有机太阳能电池的电荷转移态等效电路和多重电荷分离界面研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机太阳能电池以其原料来源广泛、制作工艺简单、成本低廉、耗能少、可制作柔性器件以及易于大规模生产等突出优势,成为第三代太阳能电池中重点研究和发展的对象。为了进一步提高有机太阳能电池效率突破15%,仍然需要对决定着有机太阳能电池光伏特性的电荷转移态(CT)激子加深理解和利用。本文的主要工作正是围绕着有机太阳能器件中光生激子的产生和转移以及CT激子的分离和复合等过程来建立完整的理论分析以及创新性的CT激子等效电路模型。并将其应用于光伏特性的机理研究以及指导器件性能和器件结构的优化。由此,本文的主要工作为以下五个部分:
     1、详细研究了光伏器件中的四个光伏过程:激子的产生、激子的传输、激子的分离和载流子的收集,并给出了光生电流密度Jph完整的表达式。最后得出了提高电池光伏性能的几点基本要求:(1)合成高吸光系数和带隙为1.1eV~1.7eV的有机光敏材料,提高器件的光吸收;(2)提高有机材料的激子扩散长度可以增加激子的利用效率;(3)通过降低给体材料的HOMO能级以及提高受体材料的LUMO值可以直接地增加CT激子的禁带宽度,以及使CT激子的吸收谱蓝移,从而提高VOC;(4)降低CT激子的结合能以及加长结合半径可以提高激子的分离效率和JSC;(5)降低0-VOC区域光生电流密度Jph(V)的滚降可以促进电荷收集以及提高填充因子FF。
     2、提出了能够有效仿真CT激子分离和复合过程的CT激子等效电路模型,且该部分工作是本论文的自主创新的核心,创新之处为:在传统的等效电路模型中新加入模拟CT激子行为的电子元件,其物理意义是:二极管Dext模拟CT激子的分离过程以及二极管Drec模拟CT激子的复合过程。接着,率先给出了CT激子等效电路模型中电子元件参数的提取方法。本论文使用该CT激子等效电路模型不仅能够用于仿真和模拟光伏器件的光电特性,还能够提取和解释器件的能量损失机制,从而为器件性能的优化提供最直接的参量指标。
     3、解释了最基本的光敏层厚度优化的问题,并发现了基于单线态裂变特性器件的能量损失公式。本论文使用常规的并五苯/C60的平面异质结太阳能电池进行了厚度优化实验,得到了以下研究结果:(1)当厚度接近激子扩散长度LD~40nm时,激子的利用效率最高,光电流JSC达到最大;而当厚度超过LD时,CT激子的结合结合能Eb将会增加,这会减小激子的分离效率并导致JSC的降低。但是,Eb的增加会使VOC进一步提高,并能达到最高值。这也是从根本上解释了单纯通过优化主体光敏层厚度不能同时得到最优的JSC和最优的VOC的现象;(2)找到了实际测量的激子密度JP超过基于光学理论得到的光电流最大值P0R0的原因:并五苯分子具有单线态裂变的特性,能够直接增加器件的光电流值JP。因此,本论文提出了具有单线态裂变特性的光伏器件实际能量损失公式El oss=1β J P/P0R0,本文中修正因子β为1/1.5。
     4、研究了阴极缓冲层的主要功能:光场调控、激子阻挡和有机保护层作用。首先,研究了不同BCP层对平面异质结CuPc/C60太阳能电池的光电特性的影响,得到了最优化的厚度约为10nm。其次,使用光学传输矩阵理论得出了BCP层作为光学间隔子作用,即BCP层的加入增强了有机薄膜中的光场分布以及提高了光吸收以及光生激子密度;基于激子运动理论解释了BCP层的激子阻挡层作用,即BCP层能够增加C60层中的激子利用率。接着,通过使用CT激子等效电路模型和Onsager-Braun理论详细分析了BCP层对电荷收集函数H(V)和电阻特性的影响。最后,通过缺陷态的机理分析得到了金属电极Ag对BCP的扩散厚度~11.4nm,也很好地解释了最佳厚度为10nm的原因。
     5、研究了多重电荷分离界面MCS结构的太阳能电池,并率先提出适用于该结构的等效电路模型以及光生电流的分析方法。该工作也是本论文的自主创新的部分之一。本论文采用了多重电荷分离界面(MCS)的器件结构,并创新性地引入具有三线态激子的磷光染料(t-bt)2Ir(acac)和荧光染料Rubrene作为界面修饰层,使MCS器件的VOC和光电转换效率得到了有效地提高。接着,为了更加直接地仿真MCS器件中主体给体层与修饰层中CT激子在分离界面处的竞争关系,本论文提取出了适用于分析MCS器件的等效电路图,并结合光学传输矩阵理论对外量子效率进行了仿真分析,得到各个功能层中实际产生的光生电流值。本工作为将来采用单线态裂变的材料制备MCS器件奠定了坚实的等效电路和理论基础。
Organic solar cells become the important object on the research and developmentof third-generation solar cells due to their widely sources of materials, simpleproduction process, low cost, low energy consumption, flexibility, as well as large-scaleproduction. In order to further improve the power conversion efficiency exceeding15%,much afford are needed to deepen the understanding and use of charge transfer state(CT) exciton which determines the photovoltaic properties of organic solar cells. Thus,the main research studies of this paper are establishing a theoretical analysis and CTexciton equivalent circuit model to simulate the generation and transportation ofphoto-induced excitons, as well as separation and recombination process of CT exciton.And these theories can be applied to analyse the photovoltaic mechanism and optimizethe device structure and photovoltaic properties. Thus, the main work include five partsas following:
     1. A detailed study on the four photovoltaic processes of the OSCs: thegeneration of excitons, exciton transfer, exciton separation and collection of the carriers.And the full expression of photocurrent density Jph(V) has been given. Finally, somebasic requirements at improving photovoltaic performance have been summerizied:(1)synthesizing organic photosensitive materials with a low band gap of1.1eV,~1.7eV toenhance the optical absorption of OSCs;(2) improving the exciton diffusion length oforganic materials to increase the utilization efficiency of excitons;(3) lowering theHOMO level of donor materials and heightening the LUMO level of acceptors, whichcan directly increase the bandgap of CT exciton and lead to the blue shift of absorptionspectrum, and thereby improve the VOC;(4) reducing the CT exciton binding energy andlengthening the combined radiuscan can improve the separation efficiency of theexciton and JSC;(5) reducing the roll-off of photocurrent density Jph(V) within the0-VOCregion can facilitate charge collection, as well as improve the fill factor FF.
