基于压缩感知理论的水下成像技术和图像压缩编码技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压缩感知理论是近年来提出的一种新颖的数据采样指导理论。它改变了一直以来使用奈奎斯特定理为指导的采样模式,具有采样量少、节省采样资源等诸多优点,是近年来研究的热点。已在统计学、信息论、雷达成像和遥感等多个领域展开了应用研究。
     作者在对水下光学进行调研时发现,水下光学成像技术在海洋学研究、水下机器人、水下科学考察、海洋资源考察、军事等领域有广泛的应用和需求。然而现有的水下光学成像技术在成像距离和成像质量方面难以满足实际需求。
     通过对压缩感知理论的研究,本文在水下压缩感知成像及图像压缩编码两方面做了深入研究。
     首次提出了水下压缩感知单像素相机技术的概念,构建了融合距离选通技术和激光主动照明技术的水下压缩感知单像素相机系统框架结构、SBHE采样矩阵和POCS重构算法。在系统软硬件设计的基础上,经过理论计算与现有水下成像技术在成像距离和成像质量上进行了比较。进行计算机模拟实验验证了该技术的可行性。通过理论分析和模拟实验说明了所提出的水下压缩感知单像素相机技术在提高成像距离和成像质量上的优越性。
     首次提出一种基于光学稀疏的水下压缩感知成像新技术,建立了稀疏系统的两种工况下的数学模型,并提出两种相关的反演算法。通过对原始信号进行多次稀疏的方法,提高信号的稀疏度,达到减少压缩感知(CS)采样个数、提高采样效率的目的,按照这一思路构建了基于光学稀疏的水下压缩感知成像系统框架结构。根据照明光源的不同,分别建立了相干光和非相干光照明时的系统采样值与目标信号的数学模型。针对非相干光照明情况下,反演计算图像时的病态方程问题,提出一种1范数有约束最优化的算法。针对相干光照明情况下,系统反演时采样数据不包含相位信息无法进行逆傅立叶变换的问题,提出了一种替代值光波场复振幅反演的算法。并以非相干光照明情况为例,对系统进行了计算机模拟实验。实验结果表明本文方法能极大的提高采样效率和有效的提高成像质量。
     首次提出了软距离选通技术。该技术针对硬距离选通技术成像距离固定、硬件和控制系统复杂、成本高等缺点,根据距离选通原理,利用水下压缩感知成像技术的特点,达到减少杂散光提高成像距离和质量的目的。同时,该技术具有成像灵活、系统简单、成本低廉和系统误差小等诸多优点。
     提出一种新的基于混合采样和分块策略的图像压缩感知方法。该方法针对现有图像压缩感知方法采样效率较低的问题提出,利用低分辨率采样具有直接测量图像低频信息的特性,构造了基于互补的随机采样和低分辨率采样的混合采样矩阵,并理论证明了设计的混合采样矩阵的可行性,可以有效提高采样效率,而且结构简单、非常易于硬件实现;同时分块策略保证算法复杂度不随图像尺寸而改变,适合处理高分辨率图像。通过实验表明,该方法使用TV(total variation)重构算法时不仅极大地降低了计算复杂度,还可以有效提高重构质量,这对于压缩感知实时处理具有重要的意义。
Compressive Sensing (CS) is a new type of sampling theory. Compared with thetraditional Nyquist theorem, CS theory has many advantages, such as requiring fewersamples and less sampling resources. Recent results show that CS theory has greatpotential for many fields such as radar imaging, information processing and remotesensing. It is well known that underwater optical imaging has wide applications inoceanography, underwater scientific investigation, marine resource exploration andmilitary field, but the imaging distance and image quality of the existing underwateroptical imaging methods is hard to satisfy the actual demands. After deep research onthe superiority of CS theory on underwater imaging and image compression, someresearch results are taken in the dissertation as follows.
