锦鸡儿属植物系统关系及抗旱生理生态特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锦鸡儿属(Caragana Fabr.)植物隶属于豆科(Leguminosae),蝶形花亚科(Papilionoideae)。全世界约有100余种,主要分布于亚洲和欧洲的干旱和半干旱地区。我国产62种,9个变种,12个变型。主产我国华北、东北、西北、西南各省市,并且主要集中分布在草原和荒漠区。该属植物抗旱、抗寒、耐瘠薄、繁殖性强,可防风固沙、保持水土,对我国干旱、半干旱地区生态建设具有重要的意义,同时还具有广泛的应用价值。本文利用ITS序列对锦鸡儿属植物进行了初步的分子系统学研究;选择不同抗旱性的6个代表种进行了光合特征、生理生态特征及抗氧化系统对干旱胁迫响应等的比较研究。
     1.以锦鸡儿属11个系29种为代表材料,选择性扩增nrITS (?)序列并双向测序,结合黄耆亚族Astralinae (Adens) Benth其他6属7个代表种的nrITS序列进行最大简约性(MP)和最小进化(ME)的系统发育分析。结果显示:锦鸡儿属植物ITS序列长度为6l1bp-614bp;ITS-1长度为229bp-231bp;5.8S序列长度为163bp;ITS-2序列长度为216bp-220bp。与外类群排序后长度为655bp,共有170个可变位点,其中107个简约信息位点,信息位点达16.3%,因此在探讨锦鸡儿属内及近缘属间的系统学问题具有较高的参考价值,可以为属内及属间系统关系提供有力的分子证据:所研究的锦鸡儿植物被清楚地分为五个主要分支;Sect. tragacanthoides的种在MP和ME进化树中位置分散,其组的分类有待进一步商榷;卷叶锦鸡儿(C. ordosica,新种)虽然形态上与垫状锦鸡儿(C. tibetica)相似,但nrITS证据显示与它与荒漠锦鸡儿(C. roborovskyi)遗传学关系紧密;支持C. davazamcii, C. korshinskii, C. intermedia,和C. microphylla是不同的种的分类;锦鸡儿属在系统发育上不是一个单.系类群,与丽豆属(Calophaca Fish. exDC.)植物具有极为相近的亲缘关系。
     2.为了更好地了解锦鸡儿属植物适应干旱环境的光合和生理生态学特性,我们选择了不同抗旱性的6个代表种:树锦鸡儿(C. arborescens,中生),小叶锦鸡儿(C. microphylla,半干旱种),以及荒漠锦鸡儿(C. roborovsyi),狭叶锦鸡儿(Cstenophylla),刺叶锦鸡儿(C. acanthophylla),和中亚锦鸡(?)(C. tragacanthoides)等4个旱生树种进行了光合日变化、叶绿素荧光日变化及抗氧化酶活性的比较研究。结果显示:C. microphylla在早晨具有最高的同化速率(A,9.93±0.05μmolm-2s-1),但正午下降了84%,而且午后仅恢复到最大值的54%。C.roborovskyi, C. stenophylla,C.acanthophylla,和C.tragacanthoides等旱生种在干旱环境中具有高同化速率(A)和较强的抗氧化能力,但是以较高的蒸腾速率(E)和较低的水分利用效率(WUE)为代价的。抵抗策略可能是旱生锦鸡儿植物适应高温、干旱等不利环境的主要机制;C.microphylla具有高光合的潜能,但在干旱、高温等不利环境下以降低气孔导度(gs)和A来增加抵抗力,节水策略可能是其适应干旱环境的主要机制。
     3.为了进一步了解锦鸡儿植物的抗氧化系统对干旱环境的适应机制,我们对上述6中不同抗旱性的锦鸡儿植物在一个干旱-复水周期内抗氧化系统及超氧化岐化酶(SOD),过氧化物酶(POD),过氧化氢酶(CAT)的同工酶谱变化进行了研究。结果显示:SOD、POD、“抗坏血酸-谷胱甘肽循环”("ASA-GSH cycle")是旱生锦鸡儿植物抵御干旱,保护细胞正常的生理活动,适应干旱环境的物质基础;更多MnSOD和FeSOD同工酶的表达可能是旱生锦鸡儿植物适应干旱环境的根本原因。CAT在抵御干旱,保护细胞正常生理活动中作用有限。C.roborovskyi和C.tragacanthoides抗氧化能力较强,更适应十旱环境。脯氨酸可能在Carborescens和C.microphylla抵御干旱胁迫中起主要作用。
Caragana Fabr., belonging to the Papilionoideae (Leguminosae) and comprising about100species in the world, are mainly distributed in arid and semi-arid area of Asia and Europe. There are62species,9varieties and12geographic variants of this genus recorded in China. It mainly locates in the cold and drought areas in northwestern China. The species of Caragana play an important role in environmental protection, such as sand dune fixation and water conservation, in arid areas of China. They play important roles in ecological management and they have broad economic values. This paper presented the studies on the primary phylogenetic relationships of Caragana species and on the basis of results,6species represented different water resistance were chosen. The photosynthetic and ecophysiological traits with changes of some anti-oxidative physiological indices under a drying-rehydration cycle were studied. The main results were summarized as follows:
     1. Internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA from29taxa of Caragana species and seven close relatives (all belong to Astralinae (Adens) Benth) were used for primary phylogenetic analysis. Length of the entire ITS region ranges from611to614bp in Caragana species sampled. The ITS-1region (229-231bp) was only slightly longer than ITS-2(216-220bp). No length variation was found in5.8S (163bp) region. The aligned sequences nrITS of Caragana are655bp, and170sites are variable, with107phylogenetically informative sites. The ITS sequences data are useful to resolve some relationships at lower taxonomic levels within Caragana. The species of Caragana we studied