     2. Proposed the CT exciton equivalent circuit model which can effectivelysimulate the CT exciton dissociation and recombination processes, and this part ofthe work is the core of independent innovations of this thesis. The explainations of CT circuit model are two electronic components added to simulate the CT exciton behaviorbased on the traditional equivalent circuit model, and their physical meanings are: diodeDextreflects the separation process and diode Drecpresents recombination process of CTexcitons. Then, the calculating method is given to extract the parameters of electroniccomponents in the equivalent circuit model. Thus, this circuit model is adopted tosimulate and modeling optical and electrical properties, and also capable of extractingenergy loss mechanisms and interpretation of the device, and finally provides the mostdirect indicator parameters for the optimization of device performance.
     3. Explaining the basic optimization problem of thickness dependence ofphotosensitive layer, and finding out the energy loss formulas of OSCs based on thesinglet-fission materials. This thesis, thickness optimization has been carried out usingconventional pentacene/C60planar heterojunction solar cell, and several results wereobtained:(1) when the thickness of pentacene is close to the exciton diffusion length LD~40nm, the utilization efficiency of the exciton reach the highest level, and themaximum JSCcan be achieved; when the thickness exceeds the LD, the binding energy(Eb) of CT exciton would increase, and this will reduce the separation efficiency of theexciton, leading to the reduction of JSC. However, the increase of EBwould cause thefurther improve at VOC. This is the fundamental explaination of the phenomenon thatoptimal JSCand optimal VOCcan hardly obtained at the same time just by adjusting thethickness of photosensitive layer.(2) finding out the reason that the actual measuredvalues of exciton density JPexceed the maximum current P0R0based on the opticaltheory. Therefore, this paper presents a practical energy loss formulaEl oss=1β J P/P0R0of photovoltaic devices with singlet fission characteristics, and thecorrection factor β in this article is1/1.5.
     4. Study of the main functions of cathode buffer layer: regulation of the lightfield, the exciton blocking, and organic protective layer effects. Firstly, the effect ofdifferent BCP layer on photoelectric characteristics of planar heterojunction CuPc/C60OSCs have been optimized thickness of about10nm. Secondly, the optical spacer effectof BCP layer has been discussed based on optical transmission matrix theory, i.e. theadded BCP layer can enhance optical field distribution in the organic thin film, as wellas improve the density of light absorption and excitons; the exciton-blocking effect wasalso explained based on the exciton transporting theory, i.e. the BCP layer can provent the exciton quenching at the C60/Ag interface, and thus, increase exciton utilization.Then, through the use of the the CT exciton equivalent circuit model and the theory ofOnsager-Braun, a detailed analysis of the BCP layer on the charge collection function H(V) and resistance characteristics have been carried out. Finally, diffusion thickness~11.4nm in the BCP layer when depositing Ag cathode was extracted through theanalysis of defect states, and also well explained the reason of optimal thickness at10nm.
     5. Study of OSCs with a multi-charge separating (MCS) interfaceconfiguration, and the equivalent circuit model and the method of analyzingphotocurrent of MCS structure were firstly proposed. And this part of work is alsoan independent innovation. In this thesis, the phosphorescent dye (t-bt)2Ir(acac) with atriplet exciton and fluorescent dye Rubrene were introduced as interface modificationlayer, the VOCand the photo-electric conversion efficiency of MCS devices have beeneffectively improved. In order to directly simulate the competition relations of CTexciton of the main layer and modified layer at the separation heterojunction, anequivalent circuit diagram for MCS devices was proposed. Then, combined with theoptical transmission matrix theory and the external quantum efficiency, the actualphotocurrent in each functional layer were extracted. Thus, this work paved theequivalent circuit and theoretical basis to fabricate highly efficient OSCs with singletfission materials based on MCS structure.
引文
[1] S. H. Schneider, L. E. Mesirow. The Genesis Strategy: Climate and Global Survival [M]. NewYork: Plenum Press.1976.
    [2] J. Hansen, M. Sato, P. Kharecha, et al. Target atmospheric CO2: Where should humanity aim?[J]Open Atmos. Sci. J.,2008,2:217-231.
    [3]焦泉瑜.哥本哈根会议:科学家的视界[J].世界博览,2010,(01):50-52.
    [4] L. Kronik and Y. Shapira. Surface photovoltage phenomena: Theory, experiment andapplications[J]. Surface Science Reports,1999,37:1-206.
    [5] T. Dekorsy, T. Pfeifer, W. Kütt, et al. Subpicosecond carrier transport in GaAssurface-space-charge fields[J]. Phys. Rev. B,1993,47(7):3842-3849.
    [6] V. Duzhko, Th. Dittrich, B. Kamenev, et al. Diffusion photovoltage in poly(p-phenylenevinylene)[J]. J. Appl. Phys.,2001,89(8):4410.