     The concept of underwater single-pixel camera is first put forward. Using theadvantages of range gating in eliminating stray light when imaging and ofunderwater laser pulse illumination in increasing imaging beam energy, the framestructure of underwater single-pixel imaging system based on laser pulseillumination is designed. According to the designed system, some software platformssuch as Scrambled Block Hadamard Ensemble (SBHE) measurement matrix and Projections Onto Convex Sets (POCS) reconstruction algorithm are constructed.Comparisons between the proposed underwater imaging method and the existingunderwater imaging methods are also taken by the theoretical calculation on bothimaging distance and image quality. The feasibility of the proposed technology andthe necessity of the proposed frame structure are fully proved by computersimulation experiments. Meanwhile, the superiority of the proposed underwaterimaging technology is fully shown by the theoretical analysis and the simulationexperiments.
     Owing to the complicated characteristics of underwater optical imagingenvironment, a novel active illumination compressive sensing-based underwaterimaging system using the optical sparsity method is first proposed to increase thesampling efficiency and to decrease the sampling time of the underwatercompressive sensing-based imaging system. By increasing the sparsity of the imagesignal via optical sparsity, it is easy to reach the aim of reducing compressive sensingmeasurements. The system framework of the proposed method is also constructed.According to different light sources, the mathematical models of the proposedsystems using coherent illumination and non-coherent illumination are made up inorder to determine the mathematical relations between the measurements and thetarget signal. In non-coherent illumination case, the constrainedl1-normoptimization algorithm is proposed to overcome the ill-posed equation problemoccurred in the image inverse calculation process. In coherent illumination case, aninverse algorithm with the complex amplitude of light wave field replacing by thespecific value is put forward to solve the problem that the Fourier inverse transformis not implemented because the sampled data in the inverse system do not containphase information. The results obtained from the computer simulation experimentswhen using the non-coherent illumination case as an example shows that theproposed method increases sampling efficiency and improves image quality greatly.
     In order to overcome the disadvantages of the traditional rage gating, such asthe fixed imaging distance, the complicated hardware and control system and high cost, a new range gating is proposed to reach the goal of increasing imaging distanceand image quality using the principle of range gating and the superiority ofunderwater compressive sensing-based imaging system to reducing the stray light.Meanwhile, the proposed method has many advantages such as flexible imaging,simple system, low cost and less system errors.
     A new compressive sensing method based on hybrid sampling and blockstrategy (BHCS) is proposed for images to improve the low sampling efficiencyproblem existing in image compressive sensing algorithms available. In the method,a hybrid measurement matrix combining random sampling (RS) and low-resolutionsampling (LRS) is designed to complementally measure the image information datawith high sensing efficiency using the fact that low-resolution sampling canefficiently measure the low-frequency information in image signals. Further, thehybrid measurement matrix with simple structure is proved theoretically to beincoherent with most fixed sparsifying bases. And block strategy ensures that thecomplexity of measurement and reconstruction processes does not change due to theimage size, so the method is simple and easy to implement, suitable for large-scaleapplications. Experimental results show that the proposed method using totalvariation (TV) reconstruction algorithm achieves much better results than manystate-of-the-art algorithms in terms of both PSNR and visual perception,whichmeans a lot to the application of CS theory on the field of real-time processing.
引文
[1] J T O Kirk, Light and Photosynthesis in Aquatic Ecosystem,Cambridge: CambridgeUniversity Press,199447-144;
    [2]俞宏,等。太湖水体的光学特性及其参数化方案,太湖环境生态研究(一),气象出版社,1998.6
    [3] B Billard,et al.Sea surface and depth detection in the wrelads airborne depth sounder.Appl.Opt.1986.25(5):2059~2066
    [4]杰尔洛夫N.G,赵俊生译.海洋光学,北京科学出版社,1981.
    [5]张运林,秦伯强,朱广伟等.长江中下游浅水湖泊沉积物再悬浮对水下光场的影响研究—以龙感湖和太湖为例.中国科学D辑地球科学,2005,35(增刊ΙΙ):101-110.