were distributed into five clades in general accordance with previous morphological and phytogeographical studies. The ITS data reveal that the species of Sect, tragacanthoides were dispersed in MP tree or ME tree. Although the morphology of C. ordosica is similar to C. tibetica, the nrITS results revealed an unexpectedly close relativeship between C. ordosica and C. roborovskyi. The ITS data also indicate C. davazamcii, C. korshinskii. C. intermedia, and C. microphylla are not the same species and Caragana Fabr. is not a monophyletic group with very close connection with Calophaca Fish. exDC.
     2. To better understand the physiological characteristics in adapting to arid conditions employed by Caragana plants, the diurnal changes in photosynthetic traits and ecophysiological parameters in C. arborescens Lam.(mesophyte), C. microphylla Lam.(semiarid species), C. roborovskyi Kom., C. stenophylla Pojark., C. acanthophylla Pojark., and C. tragacanthoides Poir.(xerophytic species) were measured in Tenggeli desert. C. microphylla had the highest assimilation rate (A)(9.93±0.05μmolm-2s-1) in the morning but decreased over84%in the midday and resumed only54%in the afternoon. The four xerophytic species exhibited higher A, transpiration rate (E), stomatal conductance (gs), and lower water use efficient (WUE) than C. arborescens. In addition, the xerophytic species had more effective complex antioxidant systems. C. microphylla appears to increase drought and high temperature resistance by reducing stomata conductance and effectively osmotic adjustment, whereas the xerophytic species may use efficient antioxidative systems to adapt to the arid environment.
     3. To better understand the possible mechanisms employed by the xerophytic Caragana species against drought stress, the activities of antioxidant enzymes as well as the levels of their osmotically active solutes were studied in six Caragana species grown under a drying-rehydration cycle. Our data demonstrated that the guaiacol peroxidase (POD), superoxide dismutase (SOD) with the "ascorbate-glutathione (AsA-GSH) cycle" may be the effective protector mechanism in xerophytic Caragana species, and that catalase (CAT) may have limited effects under severe stress. Different congener species likewise have differential antioxidant mechanisms to regulate their redox status. It was also determined that drought stress did not induce any new isoenzyme of SOD, POD, and CAT, but that the xerophytic Caragana species considerably have more MnSOD and FeSOD isoenzymes. On the basis of the data obtained, we could infer both C. roborovskyi and C. tragacanthoides plants have more effective complex antioxidant systems against oxidative damage. Free proline may be crucial in the resistance of C.arborescens and C. microphylla to drought stress
引文
曹宛虹,张新英(1991)锦鸡儿属6种沙生植物次生水质部解剖.植物学报,33(3):181-187
    常朝阳,张明理(1997)锦鸡儿属植物幼茎及叶的解剖结构及其生态适应性.植物研究,17(1):65-72
    常朝阳,徐朗然,吴镇海(2004)国产丽豆属2个种的比较形态及其生态学特性和地理分布.西北植物学报,24(12):212-232
    丁莉,钟泽璞,李世仪等(1996)CO2倍增对紫花苜蓿碳、氮同化与分配的影响.植物学报,38(1):83-86
    董学军(1998)九种沙生灌木水分关系参数的实验测定及生态意义.植物学报,40(7):657-664
    龚继明,何平,钱前、沈利爽,朱立煌,陈受宜(1998)水稻耐盐性及QTL的定位.科学通报,43(17):1847-1850
    顾志建,王丽,孙航等(1993)青藏高原一些种子植物的核型研究.云南植物研究,15(4):377-384
    郭卫华,李波,黄永梅等(2004)不同程度的水分胁迫对中间锦鸡儿幼苗气体交换特征的影响.生态学报,24(12):2716-2722
    何军贤,韦振泉,梁厚果(1999)水分胁迫对小麦抗氰呼吸途径发生、运行及基因表达的影响.中国科学(C辑)。29(4):407-412
    候采霞,梁章城(1999)细胞相溶性物质的生理功能及其作用机制.植物生理学通讯35(1):1-7
    侯鑫,刘俊娥,赵一之,等.基于ITS序列和trnL-F序列探讨小叶锦鸡儿、中间锦鸡儿和柠条锦鸡儿的种间关系[J].植物分类学报,2006,44(2):126-134.