    [7] C. Damm, L. Dahne, and F. W. Müller, Photo-EMF measurements on highly ordered layers of acyanine dye[J]. Phys. Chem. Chem. Phys.,2001,3(24):5416-5420.
    [8] H. Tian and K. C. Chen. Diffusion behaviour of charge carriers in thin films ofphthalocyanines[J]. Dyes and Pigments,1995,27(3):191-196.
    [9] G. Li, R. Zhu, Y. Yang. Polymer solar cells[J]. Nature Photon,2012,6:153-161.
    [10] B. Gao, S. Nakano, and K. Kakimoto. Influence of Back-Diffusion of Iron Impurity on LifetimeDistribution near the Seed-Crystal Interface in Seed Cast-Grown Monocrystalline Silicon byNumerical Modeling Cryst[J]. Growth Des.2012,12(1):522-525.
    [11] R. J. Knuesel, H. O.Jacobs. Self-Assembly: Self-Tiling Monocrystalline Silicon; a Process toProduce Electrically Connected Domains of Si and Microconcentrator Solar Cell Modules onPlastic Supports[J]. Adv. Mater.2011,23(24):2700.
    [12] M. M. A. Hakim, M. Lombardini, K. Sun, et al. Thin Film Polycrystalline Silicon NanowireBiosensors[J]. Nano Lett.2012,12(4):1868-1872.
    [13] I. García, I. Rey-Stolle, B. Galiana et al. A32.6%efficient lattice-matched dual-junction solarcell working at1000suns[J]. Appl. Phys. Lett.,2009,94(5):053509.
    [14] R. R. King, D. C. Law, K. M. Edmondson et al.40%efficient metamorphic GaInP/GaInAs/Gemultijunction solar cells[J]. Appl. Phys. Lett.,2007,90(18):183516.
    [15] F. Dimroth, High-efficiency solar cells from III-V compound semiconductors[J]. Phys. StatusSolidi C Curr. Top. Solid State Phys.,2006,3(3):373-379.
    [16] M. Yamaguchi, T. Takamoto and K. Araki. Super high-efficiency multi-junction andconcentrator solar cells. Sol. Energ. Mater. Sol. Cell.,2006,90(18–19):3068-3077.
    [17] J. F. Geisz, D. J. Friedman, J. S. Ward, et al.40.8%efficient inverted triple-junction solar cellwith two independently metamorphic junctions[J]. Appl. Phys. Lett.,2008,93(12):123505.
    [18] http://tech.weiphone.com/2012-06-05/43.5__426513.shtml
    [19] C. Jiang, J.-S. Lee, and D. V. Talapin. Soluble precursors for CuInSe2, CuIn1-xGaxSe2andCu2ZnSn(S,Se)4based on colloidal nanocrystals and molecular metal chalcogenide surfaceligands[J]. J. Am. Chem. Soc.,2012,134:5010.
    [20] X. Zhu, Z. Zhou, Y. Wang, et al. Determining factor of MoSe2formation in Cu(In,Ga)Se2solarCells[J]. Sol. Energy Mater. Sol. Cells,2012,101:57-61.
    [21] J. B. Li, V. Chawla, and B. M. Clemens. Investigating the Role of Grain Boundaries in CZTSand CZTSSe Thin Film Solar Cells with Scanning Probe Microscopy[J]. Adv. Mater.2012,24(6):720-723.
    [22] P. Jackson, D. Hariskos, E. Lotter, et al. New world record effciency for Cu(In,Ga)Se2thin-flmsolar cells beyond20%.[J] Prog. Photovolt: Res. Appl.2011,19:894–897.
    [23] http://www.solarserver.com/solar-magazine/solar-news/current/2011/kw30/first-solar-reaches-new-world-record-cdte-cell-efficiency-of-173.html
    [24] C. W. Tang. Two-layer organic photovoltaic cell[J]. Appl. Phys. Lett.1986,48:183-185.
    [25] J. Xue, S. Uchida, B. P. Rand et al.4.2%efficient organic photovoltaic cells with low seriesresistances[J]. Appl. Phys. Lett.2004,84(16):3013.
    [26] H.-Y. Chen, J. H. Hou, S. Q. Zhang, et al. Polymer solar cells with enhanced open-circuitvoltage and efficiency[J]. Nature Photon,2009,3:649-653.
    [27] J. Xue, S. Uchida, B. P. Rand et al. Asymmetric tandem organic photovoltaic cells with hybridplanar-mixed molecular heterojunctions[J]. Appl. Phys. Lett.2004,85(23):5757.
    [28] K. Triyana, T. Yasuda, K. Fujita, et al. Tandem-type organic solar cells by stacking differentheterojunction materials[J]. Thin Solid Films,2005,477(1-2):198-202.
    [29] J. Y. Kim, K. Lee, N. E. Coates, et al. Efficient Tandem Polymer Solar Cells Fabricated byAll-Solution Processing[J]. Science2007,317(5835):222-225.
    [30] S. Sista, M. H. Park, Z. R. Hong, et al. Highly Efficient Tandem Polymer Photovoltaic Cells[J].Adv. Mater.2010,22(3):380-383.
    [31] B. Lee, J. He, R. P. H. Chang, et al.All-solid-state dye-sensitized solar cells with highefficiency[J]. Nature2012,485:486-489.
    [32] L. Yang, G. Xin, L. Wu, et al. Flexible Dye-Sensitized Solar Cells,[J] Progress in Chemistry,2009,21(10):2242-2249.