    [6] Rayleigh Lord. On the scattering of Light by small particales. Philos Mag.1871.
    [7] G Mie. Beitrage Zur optik Truber Medien.Spe zie L Kolloidalen Metall-Losangen.AnnPhys.1998.25(2).377~389.
    [8]陈养渭.天然水体中激光衰减的现场测量.舰船光学,2000年1,2期41~48.
    [9]徐启阳,杨坤涛,王新兵。蓝绿激光雷达海洋探测。北京:国防工业出版社,2002。36-60.
    [10]希夫林K G.海洋和大气光学.李武译.青岛:青岛海洋大学出版社,1991.13-73.
    [11] Paul F Schippnick. Phenomenological model of beam spreading in the ocean water. Proc.SPIE.1990:13-17.
    [12]陈烽.机载激光测深中激光传输通道的光学特性.应用光学,2000,第3期:32-37.
    [13] H. M. Tulldahl, P. Andersson, A. Olsson, A. Andersson. Experimental evaluation ofunderwater range-gated viewing in natural waters. Proc. of SPIE,2006, Vol.6395639506:1-8.
    [14] Heckman PJ. Jr.,“Underwater Range Gated Photography”, SPIE Underwater Photo-OpticsSeminar Proceedings, Santa Barbara, CA October1966
    [15] B.A. Swartz,“LASER RANGE GATE UNDERWATER IMAGING ADVANCES”,OCEANS, Conference of Oceans Engineering for Today's Technology and Tomorrow'sPreservation, Proceedings, II/722-II/727vol.2,1994
    [16] J.L. Forand, G.R. Fourier, D. Bonnier and P. Pace,“LUCIE: A Laser Underwater CameraImage Enhancer”, OCEANS, Proceedings, III/187-III/190vol.3, Oct1993
    [17] T.E. McDonald, et al,“Range gated imaging experiment using gated intensifiers”, SPIEConference on High-Speed imaging, Vol.3642, P.142-148, January1999
    [18] Liu Xue Ming, Zhang Ming De, Sun Xiao Han. A New Kind of Underwater Laser ImagingSystem. Chinese Journal of Lasers,2000,27(3):206-210.(in Chinese)
    [19] Francois Mirallès, Julien Beaudry, et al. Laser scanning system for inspecting largeunderwater hydroelectric structures. Journal of Electronic Imaging,2010, vol.19(2),023015:1-14.
    [20] J. Kuip, D. Garvis, R. Keiinedv, and T.G. ivlcRae,“Current Status of the NJAVSEASynchronous Scanning Laser-Imaging System”, Proceedings of SPIE. Underwater Imaging(Society for Optical Engineering, Bellingham, WA,1988),980,57-65.
    [21] J. Kuip, D. Garvis, et al,“Results of the final tank test of the LLNL/NAVSEAsynchronous-scanning underwater laser imaging system (UWLIS)”, Ocean Optics, SPIEVol.1750,453-464,1992
    [22] E J Candès, Compressive sampling. Proceedings of International Congress of Mathematics.Madrid, Spain,2006,3:1433—1452
    [23] D L Donoho. Compressed sensing. IEEE Transactions on Information Theory,2006,52(4):1289—1306.
    [24] E Candès, J Romberg, Terence Tao. Robust uncertainty principles: Exact signalreconstruction from highly incomplete frequency information. IEEE Transactions on. onInformation Theory,2006,52(2):489-509.
    [25] E Candès and J Romberg. Quantitative robust uncertainty principles and optimally sparsedecompositions. Foundations of Comput Math,2006,6(2)227-254.
    [26] D L Donoho, Y Tsaig. Extensions of compressed sensing. Signal Processing.2006,86(3)533-548.
    [27] M Balouchestani, K Raahemifar, and S Krishnan. Compressed sensing in wireless sensornetworks: survey. Canadian Journal on Multimedia and Wireless Networks,2011,2(1):1-4.