    黄原(1998)分子系统学:原理、方法及应用.北京:中国农业出版社.
    黄颜梅,张健(1998)西藏柏术抗早生理研究.四川林业科技,4:31-36
    蒋高明(2001)当前植物生理生态学研究的几个热点问题.植物生态学报,25(5):514-519
    孔红(2007)锦鸡儿属3种植物的核型研究.西北植物学报,27(3):621-615
    匡可任(1955)中国高等植物图说一豆科.北京,科学出版社,320-356
    李进,张秀伏(1996)利用梯度分析技术对12种锦鸡儿属植物抗旱性的定量研究.中国沙漠,16(4):356-369
    李雪华,蒋德明,阿拉木萨等(2002)科尔沁沙地4种植物抗旱性的比较研究.应用生态学报,13(11):1385-1388
    梁建生,张建华(1999)周期性土壤干旱和叶片水势对气孔响应术质部ABA灵敏度的影响.植物学报,41(8):855-861
    林宏伟,工大力(1998)大气二氧化碳升高对水稻生长及同化物分配的影响.科学通报,43(21):2299-2301
    林伟宏,白克智,匡廷云(1999a)大气CO2浓度和温度升高对水稻叶片及群体光合作用的影响.植物学报,41(6):624-628
    林宏伟,张福锁,白克智(1999b)大气CO2浓度升高对植物根基微生物生态系统的影响.科学通报,44(6):1690-1696
    林金星,胡玉熹(1996)大豆叶结构对CO2浓度升高的影响.植物学报,38(1):31-34
    刘家琼(1982)柠条和花棒叶的解剖学特征.西北植物研究,2(2):112-115
    刘家琼,曾泗弟等(1988)我国沙漠中部地区主要不同生态类型植物脯氨酸的累积、光合、 呼吸和叶绿素含量.植物学报,30(1):85-95
    刘美华,李忠超,陈海山,葛学军(2005)昆仑锦鸡儿(豆科)的遗传多样性研究.广西植物,25(1):53-57
    刘岩,王国英,刘俊君等(1998)大肠杆菌gutD基因转入玉米及耐盐转基因植株的获得.中国科学(C辑),28(6):542-547
    刘瑛心(1993)锦鸡儿属.中国植物志第42卷1分册.北京,科学出版社,13-67
    刘玉冰,张腾国,白琰等(2006)红砂(Reaumuria soongorica)忍耐极度干旱的保护机制:叶片脱落和茎中蔗糖累积.中国科学(C辑),36(1):1-6
    马成仓,高玉葆,王金龙等(2004a)内蒙古高原甘蒙锦鸡儿光合作用和水分代谢的生态适应性研究.植物生态学报,28(3):305-311
    马成仓,高玉葆,蒋福全等(2004b)小叶锦鸡儿和狭叶锦鸡儿的生态和水分调节特性比较研究.生态学报,24(7):1142-1151
    马成仓,高玉葆,王金龙等(2004c)小叶锦鸡儿和狭叶锦鸡儿的光合特性及保护酶系统比较.生态学报,24(8):1594-1601
    马俊莹,周睿,程炳嵩(1997)类胡萝卜素与活性氧代谢的关系.山东农业大学学报(自然科学版),28(4):518-522
    莫日根(1992)试论花粉形态在种内变异的意义.内蒙古大学学报,23(1):133-137
    莫日根,白学良(2000)小叶锦鸡儿及其两个近缘种花粉形态态性研究.内蒙古大学学报,31(2):208-215