    [33] J. Wu, D. Shao, V. G. Dorogan, et al. Intersubband Infrared Photodetector with Strain-Free GaAsQuantum Dot Pairs Grown by High Temperature Droplet Epitaxy[J]. Nano Lett.,2010,10:1512–1516.
    [34] P. Bhattacharya, X. H. Su, S. Chakrabarti, et al. Characteristics of a tunneling quantum-dotinfrared photodetector operating at room temperature[J]. Appl. Phys. Lett.,2005,86(19):191106.
    [35] J. Wu, Y. F. M. Makableh, R. Vasan, et al. Strong interband transitions in InAs quantum dotssolar cell[J]. Appl. Phys. Lett.,2012,100(5):051907.
    [36] J. Y. Kim, S. H. Kim, H.–Ho. et al. New Architecture for High-Efficiency Polymer PhotovoltaicCells Using Solution-Based Titanium Oxide as an Optical Spacer[J]. Adv. Mater.2006,18:572-576.
    [37] P. Schilinsky, C. Waldauf, C. J. Brabec. Performance Analysis of Printed Bulk HeterojunctionSolar Cells[J]. Adv. Funct. Mater.2006,169(13):1669-1672.
    [38] T. Zheng. Studies of Inverted Organic Solar Cells Fabricated by Doctor Blading Technique[D].Link pings universitet,2010.
    [39] N. H. Claudia, A. C. Stelios, S. Pavel, et al. High Photovoltaic Performance of Inkjet PrintedPolymer:Fullerene Blends[J] Adv. Mater.2007,19(22):3973-3978.
    [40] S. E. Shaheen, R. Radspinner, N. Peyghambaria, G. E. Jabbour. Fabrication of bulkheterojunction plastic solar cells by screen printing[J]. Appl. Phys. Lett.2001,79(18):2996.
    [41] P. Kopola, T. Aernouts, S. Guillerez, M. Tuomikoski, A. Maaninen, J. Hast, High efficient plasticsolar cells fabricated with a high-throughput gravure printing method[J]. Sol. Energy Mater. Sol.Cells,2010,94(10):1673-1680.
    [42] S. Yoo, B. Domercq, B. Kippelen. Efficient thin-film organic solar cells based on pentacene/C60heterojunctions[J]. Appl. Phys. Lett.,2004,85(22):5427-5429.
    [43] H. Gommans, T. Aernouts, B. Verreet, et al. Perfluorinated Subphthalocyanine as a NewAcceptor Material in a Small-Molecule Bilayer Organic Solar Cell[J]. Adv. Funct. Mater.2009,19(21):3435-2439.
    [44] H. Gommans, D. Cheyns, T. Aernouts, et al. Electro-Optical Study of Subphthalocyanine in aBilayer Organic Solar Cell[J]. Adv. Funct. Mater.2007,17:2653-2658.
    [45] D. Wynands, M. Levichkova, K. Leo, et al. Increase in internal quantum efficiency in smallmolecular oligothiophene: C60mixed heterojunction solar cells by substrate heating[J]. Appl.Phys. Lett.2010,97(7):073503-073505.
    [46] L. Y. Lin, Y. H. Chen, Z. Y. Huang, et al. A low-energy-gap organic dye for high-performancesmall-molecule organic solar cells[J]. J Am. Chem. Soc.2011,12,133(40):15822-5.
    [47] J. Xue, B. P. Rand, S. Uchida, et al. A Hybrid Planar–Mixed Molecular HeterojunctionPhotovoltaic Cell[J]. Adv. Mater.,2005,17(1):66-70.
    [48] C. Falkenberg, C. Uhich, S. Olthof, et al. Efficient p-i-n type organic solar cells incorporating1,4,5,8-naphthalenetetracarboxylic dianhydride as transparent electron transport material[J]. J.Appl. Phys.2008,104:034506.
    [49] Y. M. Sun, G. C. Welch, W. L. Leong, et al. Solution-processed small-molecule solar cells with6.7%efficiency[J]. Nature Mater.2012,11:44-48.
    [50] D. Cheyns, B. P. Rand, and P. Heremans. Organic tandem solar cells with complementaryabsorbing layers and a high open-circuit voltage[J]. Appl. Phys. Lett.,2010,97(3):033301-033303.
    [51] J. Xue, B. P. Rand, S. Uchida, et al. Asymmetric tandem organic photovoltaic cells with hybridplanar-mixed molecular heterojunctions[J]. Appl. Phys. Lett.2004,85(23):5757-5759.
    [52] R. E. Merrifield. Magnetic effects on triplet exciton interactions[J]. Pure Appl. Chem.1971,27(3):481.
    [53] A. Rao, M. W. B. Wilson, J. M. Hodgkiss, et al. Exciton fission and charge generation via tripletexcitons in pentacene/C60bilayers[J]. J. Am. Chem. Soc.2010,132(36):12698-126703.
    [54] C. Ramanan, A. L. Smeigh, J. E. Anthony, et al. Competition between singlet fission and chargeseparation in solution-processed blend films of6,13-bis(triisopropylsilylethynyl)pentacene withsterically-encumbered perylene-3,4:9,10-bis(dicarboximide)s[J]. J. Am.. Chem. Soc.2012,134(1):386-397.
    [55] G. Lanzani, G. Cerullo, M. Zavelani-Rossi, et al. Triplet-Exciton Generation Mechanism in aNew Soluble (Red-Phase) Polydiacetylene[J]. Phys. Rev. Lett.2001,87(18):187402-187405.
    [56] J. Guo, H.Ohkita, H. Benten, et al. Near-IR femtosecond transient absorption spectroscopy ofultrafast polaron and triplet exciton formation in polythiophene films with differentregioregularities[J]. J. Am. Chem. Soc.2009,131(46):16869-16880.