    [28] J Edawards. Focus on compressive sensing. IEEE Signal Processing Magazine,2011,28(2):11-13.
    [29] H Rauhut. Compressive sensing and structured random matrices. Radon Series onComputational and Applied Mathematics,2011,9:1-94.
    [30] M Davenport and M Duarte, et al. Compressed sensing: theory and applications, CambridgeUniversity Press,2011:1-68.
    [31] B Kashin. The widths of certain finite dimensional sets and classes of smooth functions. IzvAkad Nauk SSSR.1977,41(2):334-351.
    [32] E J Candès and T Tao. Near optimal signal recovery from random projections: Universalencoding strategies. IEEE Transactions on. Info. Theory.2006,52(12):5406-5425.
    [33] R G Baraniuk.. Compressive sensing. IEEE Signal Processing Magazine,2007,24(4):118-121.
    [34]石光明,刘丹华,高大化等.压缩感知理论及其研究进展.电子学报,2009,第5期:1070-1081.
    [35] B A Olshausen, D J Field. Emergence of simple-cell receptive field propertiesby learning asparse code for natural images. Nature,1996,381(6583):607-609.
    [36]李树涛,魏丹.压缩传感综述.自动化学报,2009,第11期:1369-1377.
    [37] E J Candès. Ridgelets: theory and applications. Stanford: Stanford University.1998.
    [38] E J Candès, D L Donoho. Curvelets. USA: Department of Statistics, Stanford University.1999.
    [39] E L Pennec, S Mallat. Image compression with geometrical wavelets. Proc. of IEEEInternational Conference on Image Processing, ICIP’2000. Vancouver, BC: IEEE ComputerSociety,2000.1:661-664.
    [40] N M Do, M Vetterli. Contourlets: A new directional multiresolution image representation.Conference Record of the Asilomar Conference on Signals, Systems and Computers. PacificGroove, CA, United States: IEEE Computer Society.2002.1:497-501.
    [41] G Peyré. Best Basis compressed sensing. Lecture Notes in Computer Science,2007,4485:80-91.
    [42] S Mallat, Z Zhang. Matching pursuits with time2frequency dictionaries. IEEE Transactionson Signal Processing,1993,41(12):3397-3415.
    [43] V Temlyakov. Nonlinear Methods of Approximation. IMI Research Reports, Dept ofMathematics, University of South Carolina.2001.01-09.
    [44] D L Donoho, X Huo. Uncertainty principles and ideal atomic decompositions. IEEETransactions on Information Theory,2001,47(7):2845-2862.
    [45] M Elad, A M Bruckstein. A generalized uncertainty principle and sparse representation inpairs of bases. IEEE Transactions on Information Theory.2002,48(9):2558-2567.
    [46] A Feuer, A Nemirovsky. On sparse representation in pairs of bases. IEEE Transactions onInformation Theory,2003,49(6):1579-1581.
    [47] J A Tropp. Greed Is Good: Algorithmic Results for Sparse Approximation. IEEE Transactionson Information Theory,2004,50(10):2231-2242.
    [48] R Gribonval, M Nielsen. Sparse decompositions in unions of bases. IEEE Transactions onInformation Theory,2003,49(12):3320-3325.
    [49] E J Candès, T Tao. Decoding by linear programming. IEEE Transactions on InformationTheory,2005,51(12):4203-4215.
    [50] E J Candès. The restricted isometry property and its implications for compressed sensing.Acadèmie des sciences,2006,346(I):598-592.
    [51] E J Candès, J Romberg, T Tao. Stable signal recovery from incomplete and inaccuratemeasurements. Communications on Pure and Applied Mathematics,2006,59(8):1207-1223
    [52] D L Donoho. For most large under determined systems of linear equations the minimal normsolution is also the sparsest solution. Communications on Pure and Applied Mathematics,2006,59(6):797-829.
    [53] D L Donoho. For most large under determined systems of equations, the minimall1normnear-solution approximates the sparsest near-solution. Communications on Pure and AppliedMathematics,2006,59(7):907-934.