    牛书丽,蒋高明(2003)内蒙古浑善达克沙地97种植物的光合生理特征.植物生态学报,27(3):318-324
    牛西午(1999)中国锦鸡儿属植物资源研究-分布及分种描述.西北植物学报,19(5):107-133
    牛西午,段永红,蒙新霞(2003)小叶锦鸡儿的核型分析.植物遗传资源学报,4(1):83-85
    邱军,孙京田(2003)锦鸡儿属(Caragana Fabr.)花粉形态研究及其分类学意义.山东师范大学学报,18(1):85-87
    宋炳煜,贺文君(1991)中间锦鸡儿(Caragna intermedia)株丛的水分关系.内蒙古大学学报(自然科学版),22(3):401-406
    苏培玺,严巧娣(2006)C4荒漠植物梭梭和沙拐枣在不同水分条件下的光合特征.生态学报,26(1):75-82
    汤章城(1983)植物对水分胁迫的反应和适应性Ⅱ植物对干旱的响应和适应性.植物生理学通讯,19(4):1-7
    王根轩,赵松岭(1993)在大气干旱条件下胀果甘草气孔振荡的RLC电路模拟.应用生态学报,4(2):131-135
    王华芳,张建华,梁建生,尹伟伦(1999)木本植物根系及木质部汁液ABA对土壤干旱信息的感应.科学通报,44(19):2053-2058
    王孟本,李洪建,柴宝峰(1996)拧条(Caragana korshinskii)的水分生理生态学特征.植物生态学报,20(6):494-501
    王赞,高洪文,韩建国(2005)柠条锦鸡儿DNA提取及AFLP反应体系的建立.草业学报,13(2):126-129
    韦彩妙,林植芳,孔国辉(1996)提高C02浓度对两种亚热带树苗光合作用的影响.植物学报,38(1):123-130
    魏伟,王洪新,胡志昂等(1999)毛鸟素沙地柠条群体分子生态学初步研究:RAPD证据.生态学报,19(1):16-22
    项斌,林舜华,高雷明(1996)紫花苜蓿对CO2倍增的反应-生态生理研究和模型拟合.植物学报,1996,38(1):63-71
    肖春旺,周广胜(2001)毛乌素沙地中间锦鸡儿幼苗生长、气体交换和叶绿索荧光对模拟降水量变化的响应.应用生态学报,12(5):692-696
    辛周荣,董美玲(1997)水分胁迫下植物乙烯,脯氨酸积累气孔反应的研究现状.草业科学,14(1):62-66
    徐炳成,山仑(2004)半干旱黄土丘陵区沙棘和柠条水分利用与适应性特征比较.应用生态学报,15(11):2025-2028
    阎成仕,李德全,张建华(2000)冬小麦旗叶旱促衰老过程中氧化伤害与抗氧化系统的响应.西北植物学报,20(4):568-576
    燕玲,李红,刘燕(2002)13种锦鸡儿属植物叶的解剖生态学研究.干旱区资源与环境,16(1):100-106
    杨九艳,杨劫,杨明博等(2005)额尔多斯高原锦鸡儿属植物叶的解剖结构及其生态适应性.干旱区资源与环境,19(3):175-179
    虞泓,毛钧,瞿素萍,等(2005).亚洲系百合九个品种的亲缘关系研究——来自nrDNA ITS证据.西南农业学报,18(4):387-391.
