黄土高原主要造林树种水分阈值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2006年7月在山西方山,采用4年生盆栽苗木,设置4个水分梯度,应用Li-6200便携式光合测定系统和Wescor Psypro露点水势仪,对该区5种主要造林树种(臭椿、新疆杨、沙枣、白榆、核桃)叶片气体交换参数和叶水势进行了定时定位观测。研究了苗木净光合速率(Pn)、蒸腾速率(Tr)及叶水势(Wp)的日进程及其与土壤含水量(swc)之间的动态关系。分别确定了对Pn、Tr最有效的swc,无效的swc和保证Pn、Tr高水平的swc阈。通过综合分析气孔导度(Cs)、羧化效率(CE)、气孔限制值(Ls)、细胞间C02浓度(Ci)4个指标随土壤水分的变化来判断苗木Pn从气孔限制转向非气孔限制的swc临界值。在叶片瞬时水分利用效率(wue)和叶片日平均水分利用效率(WUE)两个水平上研究苗木在不同水分条件下对水资源的有效利用状况,进而选取既能保证高的同化能力,又能保证高效水分利用的swc区间作为适宜苗木生长的土壤水分范围。结论主要有:
     苗木光合、蒸腾对土壤水分的响应各树种苗木Pn和Tr与swc间关系密切,其关系均可用通式y=ax3+bx2+cx拟合(沙枣Tr-swc为对数关系)。其中y表示Pn或Tr,x表示swc,a、b、c为拟合系数。令dy/dx=0,分别得出各树种Pn或Tr最高时所对应的swc,即对Pn、Tr最有效的swc。将此土壤水分士2的范围作为Pn、Tr保持高水平的土壤水分阈。各树种Tr高水平土壤水分阈普遍高于其Pn高水平土壤水分阈,此高出部分的起点土壤水分,即Pn高水平土壤水分阈的上限,为各树种开始奢侈蒸腾的土壤水分临界值。令通式y=0,计算得出Pn、Tr为0时对对应的土壤水分临界值。
     苗木Pn下降的气孔和非气孔因素5个树种Pn下降的主要因子由气孔因素非气孔因素的土壤水分临界值都介于8%-10%之间。可见, (8-10)%是影响苗木生长的关键水分段,此时,苗木叶片气体交换对swc的变化非常敏感,Cs、CE普遍开始由缓慢下降转变为迅速下降,Ls开始减小,Ci迅速增大,苗木叶片光合机构开始受到伤害,叶肉细胞的同化能力开始受到影响。
     苗木Cs-swc,CE-swc关系探讨各苗木Cs与swc间关系密切。其中臭椿、新疆杨和白榆Cs-swc关系为二次曲线形式,表现了高水分下Cs受抑制的现象,而沙枣、核桃Cs随Swc的增加分别直线和以指数形式增加。各苗木CE-swc关系可用通式y=ax2+bx+c表示。
     苗木叶片日平均水分利用效率(WUE) WUE采用Pn日进程曲线与坐标轴围成的图形面积与Tr日进程曲线与坐标轴围成的图形面积之比来计算。苗木总平均WUE的计算,采用其4个水分梯度下Pn日进程曲线与坐标轴围成的图形像素之和与4水分梯度下Tr日进程曲线与坐标轴围成的图形像素之和的比来表示,是苗木多日内全天平均水分利用状况的综合表现。5个树种以WUE总平均排序为,新疆杨>臭椿>沙枣>白榆>核桃。其中新疆杨对水分的综合利用效率是核桃的2倍,白榆的1.75倍。
     苗木叶片瞬时水分利用效率(wue)随土壤水分变化规律臭椿、新疆杨、沙枣、白榆wue随swc变化的总趋势可用三次四项式模拟,其通式为:y=ax3+bx2+cx+c。核桃wue随swc的变化呈“S”型曲线。保持wue高水平的swc阈从高至低依次为:沙枣>白榆>新疆杨>核桃>臭椿。可见,核桃和臭椿能在低的swc下维持相对较高的wue。
     Wp-swc关系核桃Wp与swc相关性微弱,难以进行关系拟合。其余4树种Wp-swc关系可用二次或三次多项式拟合。4树种Wp随着水分胁迫的加剧而升高,表现了高水势延迟脱水的耐旱特性。
     苗木生长适宜的土壤水分及其凋萎的土壤湿度5种苗木生长的适宜水分阈由高到低分别为:沙枣(14.71-16.37)%>核桃(13.50-15.50)%>新疆杨(1 1.00-13.58)%>白榆(10.41-12.86)%>臭椿(10.29-12.37)%。可见,经济林类树种,沙枣和核桃对土壤水分要求高,臭椿和白榆在较干旱土壤条件下生长良好。以苗木凋萎湿度为标准,对苗木的抗旱性排序为:白榆>沙枣>臭椿>核桃>新疆杨。
Fixed-position and fixed-time observations of 5 main afforestation species leaf gas change were made under natural condition, at 4 water levels, by using potted 4-year-old saplings, Li-6200 portable photosynthesis system and Wescor Psypro water potential, etc. in the semi-arid area of the Loess Plateau, Jul., 2006. Diurnal courses of physi-ecological parameters such as net photosynthetic rate (Pn), transpiration rate (Tr), leaf water potential (Wp) and their dynamic relations with soil water content (swc) were explored. The soil water thresholds on which Pn or Tr peaks or diminishes to zero and those certain swc ranges within which Pn or Tr maintains high levels were identified. The water threshold at which the dominant cause of restricted Pn changed from stomatal to non-stomatal limitations was detected by a combination analysis of the relations between swc and leaf stomatal conductance (Cs), carboxylation efficiency (CE), limiting value of stomata (Ls), intercelluar CO_2 concentration (Ci). Water use under different water conditions was studied both by instantaneous water use efficiency (wue) and by daily average water use efficiency (WUE). Swc ranges where both assimilative capacity and water use efficiency can be maintained at high levels were chosen as the most suitable soil moisture range for sapling growth. The Wp values of the saplings undergone severe water deficit were revealed. The main conclusions drawn are as follows:
    The response of Pn, Tr to soil moisture
    Pn and Tr of each species shows close relations with swc, which fit to the general equation, y= ax~3+bx~2+cx (Tr-swc relation of Elaegnus angustifolia is logarithmic). Where, y denotes Pn or Tr; x denotes swc; a, b, c are fitting coefficients. Make dy/dx=0, the swc value, at which Pn or Tr peaks, also the swc which has the most efficiency on Pn or Tr, can be calculated. A ±2 neighborhood of this swc is considered as the swc range which maintains high Pn or Tr. Each species has higher Tr soil water range than its Pn soil water range. The starting point of this higher part, that is, the upper limit of Pn soil water range is the water threshold from which luxurious transpiration begins. Make y=0 to calculate the soil water threshold at which Pn, Tr becomes zero.
    Stomatal and non-stomatal factors restricting Pn
    For 5 studied species, the soil water threshold at which the dominant cause of restricted Pn changes from stomatal to non-stomatal limitations ranges between 8 and 10. This shows that 8-10 swc range is vital to sapling growth. Sapling leaf gas exchange is sensitive to a swc change within this range, where Cs, CE declination generally begins to accelerate, Ls starts to decrease while Ci soars, and damage occurs to the photosynthetic mechanism, mesophyll assimilative capacity is thus affected. Cs-swc, CE-swc exploration
    Close relation was found between Cs and swc of each species. Cs-swc relations of Ailanthus altissima,
    Populus bolleana and Ulmus pumila fit into quadratic curves, showing restrained Cs in high swc while
    to Elaegnus angustifolia and Juglans regia, Cs continue increasing with higher swc. The relations could
    be expressed respectively by an exponential and a linear equation.
    Daily average leaf water use efficiency (WUE)
    WUE was calculated as the ratio of the irregular figure area enclosed by Pn diurnal course curve and
    coordinate axes to that of the Tr diurnal course curve. Total average WUE was the sum area ratio of 4
    irregular figures formed by Pn or by Tr curves. It describes the integrated water use status of each
    species under various water conditions during the observational days. According to the total average
    values, the species could be queued as Populus bolleana > Ailanthus altissima > Elaegnus angustifolia
    > Ulmus pumila >Juglans regia. Total average WUE of Populus bolleana is 2 times as much as that of
    Juglans regia and 1.5 times as of Ulmus pumila.
    The law of leaf water use efficiency change with soil moisture
    The overall changing trend of Juglans regia wue to swc takes the shape of "S", while that of the other 4
    species can be expressed by a general equation, y = ax~3 + bx~2 + ex + c. According to swc ranges within
    which high wue is maintained, the order is Elaegnus angustifolia > Ulmus pumila > Populus bolleana >
    Juglans regia > Ailanthus altissima. This reveals that Juglans regia and Ailanthus altissima can
    maintain comparatively higher level of wue under comparatively low swc.