    [54] Y Tsaig, D L Donoho. Extensions of compressed sensing. Signal Processing,2006,86(3):549-571.
    [55] A Pinkus. N-Widths in Approximation Theory. New York: Springer-Verlag,1985.
    [56] L Gan, T T Do, T D Tran. Fast Compressive Imaging Using Scrambled Block HadamardEnsemble[OL]. http://dsp.rice.edu/sites/dsp.rice.edu/files/cs/srambled_blk_WHT.pdf,2010.8.
    [57] W U Bajwa, J D Haupt, G M Raz, S J Wright, R D Nowak. Toeplitz-structure dcompressedsensing matrices. Proceedings of the IEEE Workshop on Statistical Signal Processing.Washington D. C. USA: IEEE,2007.294-298.
    [58] F Sebert, Y M Zou, L Ying. Toeplitz block matrices in compressed sensing and theirapplications in imaging. Proceedings of International Conference on Technology andApplications in Biomedicine. Washington D. C. USA: IEEE,2008.47-50.
    [59] T T Do, T D Trany, L Gan. Fast compressive sampling with structurally random matrices.Proceedings of the IEEE International Conference on Acoustics, Speech and SignalProcessing. Washington D. C. USA: IEEE,2008.3369-3372.
    [60] S S Chen, D L Donoho,M A Saunders. Atomic decomposition by basis pursuit. SIAMReview,2001,43(1):129-159.
    [61] D L Donoho, M Elad, V N Temlyakov. Stable recovery of sparse over completerepresentations in the presence of noise. IEEE Transactions on Information Theory,2006,52(1):6-18.
    [62] E J Candès, J Romberg. Practical signal recovery from random projections [OL]. http://www. acm. Caltech.edu/~emmanuel/papers/PracticalRecovery.pdf,2009.10
    [63] E Candes, N Braun, M B Wakin. Sparse signal and image recovery from compressivesamples. Proceedings of the4th IEEE International Symposium on Biomedical Imaging:From Nano to Macro. Washington D. C. USA: IEEE,2007.976-979.
    [64] L M Bregman. The method of successive projection for finding a common point of convexsets. Doklady Mathematics,1965,(6):688-692.
    [65] N Kingsbury. Complex wavelets for shift invariant analysis and fitering of complex waveletsfor shift invariant analysis and filtering of signals. Applied and ComputationalHarmonicAnalysis,2001,10(3):234-253.
    [66] K K Herrity, A C Gilbert, J A Tropp. Sparse approximation via iterative thresholding.Proceedings of the IEEE International Conference on Acoustics, Speech and SignalProcessing. Washington D.C. USA: IEEE,2006:624-627.
    [67] I Daubechies, M Defrise, C De Mol. An iterative thresholding algorithm for linear inverseproblems with a sparsity constraint. Comm. Pure Appl. Math.,2004,57(11):1413-1457.
    [68] S J Kim, K Koh, M Lustig, S Boyd, D Gorinevsky. An interior-point method for large-scalel1regularized least squares. IEEE Journal of Selected Topics in Signal Processing,2007,1(4):606-617.
    [69] M A T Fiqueiredo, R D Nowak, S J Wright. Gradient projection for sparse reconstruction:application to compressed sensing and other inverse problems. IEEE Journal of SelectedTopics in Signal Processing,2007,1(4):586-597.
    [70] D L Donoho, Y Tsaig. Fast Solution ofl1Norm Minimization Problems When theSolution May Be Sparse, Technical Report, Department of Statistics, Stanford University,USA,2008.
    [71] J A Tropp, A C Gilbert. Signal recovery from random measurements via orthogonal matchingpursuit. IEEE Transactions on Information Theory,2007,53(12):4655-4666.
    [72] C La, M N Do. Signal reconstruction using sparse tree representation. Proceedings of SPIE.San Diego, CA,United States: International Society for Optical Engineering.2005.5914:1-11.