    喻梅等(1998)植物个体对全球变化的敏感度分析.植物学报,40(12):1143-1151
    曾凡江,张希明,李小明(2002)柽柳的水分生理特性研究进展.应用生态学报,13(5):611-614
    张其德,刘丽娜,卢从明等(1996)CO2加富对紫花苜蓿光合作用原初光能转换的影响.植物学报,38(6):517-523
    张建新(1986)气孔对水分利用的调节—Cowan和Farquhar的气孔调节最优化理论.植物生理学通讯,1986(4):12-17
    张正斌,山仑(1998)作物抗旱生理性状遗传研究进展.科学通报,43(17):1812-1816
    张明理,王常如(1993)秦岭和黄土高原区锦鸡儿属的表征分支和生物地理学的探讨.云南植物研究,15(4):332-338
    张明理,田希娅,宁建长(1996)锦鸡儿属花粉形态及其分类意义.植物分类学报,34(4):397-409
    张明理(1997)锦鸡儿属种系发生关系重建的探讨.云南植物研究,19(4):331-341
    张寿洲(1988)内蒙古八种锦鸡儿染色体数目初报.内蒙古大学学报,19(3):552-553
    张秀伏(1992)固沙常见锦鸡儿属植物的研究.中国沙漠,12(2):39-46
    张振万,杨淑性(1983)陕西锦鸡儿属植物.西北植物研究,3:21-31
    张振万(1993)丽豆属.见:傅坤俊主编,中国植物志,第42卷第1分册.北京,科学出版社,67-71
    赵一之(1990)中间锦鸡儿之研究.内蒙古大学学报,21(4):560-563
    赵一之(1993)中国锦鸡儿属的分类学研究.内蒙占大学学报,24(6):631-653
    赵一之,朱宗元,赵利清(2005)卷叶锦鸡儿-锦鸡儿属(豆科)一新种.植物研究,25(4):385-388
    赵长明,魏小平,尉秋实等(2005)民勤绿洲荒漠过渡带植物白刺和梭梭的光合特性.生态学报,25(8):1908-1913
    郑志富.金振华等(1998)一种与核酸复合的脱落酸结合蛋白.中国科学(C辑),28(1):22-29
    邹喻萍,汪小全,雷一丁等(1994)几种濒危植物及其近缘类群总DNA的提取及鉴定.植物学报,36(7):580-586
    朱春云,赵越,刘霞等(1996)锦鸡儿等旱生树种抗旱生理的研究.干旱区研究,13(3):59-63
    左宝玉,姜桂珍,白克智等(1996)CO2浓度倍增对谷子和紫花苜蓿叶绿体超微结构的效应.植物学报,38(1):72-74
    周道玮(1996)锦鸡儿属(Caragana Fabr.)植物分类.东北师大学报,4:69-76
    周道玮,刘钟龄,马毓泉(2005)豆科锦鸡儿属(Caragana Fabr.)植物地理分布与分化研究.植物研究,25(4):471-487
    周海燕(2001a)荒漠沙生植物生理生态学研究及展望.植物学通报,18(6):643-648
    周海燕,张景光,龙利群,赵亮(2001b)脆弱生态带典型区域几种锦鸡儿属优势灌木的光合特征.中国沙漠,21(3):227-231
    周海燕,张景光,赵亮,工刚(2002)湿润条件下几种锦鸡儿属灌木的气体交换特征及调节机制.中国沙漠,22(4):316-320
    周海燕,张景光,李新荣等(2005a)生态脆弱带不同区域近缘优势灌木的生理生态学特性.生态学报,25(1):168-175
    周海燕,李新荣,樊恒文等(2005b)极端条件下几种锦鸡儿属灌木的生理特性.中国沙漠,25(2):182-190
    周建明,朱群,白永延,汤章城(1998)水分胁迫诱导表达的小麦基因的cDNA片段克隆和序列分析.科学通报,43(22):2419-2422
    周其兴,杨永平,张明理(2002)锦鸡儿属植物14个种类的核型.植物研究,22(4):492-496
    周瑞莲,孙国钧,王海鸥(1999)沙生植物渗透调节物对干旱、高温的响应及其在逆境中的作用.中国沙漠,19:18-22
    周智彬,李培军(2002)我国旱生植物的形态解剖学研究.干旱区研究,19(1):35-40
    Aebi HE (1983) Catalase. In:Bergmeyer HU (eds) Methods of enzymatic analysis, vol 3. Verlag Chmie, Weiheim, German, pp 273-282
    Ain-Lhout F, Zunzunegui M, Diaz Barradas MC et al. (2001) Comparison of proline accumulation in two mediterranean shrubs subjected to natural and experimental water deficit. Plant Soil, 230:175-183
    Allen RD (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol, 107:1049-1054
    Alscher, RG, Donahue, JL, Cramer, CA (1997) Reactive oxygen species and antioxidants: relationships in green plant cells. Physiol Plantarum,100:224-233
    Anderson BE, Ward JM, Schroder JI (1994) Evidence for an extracellar reception site for abscisic acid in commelina guard cells. Plant Physiol,104 (4):1177-1183
    Aono M, Saji H, Sakamoto A et al. (1995) Paraquat Tolerance of Transgenic Nicotiana tabacum with Enhanced Activities of Glutathione Reductase and Superoxide Dismutase. Plant Cell Physiol, 36(8):1687-1691
    Aarssen MW, K.eogh T (2002) Conundrums of competitive ability in plants:what to measure? Oikos,96:531-542
    Arntz AM, Delpth LF (2001) Pattern and process:evidence for the evolution of photosynthesis traits in natural populations. Oecologia.127:455-467
    Asada K (1994) Production and action of active oxygen species in photosynthetic tissues. In: Foyer CH, Mullineaux PM (eds). Cause of Photooxidative Stress and Mmelioration of Defense System in Plants. Boca Raton, CRC Press, pp 77-104
    Asada K (1999) The water-water cycle in chloroplasts:scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol,50:601-639
    Baldwin BG (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants:an example from the Compositae. Mol Phylogenet Evol,1:3-16
    Baldwin BG, Sanderson MJ, Porter JM et al. (1995) The ITS region of nuclear ribosomal DNA:A valuable source of evidence on Angiosperm phylogeny. Ann Mo Bot Gard,82:247-277
    Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil,39:205-207
    Blum A (1999) Towards standard assays of drought resistance in crop plants. Molecular Approaches for the Genetic Improvement of Cereals for Stable Production in Water-Limited Environments. International workshop, June-1999, CIMMYT, Mexico, pp 29-35.
    Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptions to environmental stress. Plant Cell,7: 1099-1111
    Bohnert HJ, Jensen RG (1996) Stratigies for engineering water-stress tolerance in plants, Trends in Biontechnology,14:89-97
    Bowler C, Alliotte T, Loose M De et al. (1989) The induction of manganese superoxide dismutase
    in response to stress in Nicotiana plumbaginifolia. EMBO J,8(1):31-38.
    Bowler C, Slooten L, Vandenbranden S et al. (1991) Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J,10(7): 1723-1732
    Bowler C, Montagu MV, Inze D (1992) Superoxide Dismutase and Stress Tolerance. Annu Rev Plant Physiol Plant Mol Biol,43:83-116
    Boyer JS (1976) Photosynthesis at low water potentials. Philos Trans R Soc London Ser B,273: 501-512
    Busch DE, Ingraham NL, Smith SD (1992) Water uptake in woody riparian phreatophytes of the southwestern United States:A stable isotope study. Ecol Appl,2:450-459
    Busch DE, Smith SD (1995) Mechanisms associated with decline of woody species in riparian ecosystems of the southern US. Ecol Monogr,65:347-370
    Chen JX, Wang XF (2002) Experimental guidance in plant physiology. South China University of Technology Press, Guangzhou, PCR, pp 125-127
    Chance B, Maehly AC (1955) Assay of catalase and peroxidases. In:Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 2. Acadamic Press, New York, NY, pp 764-775
    Chai TT, Fadzillah NM, Kusnan M, Mahmood M (2005) Water stress-induced oxidative damage and antioxidant responses in micropropagated banana plantlets. Biol Plantarum 49:153-156
    Chrisman A, Frenael B, Schiller P (1995) Phytonhormones in needles of healthy and decling silver (Abies alba Mill):II Abscisic acid. J Plant Physiol,147:419-425.
    Corria M,Pereira JS (1995) The control of leaf conductance of white lupin by xylem ABA concentration decreases with the severity of water deficits. J Exp Bot,46 (282):101-110
    Dat JF, Lopez-Delgado H, Foyer CH et al. (1998) Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol,116:1351-1357
    Davies WJ and Zhang J (1991) Root signals and regulation of growth and development of plants in drying soil. Ann Rev Plant Physiol Plant Mol Biol,42:55-76
    Dure L (1993) Plant response to cellular dehydration during environment stress. In:Close T, Tray EA (eds) Current Topics in the Plant Physiology, Vol 10. American Society of Plant Physiology, Rockville, MD, pp 91-103
    Fahn. A. and Shchori. Y. (1967) The organization of the secondary con2ducting tissue in some species of the Chenopodiaceae, Phytomorphology,17:147-154.