    [57] C. Wang, M. J. Tauber. High-yield singlet fission in a zeaxanthin aggregate observed bypicosecond resonance Raman spectroscopy[J]. J. Am. Chem. Soc.2010,132(40):13988-13991.
    [58] C. Hundt, G. Klein, B. Sipp, et al. Exciton dynamics in pentacene thin films studied bypump-probe spectroscopy[J]. Chem. Phys. Lett.1995,241(1-2):84-88.
    [59] M. W. B. Wilson, A. Rao, J. Clark, et al. Ultrafast dynamics of exciton fission in polycrystallinepentacene[J]. J. Am. Chem. Soc.2011,133(31):11830-11833.
    [60] J. Lee, P. Jadhav, M. A. Baldo. High efficiency organic multilayer photodetectors based onsinglet exciton fission[J]. Appl. Phys. Lett.2009,95(3):033301-033303.
    [61] M. G. Kang, T. Xu, H. J. Park, et al. Effciency Enhancement of Organic Solar Cells UsingTransparent Plasmonic Ag Nanowire Electrodes[J]. Adv. Mater.2010,22:4378-4383.
    [62] J. Feng, T. Okamoto, R. Naraoka, et al. Enhancement of surface plasmon-mediated radiativeenergy transfer through a corrugated metal cathode in organic light-emitting devices[J]. Appl.Phys. Lett.2008,93(5):051106.
    [63]2007-2009年自然基金项目:表面等离激元在有机电致发光中的作用;2010-2013年自然基金项目:基于介观光学金属-介质异质结构的高效有机光伏器件研究.
    [64] M. C. Scharber, D. Mühlbacher, M. Koppe, et al. Design Rules for Donors inBulk-Heterojunction Solar Cells—Towards10%Energy-Conversion Efficiency[J]. Adv. Mat.2006,18:789
    [65] V. D. Mihailetchi, L. J. A. Koster, P. W. M. Blom, et al. Compositional Dependence of thePerformance of Poly(p-phenylene vinylene): Methanofullerene Bulk-Heterojunction SolarCells[J]. Adv. Funct. Mater.2005,15(5):795-801.
    [66] F. L. Zhang, W. Mammo, L. M. Andersson, et al. Low-Bandgap Alternating FluoreneCopolymer/Methanofullerene Heterojunctions in Efficient Near-Infrared Polymer Solar[J]. Adv.Mater.2006,18(16):2169-2173.
    [67] D. Cheyns, B. P. Rand, and P. Heremans. Organic tandem solar cells with complementaryabsorbing layers and a high open-circuit voltage[J]. Appl. Phys. Lett.,2010,97(3):033301-033303.
    [68] M. C. Scharber, D. Muhlbacher, M. Koppe, et al. Design Rules for Donors in Bulk-Heterojunction Solar Cells-Towards10%Energy-Conversion Efficiency[J]. Adv. Mater.2006,18:789-794.
    [69] S. H. Park, A. Roy, S. Beaupré, et al. Bulk heterojunction solar cells with internal quantumefficiency approaching100%[J]. Nature Photon,2009,3:297-302.
    [70] A. Gadisa, W. Mammo, L. M. Andersson, et al. A new donor-acceptor-donor polyfluorenecopolymer withbalanced electron and hole mobility[J]. Adv. Funct. Mater.,2007,17(18):3836-3842.
    [71] Y. Liang, Y. Wu, D. Feng, et al. Development of New Semiconducting Polymers for HighPerformance Solar Cells[J]. J. Am. Chem. Soc.2009,131(1):56-57.
    [72] Y. Liang, D. Feng, Y. Wu, et al. Highly Efficient Solar Cell Polymers Developed viaFine-Tuning of Structural and Electronic Properties[J]. J. Am. Chem. Soc.,2009,131(22):7792–7799.
    [73] X. H. Li, W. C. H. Choy, L. H. Huo, et al. Dual Plasmonic Nanostructures for High PerformanceInverted Organic Solar Cells[J]. Adv. Mater.2012,24(22):3046-3052.
    [74] L. Dou, J. You, J. Yang, et al. Tandem polymer solar cells featuring a spectrally matchedlowbandgap polymer[J]. Nature Photon.2012,6:180-185.
    [75] S. C. Price, A. C. Stuart, L. Q. Yang, et al. Fluorine substituted conjugated polymer of mediumband gap yields7%efficiency in polymer-fullerene solar cells[J]. J. Am. Chem. Soc.,2011,133:4625-4631.
    [76] H. X. Zhou, L. Yang, A. C. Stuart, et al. Development of fluorinated benzothiadiazole as astructural unit for a polymer solar cell of7%efficiency[J]. Angew. Chem. Int. Ed.,2011,50(13):2995-2998.
    [77] M. S. Su, C. Y. Kuo, M.-C. Yuan, et al. Improving device efficiency of polymer/fullerene bulkheterojunction solar cells through enhanced crystallinity and reduced grain boundaries inducedby solvent additives[J]. Adv. Mater.,2011,23,3315-3319.
    [78] J. Yang, R. Zhu, Z. Hong, et al. A robust inter-connecting layer for achieving high performancetandem polymer solar cells[J]. Adv. Mater.,2011,23(30):3465-3470.
    [79] Y. M. Sun, C. J. Takacs, S. R. Cowan, et al. Efficient, air-stable bulk heterojunction polymersolar cells using MoOx as the anode interfacial layer[J]. Adv. Mater.,2011,23(19),2226-2230.
    [80] T. Y. Chu, J. P. Lu, S. Beaupré, et al. Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno3,2-b:2’,3’-d]silole copolymer with a power conversion efficiencyof7.3%[J]. J. Am. Chem. Soc.,2011,133(12):4250-4253.