    [73] D L Donoho, Y Tsaig, I Drori etc. Sparse solution of underdetermined linear equations bystagewise orthogonal matching pursuit. Technical Report,2006.
    [74] D Needell, R Vershynin. Greedy signal recovery and uncertainty principles. Proceedings ofthe Conference on Computational Imaging. San Jose, USA: SPIE,2008.1-12.
    [75] D Needell, J A Tropp. CoSaMP: Iterative signal recovery from incomplete and inaccuratesamples. Applied and Computational Harmonic Analysis,2008,26(3):301-321.
    [76] T Blumensath, M E Davies. Iterative thresholding for sparse approximations. Journal ofFourier Analysis and Applications,2008,14(5-6):629-654.
    [77] A C Gilbert, S Guha, P Indyk, etc. Near-optimal sparse Fourier representations via sampling.Proceedings of the Annual ACM Symposium on Theory of Computing. Montreal, Que,Canada: Association for Computing Machinery.2002.152-161.
    [78] A C Gilbert, S Muthukrishnan, M J Strauss. Improved time bounds for near-optimal sparseFourier representation. Proceedings of SPIE, Wavelets XI. Bellingham WA: InternationalSociety for Optical Engineering.2005,5914:1-15.
    [79] A C Gilbert, M J Strauss, J A Tropp, etc. Algorithmic linear dimension reduction in the normfor sparse vectors. Proceeding of the44th Annual Allerton Conference on Communication,Control and Computing, Monticello, Allerton, Sept.2006.
    [80] A C Gilbert, M J Strauss, J A Tropp, etc. One sketch for all: Fast algorithms for compressedsensing.Proceedings of the39th Annual ACM Symposium on Theory of Computing. NewYork: Association for Computing Machiner.2007.237-246.
    [81] R Baraniuk, P Steeghs. Compressive radar imaging. Proceedings of the Radar Conference.Washington D.C., USA: IEEE,2007.128-133.
    [82] S Bhattacharya, T Blumensath, B Mulgrew,etc. Fast encoding of synthetic aperture radar rawdata using compressed sensing. IEEE Workshop on Statistical Signal Processing. Madison,Wisconsin,2007.448-452.
    [83] M Lustig, J M Santos, D L Donoho,etc. K-t SPARSE: High frame rate dynamic MRIexploiting spatio2temporal sparsity. Proceedings of the14th Annual Meeting of ISMRM.Seattle, Washington.2006.24:202-443.
    [84] M Lustig, D L Donoho, J M Pauly. Sparse MRI: the application of compressed sensing forrapid MR imaging. Magnetic Resonance in Medicine,2007,58(6):1182-1195.
    [85] S Hu, M Lustig, A P Chen, J Crane, A Kerr, D A C Kelley. Compressed sensing for resolutionenhancement of hyperpolarized13C flyback3D-MRSI. Journal of Magnetic Resonance,2008,192(2):258-264.
    [86] D Baron, M B Wakin, M Duarte, etc. Distributed compressed sensing [OL]. http://www. dsp.rice. edu/~drorb/pdf/DCS112005.pdf.
    [87] M A Sheikh, O Milenkovic, R G Baraniuk. Designing compressive sensing DNA microarrays.Proceedings of the IEEE International Workshop on Computational Advances inMulti-Sensor Adaptive Processing. Washington D.C., USA: IEEE,2007.141-144.
    [88] M A Sheikh, S Sarvotham, O Milenkovic, R G Baraniuk. DNA array decoding from nonlinearmeasurements by belief propagation. Proceedings of the14thWorkshop on Statistical SignalProcessing. Washington D.C., USA: IEEE,2007.215-219.
    [89] S Kirolos, J Laska, M. Wakin, etc. Analog-to-information conversion via randomdemodulation. Proceedings of the IEEE Dallas Circuits and Systems Workshop. Dallas,Texas.2006.