    Fahn A (1986) Structural and functional properties of trichomes of xermorphic leaves. Ann Bot, 57:631-637
    Feierabend J, Engel S (1986) Photoinactivation of catalase in vitro and in leaves. Arch Biochem Biophys,251:567-576
    Fernandez RJ, Reynolds JF (2000) Potential growth and drought tolerance of eight desert grasses: lack of a trade-off. Oecologia,123:90-98
    Fitch WM, Margoliash E (1967) Contruction of phylogentic trees. Science,155:279-284
    Flexas J, Escalona JM, Medrano H (1998) Down-regulation of photosynthesis by drought under field conditions in grapevine leaves. Aust J Plant Physiol,25(8):893-900
    Fukai S, Cooper M (1995) Development of drought-resistant cultivars using physio-morphological traits in rice. Field Crop Res,40:67-86
    Giannopolities CN, Ries SK (1977) Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol,59:309-314
    Gorbonova, NV (1984) On System Atics of the Genus Caragana Lam. (Fabaceae). Nov Syst P1 Vase,21:92-101
    Grace SC, Logan BA (1996) Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species. Plant Physiol,124:431-440
    Inze'D, Van Montagu M (1995) Oxidative stress in plants. Curr Opin Biotech,6:153-158
    Jackson MB (1993) Are plant hormones involved in the root to shoot communication? Adv Bot Res,19:103-187
    Jay EA (1982) Factors controlling transpiration and photosynthesis in Tamarix chinensis Lour. Ecology,63(1):46-50
    Jiang YW, Huang BR (2001) Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci 41:436-442
    Jiang Y, Huang B (2002) Protein alterations in response to water stress and ABA in Tall Fescus. Crop Sci,42(1):202-207
    Kimmball BA (1983) Carbon dioxide and agricultural yield:An assemblage and analysis of 430 prior observations. Agron J,75:779-778
    Kishor PBR, Hong Z, Miao GH, et al. (1995) Overepression of Δ-pyrroline-5-carboxylate synthetase increase proline production and confers osmotolerance in transgenic plants. Plant Physiol,108:1387-1394
    Kramer PJ (1983) Problems in water relations of plants and cells.In:International review of cytology.Editored by GH Bourhe and JF Danielli. New York, Academic Press
    Kramer PJ, Boyer JS (1995) Water relations of plants and soils, Academic Press, San Diego
    Komarov VL (1908). Generis Caragana monographia. Acta Horti Petrop 29:77-388 (in Russian)
    Kozlowski TT, Pallardy SG (2002) Acclimation and adaptive responses of woody plants to environmental stress. Bot Rev,63:270-334
    Kumar S, Tamura K, and Nei M (2004) MEGA 3:Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics,5:150-163
    Larcher W (1995) Physiological Plant Ecology:Ecophysiology and Stress Physiology of Functional Groups,3rded. Berlin Heideberg, New York, Springer Press, pp 175-230
    Levit J (1980) Response of Plants to Enviromental Stresses,2nded. New York, Academic Press
    Liang J, Zhang J, Wong MH (1997) Can stomatal closure caused by xylem ABA explain the inhibition of leaf photosynthesis under soil drying? Photosynth Res,51(2):149-159
    Liu MZ, Jiang GM, Li YG, et al. (2003) Leaf osmotic potential of 104 plant species in relation to habitats and plant functional types in Hunshandak Sandland, Inner Mongolia, China. Trees, 17:554-560
    Ma CC, Gao YB, Liu HF et al. (2003) Interspecific Transition Among Caragana microphylla, C. davazamcii and C. korshinskii Along Geographic Gradient Ⅰ.Ecological and RAPD Evidence. Acta Botanica Sinica,45(10):1218-1227
    Ma CC, Gao YB, Guo HY, et al. (2003) Interspecific transition among Caragana microphylla, C. davazamcii and C. korshinskii along geographic gradient Ⅱ. Characteristics of photosynthesis and water metabolism. Acta Botanica Sinica,45(10):1228-1237
    Ma CC, Gao YB, Guo HY et al (2004) Photosynthesis, transpiration, and water use efficiency of Caragana microphylla, C. intermedia, and C. korshinskii. Photosynthetica,42:65-70
    Ma CC, Gao YB, Guo HY et al. (2008) Physiological adaptation of four dominant Caragana species in the desert region of the Inner Mongolia Plateau. J Arid Environ,72:247-254
    Metcalfe CR, Chalk L (1950) Anatomy of the Dicotyledons. Claredon Press. Oxford,1:481-530
    Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci,7:405-410.