    [81] C. M. Amb, S. Chen, K. R. Graham, et al. Dithienogermole as a fused electron donor in bulkheterojunction solar cells[J]. J. Am. Chem. Soc.,2011,133(26):10062-10065.
    [82] G. J. Zhao, Y. J. He, and Y. F. Li,6.5%Effciency of Polymer Solar Cells Based onpoly(3-hexylthiophene) and Indene-C60Bisadduct by Device Optimization[J]. Adv. Mater.2010,22:4355-4358.
    [83] Y. J. He, H. Y. Chen, J. H. Hou, et al. Indene-C60Bisadduct: A New Acceptor forHigh-Performance Polymer Solar Cells[J]. J. Am. Chem. Soc.2010,132(4):1377-1382.
    [84] Y. J. He, G. J. Zhao, B. Peng, et al. High yield synthesis, electrochemical and photovoltaicproperties of indene-C70bisadduct[J]. Adv. Funct. Mater.2010,20:3383-3389.
    [85] B. Liu, X. W. Chen, Y. P. Zou, et al. Benzo[1,2-b:4,5-b’]difuran-Based Donor AcceptorCopolymers for Polymer Solar Cells PBDFDODTBT: PC71BM Macromolecules[J],dx.doi.org/10.1021/ma301053q.
    [86] A. Najari, P. Berrouard, C. Ottone, et al. High Open-Circuit Voltage Solar Cells Based on NewThieno [3,4-c] pyrrole-4,6-dione and2,7-Carbazole Copolymers[J] Macromolecules2012,45:1833-1838.
    [87] E. Wang, L. Wang, L. Lan, et al. High-performance polymer heterojunction solar cells of apolysilafluorene derivative[J]. Appl. Phys. Lett.,2008,92(3):033307-033309.
    [88] E. G. Wang, C. Li, Y. Q. Mo, et al. Poly(3,6-silafluorene-co-2,7-fluorene)-based high-efficiencyand color-pure blue light-emitting polymers with extremely narrow band-width and high spectralstability[J]. J. Mater. Chem.2006,16(42):4133-4140.
    [89] Z. C. He, C. M. Zhong, S. J. Su, et al. Enhanced power-conversion efficiency in polymer solarcells using an inverted device structure[J]. Nature Photon.2012, DOI:10.1038/NPHOTON.2012.190.
    [90] J. A. Barker, C. M. Ramsdale, and N. C. Greenham. Modeling the current-voltage characteristicsof bilayer polymer photovoltaic devices[J]. Phys. Rev. B,2003,67:075205.
    [91] S. Yoo, B. Domercq, and B. Kippelen. Intensity-dependent equivalent circuit parameters oforganic solar cells based on pentacene and C60[J]. J. Appl. Phys.2005,97:103706.
    [92] F. Monestier, A. K. Pandey, J.-J. Simon, et al. Optical modeling of the ultimate efficiency ofpentacene: N, N’-ditridecylperylene-3,4,9,10-tetracarboxylic diimide–blend solar cells[J], J.Appl. Phys.,2007,102:034512.
    [93] J. Y. Kim, S. H. Kim, H.-Ho Lee, et al. New Architecture for High-Efficiency PolymerPhotovoltaic CellsUsing Solution-Based Titanium Oxide as an Optical Spacer[J], Adv. Mater.2006,18:572–576.
    [94] A. Alkauskas, Energy level alignment and site-selective adsorption of large organic moleculeson noble metal surfaces. University of Basel,2006.
    [95] R. R. Lunt, N. C. Giebink, A. A. Belak, et al. Exciton diffusion lengths of organic semiconductorthin films measured by spectrally resolved photoluminescence quenching[J]. J. Appl. Phys.,2009,105(5):053711.
    [96] C. Deibel, T. Strobel, V. Dyakonov. Role of the Charge Transfer State in Organic Donor-Acceptor Solar Cells[J]. Adv. Mater.,2010,22(37):4097-4111.
    [97] L. Onsager, Initial Recombination of Ions[J]. Phys. Rev.1938,54(8):554-557.
    [98] C. L. Braun. Electric field assisted dissociation of charge transfer states as a mechanism ofphotocarrier production[J]. J. Chem. Phys.1984,80(9):4157-4161.
    [99] P. F. Barbara, T. J. Meyer, M. A. Ratner. Contemporary Issues in Electron Transfer Research[J].J. Phys. Chem.,1996,100(31):13148-13168.
    [100] A. Millerand, E. Abrahams. Impurity Conduction at Low Concentrations[J]. Phys. Rev.1960,120(3):745-755.
    [101] T. R. Clarke, J. R. Durrant. Charge Photogeneration in Organic Solar Cells[J]. Chem. Rev.2010,110(11):6736-3767.
    [102] H. Ohkita, S. Cook, Y. Astuti, et al. Charge Carrier Formation in Polythiophene/Fullerene BlendFilms Studied by Transient Absorption Spectroscopy[J]. J. Am. Chem. Soc.,2008,130(10):3030-3042.
    [103] M. Limpinsel, A. Wagenpfahl, M. Mingebach, et al. Photocurrent in bulk heterojunction solarcells[J]. Phys. Rev. B,2010,81(8):085203-085208.
    [104] L. J. A. Koster, V. D. Mihailetchi, R. Ramaker, et al. Light intensity dependence of open-circuitvoltage of polymer:fullerene solar cells[J]. Appl. Phys. Lett.,2005,86(12):123509.
    [105] D. Cheyns, J. Poortmans, P. Heremans, et al. Analytical model for the open-circuit voltage andits associated resistance in organic planar heterojunction solar cells[J]. Phys. Rev. B,2008,77(16):165332.
