mechanical Engineering Congress &Exposition.Anaheim,California[C],USA,November,1998:15-20,1998.
    [153]王学梅,张波,丘东元,陈良刚.DC-DC变换器的符号时间序列描述及模块熵分析.物理学报,57(10):6112-6119,2008.
    [154]Crutchfield J P,Packard N H.Symbolic dynamics of noisy chaos.Physica D,7:201-223,1983.
    [155]Tang X Z,Tracy E R,Brown R,et al.reconstruction of chaotic signals using symbolic data.Physics Review Letters A,190:393-398,1994.
    [156]Tang X Z,Tracy E R,Boozer A D,et al.Symbol sequence statistics in noisy chaotic signal reconstruction.Physical Review E,51(5):3871-3889,1995.
    [157]张佃中.非线性时间序列互信息与Lempel-Ziv复杂度的相关性研究.物理学报,56(6):3152-3157,2007.
    [158]Tang X Z,Tracy E R,Brown R.Symbol statistics and spatio-temporal system[J].Physica D,102:253-261,1997.
    [159]张佃中,谭小红,王智等.基于等概率粗粒化的复杂度算法及其应用.系统仿真学报,20(15):4095-4099,2005.
    [160]解幸幸,李舒,张春利等.Lempel-Ziv复杂度在非线性检测中的应用研究.复杂系统与复杂性科学,2(3):61-66,2005.
    [161]李辉,徐佩霞.一种基于符号动力学的混沌序列消噪方法.应用科学学报,23(1):26-30,2005.
    [162]Lehrman M,Rechester A B,White R B.Symbolic analysis of chaotic signals and turbulent fluctuations.Physical Review Letters,78(I):54-57,1997.
    [163]侯威,封国林,董文杰.基于复杂度分析logistic映射和Lorenz模型的研究.物理学报,54(8):3940-3946,2005.
    [164]Haykin S,Principe J.Making sense of a complex world.IEEE Signal Processing Magazine,5:66-81,1998.
    [165]龚云帆.非线性动力系统混沌时间序列分析.西安:西安交通大学博士论文,1998.
    [166]魏荣爵,陶擎天.直接辐射式扬声器的非线性研究.电声技术,4:1-4,1986.
    [167]陶擎天,张志良.扬声器力学系统的非线性振动.电声技术,9:2-7,1996.
    [168]潘立超,陆文秋,包紫薇.扬声器的分谐波失真.应用声学,1994,13(2):17-21.
    [169]王永德,王军.随机信号分析基础.第2版.北京:电子工业出版杜,2003.
    [170]Theiler J,Eubank S,Longtin A,et al.Testing for nonlinearity in time series:the method of surrogate data.Physica D,58:77-94,1992.
    [171]Vibe K,Vesin JM.On chaos detection methods.Journal of Bifurcation and Chaos,6(3):529-543,1996.
    [172]Abarbanel H D I.Analysis of observed chaotic data.New York:Springer,1996.
    [173]Schreiber T,Schmitz A.Improved surrogate data for nonlinearity tests.Phys Rev Lett,77:635-638,1996.
    [174]雷敏,王志中.非线性时间序列的替代数据检验方法研究.电子与信息学报,23(3):248-254,2001.
    [175]Schreiber T,Schmitz A.Discrimination power of measure for nonlinearity in a time series.Phys Rev E,55:5443-5448,1997.
    [176]Kantz H,Schreiber T.Nonlinear time series analysis.Cambridge:Cambridge University Press,1997.
    [177]Schreiber T,Schmitz A.Surrogate time series.Physica D,142:346-382,2000.
    [178]Haykin S,Puthusserypady S.Chaotic dynamics of sea clutter,Chaos 7:777-802,1997.
    [179]Theiler J.Estimating fractal dimension.Journal of optical society American associate,7(6):1055-1073,1990.
    [180]Pesin Y B.On rigorous mathematical definitions of correlation dimension and generalized spectrum for dimension.Journal of Statistical Physics,71(3):529-547,1993.
    [181]Schepers H E,Van Beek J H G M,Bassingthwaighte J B.Four method to estimation the fractal dimension from self-affine signals.IEEE Engineering in Medicine and Biology,11(3):57-64,1992.
    [183]Grassberger P,Procaccia Ⅰ.Measuring the strangeness of strange attractors,Physica D,9:189-208,1983
    [184]Takens F.On the numerical determination of the dimension of an attractors,Lecture Notes in Mathematics,1125:99-106,1983.
    [185]Addison P S.Fractals and chaos - an illustrated course.Institute of Physics Publishing,London,1997.
    [186]Rapp P E,Albano A M,SchmahT I.Filtered noised can mimic low-dimensional chaotic attractors.Physical Review E,47(4):2289-2297,1993.
    [187]Osborne A R,Provenzale A.Finite correlation dimension for stochastic systems with power-law spectra.Physica D,35:357-381,1989.
    [188]Sinai Ya G.Introduction to ergodic theory,Princeton University Press,Princeton,NJ,1976.
    [189]Grassberger P.,Procaccia Ⅰ.,"Estimation of the Kolmogorov entropy from a chaotic signal" Physical Review A,28(4):2591-2593,1983.
    [190]赵贵兵,石炎福,段文锋,余华瑞.“从时间序列同时计算关联维和Kolmogorov熵”计算物理,16(3):309-315,1999.
    [191]Schouten J C,Takens F and van den Bleek C M.Maximum-likelihood estimation of the entropy of an attractor.Physical Review E,49:126-129,1994.
    [192]Holger Kantz.A robust method to estimate the maximal Lyapunov exponent of a time series.Physics Letters A,185(1):77-87,1994.
    [193]Huang N E,Shen Z,Long S R et al.The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis.Proc R Soc Lond A,454(1971):903-995,1998.
    [194]别锋锋.基于局域波时频谱的往复机故障智能诊断方法研究:(博士学位论文).大连:大连理工大学,2008.
    [195]张海勇.基于局域波法的非平稳随机信号分析中若干问题的研究:(博士学位论文).大连:大连理工大学,2001.
    [196]邹岩昆.局域波分析的理论方法研究及应用:(博士学位论文).大连:大连理工大学,2005.
    [197]盖强.局域波时频分析的理论研究与应用:(博士学位论文).大连:大连理工大学,2001.
    [198]Liang H,Lin Z,McCallum R W.Artifact reduction in electrogastrogram based on the empirical mode decomposition method.Medical and Biological Computing,38(1):35-41,2000.
    [199]胡红英,马孝江.基于局域波的非参数瞬时频率估计.电子学报,33(7):1303-1306,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700