    Moller IM (2001) Plant mitochondria and oxidative stress:electron transport, ADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol,52:561-591
    Moore RJ (1968) Chromosome numbers and phylogeny in Caragana (Leguminosae). Can J Bot, 46:1513-1522
    Mu SM, Shue LR (1985) Chromossome mumber reports, Lappula. Toxon,34 (4):727-730
    Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast. Plant Cell Physiol,22:867-880
    Noble PJ (1997) Root distribution and seasonal production in the northwestern Sonaran Desert for a C3 shrub, a C4 bunch grass, and a CAM leaf succulent. Am J Bot,84:949-955
    Pignocch IC, Fletcher J M, Wilkinson JE (2003) The function of ascorbate oxidase in tobacco. Plant Physiol,132:1631-1641
    Perl A, Perl-Treves R, Galili S et al. (1993) Enhanced oxidative-stress defense in transgenic potato expressing tomato Cu/Zn superoxide dismutase, Theor Appl Genet,85:568-576
    Pilon-Smits EAH, Ebskamp MJM, Paul MJ et al. (1995) Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol,107:125-130
    Polhill RM (1981) Galegeae. In:Polhill RM, Raver PH (eds) Advances in Legume Systematics, part 1. Royal Botanical Gardens, Kew,357-363
    Proctor MCF, Tuba Z (2002) Poikilohydry and homoihydry:antithesis or spectrum of possibilities? New Phytol,156:327-349
    Ruth GA, Neval E, Lenwood SH (2002) Role of superoxide dismutases (SODs) in colltrolling oxidative stress in plants. J Exp Bot,53:1331-1341
    Salter P J, Goode J E (1967) Crop responses to water at different stage of growth. Research review No 2. Farnham Royal, England, Commonwealth Agricultural Bureaux
    Sanchir Cz (1979) Genus Caragana Lam. Systematics, geography, phylogeny and economic significance in study on flora and vegetation of P.R. Mongolia. Voll. Academic Press, UlanBotaor
    Sandquist DR, Ehleringer JR (1998) Intraspecific variation of drought adaptation in brittlebush: leaf pubescence and timing of leaf loss vary with rainfall. Oecologia,13:162-169
    Schwartz A, Wu WH, Tucker EB et al. (1994) Inhibtion of inward K+ Channels and stomatal response by abscisic acid:an intracellar locus of phytohormone action. Pro Natl Sci,91 (9): 4019-4023
    Sinhababu A, Kumar Kar R (2003) Comparative responses of three fuel wood yielding plants to PEG-induced water stress at seedling stage. Acta Physiol Plant 25:403-409
    Smirnoff, N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol,125:27-58
    Thompson JD, Gibson TJ, Plewniak F et al. (1997) The ClustalX windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res,24: 4876-4882
    Turner NC (1979) Drought resistance and adaptation to water deficits in crop plants. In:Mussel H, Stapes R C (eds) Stress Physiology in Crop Plants. New York, Wiley, pp 343-372
    Turner NC. (1997) Further progress in crop water relations. Advances in Agronomy,58:293-339
    Turner NC, Kramer PJ (1980) Adaption of Paints to Water and High Temperature Stress. New York, Wily
    Tzvelev N (1985) Notae De Speciebus Nonnllis Florae parties Europae URSS. Nov Syst PI Vase, 22:34-38
    Van Camp W, Willekens H, Bowler C et al. (1994) Elevated Levels of Superoxide Dismutase
    Protect Transgenic Plants Against Ozone Damage. Bio/Technology,12:165-168
    Walton DC (1990) Biochemistry and Physiology of abscisic acid. Annu Rev Plant Physiol,31: 453-489.
    Wang WX, Basia V, Arie A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta,218:1-14
    Wang Z, Gao HW, Han JG et al. (2006) Allozyme diversity and population structure of Caragana korshinskyi Kom. in China. Genet Resour Crop Ev,53:1689-1697
    Willekens H, angebartels C, Tire C et al. (1994) Differential expression of catalase genes in Nicotiana plumbaginifolia (L.). PNAS,91(22):10450-10454
    Wojciechowski MF, Sanderson MJ, Baldwin BG et al. (1993) Monophyly of aneuploid Astragalus (Fahaceae):Evidence from nuclear ribosomal DNA internal transcribed spacer sequences. Am J Bot,80:711-722
    Xiao ChW, Zhou GSh, Ceulemans R (2003) Effects of elevated temperature on growth and gas exchange in dominant plant species from Maowusu sandland, China. Photosynthetic,41 (4): 565-569
    Xiao ChW, Osbert J Sun, Zhou GSh et al. (2005) Interactive effects of elevated CO2 and drought stress on leaf water potential and growth in Caragana intermedia. Trees,19:711-720
    Xu SHJ, An LZ, Feng HY, et al. (2002) The seasonal effects of water stress on Ammopiptanthus mongolicus in a desert environment. J Arid Environ,51:437-447
    Yang WB, Ren JM, Jia CP (1997) Studies on the relationship between physiological ecology of drought-resistance in Caragana korshinskii and soil water. Acta Ecol Sin,17:239-244
    Zgallai H, Steppe K, Lemeur R (2006) Effects of different levels of water stress on leaf water potential, stomatal resistance, protein and chlorophyll content and certain anti-oxidative enzymes in tomato plants. J Integr Plant Biol 48:679-685
    Zlatev ZS, Lidon FC, Ramalho JC, Yordanov IT (2006) Comparison of resistance to drought of three bean cultivars. Biol Plantarum 50:389-394

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700