    [106] D. Veldman,. pek, S. C. J. Meskers, et al. Compositional and Electric Field Dependence ofthe Dissociation of Charge Transfer Excitons in Alternating Polyfluorene Copolymer/FullereneBlends[J]. J. Am. Chem. Soc.,2008,130(24):7721-7735.
    [107] K. Tvingstedt, K. Vandewal, A. Gadisa, et al. Electroluminescence from Charge Transfer Statesin Polymer Solar Cells[J]. J. Am. Chem. Soc.,2009,131(33):11819-11824.
    [108] K. Vandewal, K. Tvingstedt, A. Gadisa, et al. On the origin of the open-circuit voltage ofpolymer-fullerene solar cells[J]. Nature Materials,2009,8:904-909.
    [109] M. Conor. Theory and simulation of amorphous organic electronic devices[D]. MassachusettsInstitute of Technology,2006.
    [110] S. Kraner. Measurement of charge carrier mobility and charge carrier concentration of organicphotovoltaic diodes under in situ light soaking conditions and varying temperatures[D],Johannes Kepler Universit t in Linz (JKU),2011.
    [111] Y. N. Gartstein, and E. M. Conwell. High-field hopping mobility in disordered molecular solids:A Monte Carlo study of off-diagonal disorder effects[J]. J. Chem. Phys.1994,100(12):9175.
    [112] B. D. Bookout and P. E. Parris. Long-range random walks on energetically disordered lattices[J].Phys. Rev. Lett.,1993,71(1):16-19.
    [113] G. Namkoong, P. Boland, K. Lee, et al. Design of organic tandem solar cells usingPCPDTBT:PC61BM and P3HT:PC71BM[J]. J. Appl. Phys.,2010,107(12):124515.
    [114] B. P. Rand, D. P. Burk, and S. R. Forrest. Offset energies at organic semiconductorheterojunctions and their influence on the open-circuit voltage of thin-film solar cells[J]. Phys.Rev. B,2007,75(11):115327.
    [115] S. Sista, Y. Yao, Y. Yang, et al. Enhancement in open circuit voltage through a cascade-typeenergy band structure[J]. Appl. Phys. Lett.2007,91:223508.
    [116] Y. Kinoshita, T. Hasobe, and H. Murata. Control of open-circuit voltage in organic photovoltaiccells by inserting an ultrathin metal-phthalocyanine layer[J]. Appl. Phys. Lett.,2007,91:083518.
    [117] P. J. Jadhav, A. Mohanty, J. Sussman, et al. Singlet exciton fission in nanostructured organicsolar cells[J]. Nano. Lett.2011,11(4):1495.
    [118] Y. Shao, and Y. Yang. Efficient Organic Heterojunction Photovoltaic Cells Based on TripletMaterials[J]. Adv. Mater.2005,17(23):2841-2844.
    [119] B. P. Rand, S. Schols, D. Cheyns, et al. Organic solar cells with sensitized phosphorescentabsorbing layers[J]. Org. Electron.,2009,10:1015-1019.
    [120] S. F. Alvarado, P.F. Seidler, D. G. Lidzey, et al. Direct determination of the exciton bindingenergy of conjugated polymers using a scanning tunneling microscope[J]. Phys. Rev. Lett.1998,81:1082.
    [121] J. J. M. Halls, J. Cornil, D. A. dos Santos, et al. Charge-and energy-transfer processes atpolymer/polymer interfaces: a joint experimental and theoretical study[J]. Phys. Rev. B,1999,60:5721.
    [122] S. G. Schulman. Fluorescence and Phosphorescence Spectroscopy: Physicochemical Principlesand Practice[J]. Oxford: Pergamon Press,1997
    [123] M. Pope, C. E. Swenberg. Electronic Processes in Organic Crystals. Clarendon, Oxford,1982.
    [124] P. Peumans, A. Yakimov, and S. R. Forrest. Small molecular weight organic thin-filmphotodetectors and solar cells[J]. J. Appl. Phys.2003,93(7):3693.
    [125] O. S. Heavens, Optical Properties of Thin Solid Films[J], Dover, New York,1965.
    [126] V. Andersson, K. Tvingstedt, and O. Ingan s. Optical modeling of a folded organic solar cell[J].J. Appl. Phys.2008,103(9):094520.
    [127] S. Steudel, K. Myny, V. Arkhipov, et al.50MHz rectifier based on an organic diode[J], Nat.Mater.,2005,4(8):597-600.
    [128] B. P. Rand, J. Xue, S. Uchida, et al. Mixed donor-acceptor molecular heterojunctions forphotovoltaic applications. II. Device performance[J]. J. Appl. Phys.2005,98(12):124903.
    [129] H. R. Kerp, H. Donker, R. B. M. Koehorst, et al. Exciton transport in organic dye layers forphotovoltaic applications[J], Chem. Phys. Lett.1998,298:302-308.
    [130] Y. Terao, H. Sasabe, C. Adachi, Correlation of hole mobility, exciton diffusion length, and solarcell characteristics in phthalocyanine/fullerene organic solar cells[J]. Appl. Phys. Lett.2007,90(10):103515.
    [131] H. Wang, F. Zhu, J. Yang, et al. Weak Epitaxy Growth Affording High-Mobility Thin Films ofDisk-Like Organic Semiconductors[J]. Adv. Mater.2007,19(16):2168.
    [132] N. Li, B. E. Lassiter, R. R. Lunt, et al. Open circuit voltage enhancement due to reduced darkcurrent in small molecule photovoltaic cells[J]. Appl. Phys. Lett.2009,94(2):023307.