    Wp-swc relations
    No proper equation fitted the Wp-swc relation of Juglans regia due to poor correlation. Wp-swc
    relations of the other 4 species can be described by quadratic curves or cubic equations. Wp of these 4
    species raise as soil water deficit gets more and more severe, revealing a drought tolerance characteristic
    via maintaining high Wp.
    Suitable soil moisture range for sapling growth and the wilting moisture
    The suitable soil moisture ranges for subject saplings growth were found as: Juglans regia (15-17) >
    Elaegnus angustifolia (14.58-16.37) > Populus bolleana (13.58-15.5) > Ulmus pumila (11.86-14.41) >
    Ailanthus altissima (10.29-13.37). This reveals that species of economic value, like Elaegnus
    angustifolia and Juglans regia have high demand on soil moisture, while Ailanthus altissima and Ulmus
    pumila grow well in slightly dry conditions. Cite permanent wilting moisture as the standard to appraise
    saplings drought resistance ability, the order is: Ulmus pumila > Elaegnus angustifolia > Ailanthus
    altissima > Juglans regia > Populus bolleana.
引文
1.崔晓阳,宋金凤,张艳华.不同上壤水势条件下水曲柳幼苗的光合作用特征[J].植物生态学报,2004,(6):794-802.
    2.高洁,曹坤芳,王焕.干热河谷9种造林树种旱季的水分关系和气孔导度[J].植物生态学报,2004,28(2):186-190.
    3.葛晋纲,蔡庆生,刘国华.高羊茅和钝叶草对土壤缓慢水分胁迫的响应差异[J].草业学报,2004,13(4):29-33.
    4.耿伟,王春艳,,薛绪掌,等.不同供水吸力下豆角若干生理指标的变化[J].中国农学通报,2006,22(5):206-210.
    5.郭洪芸,樊治成.土壤水分胁迫对大蒜光合特性的影响[J].园艺学报,1999,26(6):404-405.
    6.贺康宁,张光灿,田阳,等.黄土半干旱区集水造林条件下林木生长适宜的土壤水分环境[J].林业科学,2003,39(1):10-16.
    7.胡继超,姜东,曹卫星,等.短期干旱对水稻叶水势、光合作用及干物质分配的影响[J].应用生态学报,2004,15(1):63-67.
    8.李吉跃.太行山主要造林树种耐旱特性的研究[J].北京林业大学学报,1991(增刊1):1-24.
    9.李良厚,贾志英,付祥健.土壤水分胁迫下苗木水分参数变化的研究[J].河南农业大学学报,1999,33(1):92-99.
    10.李文华,刘广权,马松涛,等.干旱胁迫对苗木蒸腾耗水和生长的影响[J].西北农林科技大学学报:自然科学版,2004,32(1):61-65.
    11.李新,冯玉龙.砂仁光合作用的CO2扩散限制与气孔限制分析[J].植物生态学报,2005,29(4)584-590.
    12.李雪华,蒋德明,刘志民.山杏幼苗水分生理生态特性及凋萎湿度的研究[J].干旱区资源与环境,2004,5:168-171.
    13.刘世荣,赵广东,马全林.沙木蓼和沙枣对地下水位变化的生理生态响应Ⅱ.叶片光合作用及其对温度和光的反应[J].植物生态学报,2003,27(2):223-227
    14.娄成后,王学臣.物产量形成的生理学基础[M],2001,北京:中国农业出版社.
    15.罗华建,刘星辉.水分胁迫对枇杷光合特性的影响[J].果树科学,1999,16(2):126-130.
    16.罗青红,李志军.树木水分生态特征及抗旱性研究进展[J].塔里木大学学报,2005,17(2):21-32.
    17.山仑.提高农田水分利用效率的途径[J].植物生理学通讯,1997,33(6):475-476.
    18.石青,余新晓,李文宇,等.水源涵养林林木耗水称重法试验研究[J].中国水土保持科学,2004,2(2):84-87.
    19.汤章城.水分胁迫和植物和气孔运动[A].北京植物生理学会编辑.植物生理生化进展[C],1986,4:43-50.
    20.滕文元,周湘红.植物气孔反应及其对叶水势的调控[J].干旱地区农业研究,1993,11(4):61-64.
    21.田晶会,贺康宁,王百田,等.不同土壤水分下黄土高原侧柏生理生态特点分析[J].水土保持学报,2005,19(2):175-178.
    22.田有亮,郭连生.几种针阔叶树种生长水势阈和生命水势阈的研究[J].干旱区资源与环境,2006,20(1):190-194.
    23.王百田,杨雪松.黄土半干旱地区油松与侧柏林分适宜土壤含水量的研究[J].水土保持学报,2002,16(1):80-83.
    24.王斌瑞,王百田.黄土高原径流林业[M].北京:中国林业出版社,1996.
    25.王继和,马全林,吴春荣等.干旱沙区几种果树生理生态特性及其适应性研究[J].中国沙漠,2001(增刊):22-29.
    26.王进鑫,黄宝龙,王明春,等.侧柏幼树不同生长阶段对水分的敏感性与蒸腾效率[J].生态学报,2005,25(4):711
    27.王克勤,王斌瑞.土壤水分对金矮生苹果光合速率的影响[J].生态学报,2002,22:206-214.
    28.王云龙,许振柱,周广胜.水分胁迫对羊草光合产物分配及其气体交换特征的影响[J].植物生态学报,2004,(6):803-809.
    29.魏钊,徐爱霞,千小绵.苹果树“火烧病”的发生与防治[J].西北园艺(果树),2005,(04):17.
    30.吴海卿,段爱旺,杨传福,等.冬小麦对不同土壤水分的生理和形态响应[J].华北植物学报,2000,15(3):92-96.
    31.吴琦,张希明.水分条件对梭梭气体交换特性的影响[J].干旱区研究,2005,22(1):79-84.
    32.夏江宝,刘信儒,王贵霞,等.土壤水分及环境因子对刺楸叶片气体交换的影响[J].水土保持学报,2005,19(2):179-183.
    33.许大全.气孔的不均匀关闭与光合作用的非气孔限制[J].植物生理学通讯,1995,31(4):246-252.
    34.许振柱,周广胜,王玉辉.植物的水分阈值与全球变化[J].水土保持学报,2003,17(3):155-158.
    35.杨朝瀚,王艳云;,周泽福,等.黄土丘陵区杠柳叶片气体交换过程对土壤水分的响应[J].林业科学研究,2006,19(2):231-234.
    36.杨朝选,焦国利,王新峰,等.干旱过程中桃树茎和叶水势的变化[J].果树科学,1999,16(4)267-271.
    37.杨文斌,任建民,贾翠萍.柠条抗旱的生理生态与土壤水分关系的研究[J].生态学报,1997,17(3):239-244.
    38.叶冬梅.樟子松水分生态阈值的研究[J].内蒙古农业大学硕士学位论文,2002:5-8.
    39.张光灿,刘霞,贺康宁.金矮生苹果叶片气体交换参数最土壤水分的响应[J].植物生态学报,2004,28(1):66-72.
    40.张继祥,魏钦平,于强.植物光合作用群体蒸散模拟研究进展[J].山东农业大学学报(自然科学版),2003,34(4):.613-618.
    41.张岁岐,山仑.植物水分利用效率及其研究进展[J].干旱地区农业研究,2002,20(4):1-5.
    42.张文丽,张彤,吴冬秀,等.土壤逐渐干旱下玉米幼苗光合速率与蒸腾速率变化的研究[J].中 国生态农业学报,2006,14(2):72-75.
    43.张喜英,裴冬,由懋正.几种作物的生理指标对土壤水分变动的阈值反应[J].植物生态学报,2000,24(3):280-283.
    44.张志川.用最优分割聚类法确定土壤水分胁迫阈值[J].灌溉排水学报,2004,23(5):29-31.
    45.章应峰,费世民,王鹏,等.干旱地区树木耐旱性研究现状评述[J].四川林业科技,2001,22(4):24-30.
    46.周泽福,刘致远,张光灿.黄土丘陵区金矮生苹果园土壤水分有效性及生产力分级[J].林业科学研究,2005,18(1):10-15.
    47.邹琦.植物光合作用的气孔与非气孔限制[M].邹琦.作物抗旱生理生态研究.济南:山东科学技术出版社,1994,155-163.
    48. A. R. Rivellil, T. P. Bolger, D.L. Garden. Drought resistance of native and introduced perennial grass species. 10th Australian Agronomy Conference .2001.
    49. Berry J., Dowton W., Environmental regulation of photosynthesis. In: Govindjee NY ed. Photosynthesis vol. Ⅱ[M]. New York: Academic Press, 1982, 263-343.
    50. Castal JR,Feree E.Response of young almond tress to two drought periods in the field[J]. Hort Sci.,1982,57:175-187.
    51. Castongway Y.,Nadeau P.,Simard R.R. Effects of flooding on carbohydrate and ABA leavels in roots and shoots of Alfafa[J]. Plant Cell Environ.,1993,16:698-702.