    [133] T. Hideyuki, Y. Takeshi, F. Katsuhiko, et al. High efficiency polarization-sensitive organicphotovoltaic devices[J]. Appl. Phys. Lett.2006,88(25):253506.
    [134] T. Hirokazu, T. Hiroshi, T. Masaki, et al. Quasi-intrinsic semiconducting state of titanyl-phthalocyanine films obtained under ultrahigh vacuum conditions[J]. Appl. Phys. Lett.2000,76(7):873.
    [135] K. L. Mutolo, E. I. Mayo, B. P. Rand, et al. Enhanced Open-Circuit Voltage inSubphthalocyanine/C60Organic Photovoltaic Cells[J]. J. Am. Chem. Soc.2006,128(25):8108.
    [136] B. Ma, C. H. Woo, Y. Miyamoto, et al. Solution Processing of a Small Molecule,Subnaphthalocyanine, for Efficient Organic Photovoltaic Cells[J] J. Chem. Mater.2009,21(8):1413.
    [137] D. Y. Kim, F. So, Y. Gao. Aluminum phthalocyanine chloride/C60organic photovoltaic cellswith high open-circuit voltages[J]. Sol. Energy Mater. Sol. Cells2009,93:1688.
    [138] P. A. Hal, R. A. J. Janssen, G. Lanzani, et al. Full temporal resolution of the two-stepphotoinduced energy–electron transfer in a fullerene–oligothiophene–fullerene triad usingsub-10fs pump–probe spectroscopy[J]. Chem. Phys. Lett.2001,345(1-2):33-38.
    [139] G. Zerza, C. J. Brabec, G. Cerullo, et al. Ultrafast Charge Transfer in ConjugatedPolymer-Fullerene Composites[J]. Synth. Met.2001,119:637-638.
    [140]谷超豪,李大潜,陈恕行,数学物理方程[M],高等教育出版社,2002.
    [141] Y. Kodama, K. Ohno. Charge separation dynamics at molecular heterojunction of C60and zincphthalocyanine[J] Appl. Phys. Lett.2010,96(3):034101.
    [142] U. Rau. Reciprocity relation between photovoltaic quantum efficiency and electroluminescentemission of solar cells[J]. Phys. Rev. B2007,76(8):085303.
    [143] F. L. Zhang, J. Bijleveld, E. Perzon, et al. High photovoltage achieved in low band gap polymersolar cells by adjusting energy levels of a polymer with the LUMOs of fullerene derivatives[J]. J.Mater. Chem.2008,18(45):5468-5474.
    [144] C. M. Cardona, D. M. Guldi, S. G. Sankaranarayanan, et al. Endohedral fullerenes for organicphotovoltaic devices[J]. Nature Mater.2009,8:208-212.
    [145] M. Lenes, G.-J. A. H. Wetzelaer, F. B. Kooistra, et al. Fullerene bisadducts for enhancedopen-circuit voltages and efficiencies in polymer solar cells[J]. Adv. Mater,2008,20(11):2116-2119.
    [146] M. D. Perez, C. Borek, S. R. Forrest, et al. Molecular and morphological influences on the opencircuit voltages of organic photovoltaic devices[J]. J. Am. Chem. Soc.2009,131(26):9281-9286.
    [147] V. D. Mihailetchi, L. J. A. Koster, J. C. Hummelen, et al. Photocurrent Generation inPolymer-Fullerene Bulk Heterojunctions[J]. Phys. Rev. Lett.2004,93,216601.
    [148] R. Sokel and R. C. Hughes. Numerical analysis of transient photoconductivity in insulators[J]. J.Appl. Phys.1982,53(11):7414.
    [149] B. Mazhari, An improved solar cell circuit model for organic solar cells[J]. Sol. Energy Mater.Sol. Cells,2006,90:1021–1033.
    [150]黎明,姬成周,厉旭东等.太阳能电池参数的数值提取方法[J].北京示范大学学报,1999第2期,35:216-219.
    [151] V. Marlanez, J. C. Jimeno. Simultareous Fit to I-V characlenistics of solar cells[C]. Proceedingsof2nd World Conference on Photovoltaic Solar Energy Conversion,1998,54:23-26.
    [152] A. Kaminski, J. Marchand, J. Fave. A New method of parameters extraction from dark I-Vcurve[J]. IEEE,1997,203-207.
    [153] S. Yoo, B. Domercq, S. R. Marder. Modeling of organic photovoltaic cells with large fill factorand high efficiency[J]. Proc. of SPIE,2004,5520:110-117.
    [154] R. Ulrich, R. Torge. Measurement of thin film parameters with a prism coupler[J]. Appl. Optics,1973,12:2901.
    [155] A. Gonzalez-Cano, E. Bernabeu. Automatic interference method for measuring transparent filmthickness[J]. Appl. Optics,1993,32:2292.
    [156] P. Wu, P. Gu, J. Tang. Wide and monitoring of optical coatings with deposition errorcorrection[J]. SPIE,1993,2000:121.
    [157] G. Li, V. Shrotriya, Y. Yao, et al. Investigation of annealing effects and flm thickness dependence ofpolymer solar cells based on poly(3-hexylthiophene)[J], J. Appl. Phys.2005,98:043704.
    [158] V. D. Mihailetchi, J. Wildeman, and P. W. M. Blom. Space-Charge Limited Photocurrent[J]. Phys.Rev. Lett.2005,94,126602.
    [159] L. Chen, Z. Xu, Z. Hong, et al. Interface investigation and engineering–achieving highperformance polymer photovoltaic devices[J], J. Mater. Chem.,2010,20(13):2575-2598.
    [160] A. Rose, Concepts in photoconductivity and allied problems. New York, Interscience Publishers,1963.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700