    52. Centritto M.,Loreto F.,Chartzoulakis K..The use of low CO_2 to estimate diffusinal and non-diffusinal limitations of photosynthetic capacity of salt-stressed olive saplings[J]. Plant, Cell and Environment,2003,26:585-594.
    53. Chaitanya K V, Jutur P P. Ramachandra Reddy. Water stress effects on photosynthesis in different mulberry cultivars [J]. Plant Growth Regulation, 2003, 40: 75-80.
    54. Gamier E.,Berger A. Testing water potential in peach trees as an indicator of water stress. Hort Sci.,1985,60(1):47-56.
    55. Griffiths H, Parry M A J. Plant responses to water stress [J]. Ann. Bot. 2002, 89: 801-802.
    56. Hergert G W. Cropping systems for soil and water conservation in the great plains.In: Proceedings of International Conference on Dryland Farming [J]. Amarillo/Bushland,Texas USA, 1988. http://deposit.ddb.de/cgi-bin/dokserv?idn=969348231 &dok_var=d1&dok_ext=pdf&filename=9693 48231.pdf
    57. Jennifer Merrick, Joshua Phillips, and Cathryn Wild, Valley Oak Restoration Site Suitability in the Los Alamos Valley, Santa Barbara County, Califomia, A group project report submitted in partial satisfaction of the requirements for the degree of Master of Environmental Science and Management, Donald Bren School of Environmental Science and Management ,June, 1999 University of Califomia. http://www.bren.ucsb.edu/research/Finaldocs/1999/6_9.pdf
    58. Jones HG, Lakso AN,Syvertsen JP. Physiological control of water status in temperate ans subtropical fruit trees[J]. Hort Reviews, 1985,7:301-304.
    59. Lawlor D W. Limitation to photosynthesis in water-stressed leaves: stomata vs metabolism and the role ofATP [J]. Ann. Bot. 2002, 89: 871-885.
    60. Liu FuLai, Jensen CR, Andersen MN. Hydraulic and chemical signals in the control of leaf expansion and stomatal conductance in soybean exposed to drought stress[J]. Functional plant biology, 2003, 30:65-73.
    61. Mayland H F,Johnson D A,Asay K H,et al.Ash,carbon isotope discrimination, and Silicon as estimators of transpiration efficiency in crested whestgrass[J].Aust J Physiol,1993,20:361-369.
    62. Menzel C M, Simpson D R. Plant water relations in lychee: diurnal variations in leaf conductance and leaf water potential. [J].Agricultural and Forest Meteorology, 1986,37:267-277.
    63. Ogren E, Evans J R. Photo inhibition in situ in six species of Eucalyptus [J]. Aust. J. Plant Physiol., 1992, (19):223-232.
    64. Peter Wafula Masinde, M.Sc, Effects of water stress on the growth of Spiderplant (Gynandropsis gynandra (L.) Briq.) and African Nightshade (Solarium spp.), two traditional leafy vegetables in Kenya. Department of Horticulture, Jomo Kenyatta Agricultural Technology University.
    65. Sadras V 0, Milroy S P. Soil-water threshold for the responses of leaf expansion and gas exchange[J]. Field Crop Res. ,1996,47:253-266.
    66. Schlze E D, Lange O L, Buschbom U et al. Stomatal responses to changes in humidity in plants growing in the dessert[J]. Planta, 1972,108:259-270.
    67. Soltania A, Khooieb F R. Ghassemi-Gplezanib K, et al. Thresholds for chickpea leaf expansion and transpiration response to soil water[J]. Field Crop Res. ,2000,68:205-210
    68. Tear I D. Crop-Water Relations [J]. A Wiley-Interscience Publication, 1982.
    69. Tomar,V.S.,& J.C. O'toole. A field study on leaf water potential, transpiration and plant resistance to water flow in rice[J].Crop Science, 1982,22(l):5-10.
    70. Undersander D J. Management of sorghum under limited irrigation [J]. Agron.J., 1986,78:28-32.
    71. van den Honert. Water transport in plants as a catenary process. Discussion of the Faraday Sociaty,1948,3(l):146-153.
    72. Xyloyannisc UK,Martin GC.Seasonal and diurnal variations in abscisic acid, water potential and diffusive resistance in leaves from irrigated and non-irrigated peach trees[J]. Hort Sci.,1980,105:412-415.
    73. Zhang J.,Davies W.J. ABA in roots and leaves of flooded pea plants[J]. Journal of Experimental Botany,1987,38:16949-1659

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700