    [90] J Laska, S Kirolos, Y Massoud, etc. Random sampling for analog-to-information conversionof wideband signals. Proceedings of the IEEE Dallas Circuits and Systems Workshop(DCAS). Dallas, Texas,2006.
    [91] T Ragheb, S Kirolos, J Laska, A Gilbert, M Strauss, R Baraniuk. Implementation models foranalog-to-information conversion via random sampling. Proceedings of the50thMidwestSymposium on Circuits and Systems. Washington D.C., USA: IEEE,2007.
    [92] L Gan. Block compressed sensing of natural images. Proceedings of the15thInternationalConference on Digital Signal Processing. Washington D.C., USA: IEEE,2007.403-406.
    [93] V Stankovic, L Stankovic, S Cheng. Compressive video sampling. Proceedings of theEuropean Signal Processing Conference. Lausanne, Switzerland.2008.1-5.
    [94] R F Marcia, R M Willett. Compressive code daperture video reconstruction. Proceedings ofthe European Signal Processing Conference. Lausanne, Switzerland.2008.6-10.
    [95] W Bajwa, J Haupt, A Sayeed, R Nowak. Compressive wireless sensing. Proceedings of theInternational Conference on Information Processing in Sensor Networks. Nashville, USA:Association for Computing Machinery.2006.134-142.
    [96] J Romberg. Imaging via Compressive Sampling. IEEE Signal Processing Magazine.2008.04.14-20.
    [97] Takhar D, Laska J N, Wakin M B, Duarte M F, Baron D, Sarvotham S, Kelly K F, BaraniukR G.. A New Compressive Imaging Camera Architecture using Optical-DomainCompression [OL].2008,http://dsp.rice.edu/sites/dsp.rice.edu/files/cs/cscam-SPIEJan06.pdf
    [98] Duarte M F, Davenport M A, Takhar D, Laska J N, Sun T, Kelly K F, Baraniuk R G..Single-Pixel Imaging via Compressive Sampling. Signal Processing Magazine, IEEE,2008.5:83-91.
    [99] S. Mallat, A Wavelet Tour of Signal Processing. San Diego: Academic Press,1999
    [100] W. Pennebaker and J. Mitchell, JPEG: Still image data compression standard, VanNostrand Reinhold,1993.
    [101] D. S. Taubman and M. W. Marcellin, JPEG2000: Image Compression Fundamentals,Standards and Practice. Kluwer,2001.
    [102] Thomas M C, Yates G J. Image enhancement using a range gated microchannel—plateimage intensifier(MCPII) video system with a180-ps FW HM shutter.SPIE,1995,2551:174—180.
    [103] McDonald T E, et al. Range gated imaging experiment using gated intensifiers. SPIEConference on High-Speed imaging, January1999, Vol.3642,142-148.
    [104] H. M. Tulldahl, P. Andersson, A. Olsson, A. Andersson. Experimental evaluation ofunderwater range-gated viewing in natural waters. Proc. of SPIE,2006, Vol.6395639506:1-8.
    [105] G Kervern,A L Gall.Imaging through scattering media.SPIE,1992,1714:81-92.
    [106] B A Swartz, J D Cummings. Laser range—gated underwater imaging includingpolarization discrimination.SPIE,1991,1537:42-56.
    [107] A N Tikhonov. On solving incorrectly posed problems and method and regularization.Dokl. Acad. Nauk USSR,1963,151(3).
    [108]王彦飞.反演问题的计算方法及其应用.北京:高等教育出版社,2007.
    [109] P. C. Hansen, T. Sekii and H. Shibahashi, The modified truncated-SVD method forregularizationin general form, SIAM J. Sci. Stat. Comput.,13(1992), pp.1142–1150.
    [110]杨文采.地球物理反演的理论和方法.北京:地质出版社,1997.
    [111] S P Parker. Computer Science Source Book. MCGRAW-HILL BOOK CO.1988.NewYork.
    [112] L Gan. Block compressed sensing of natural images. Proceedings of IEEE DSP, Cardiff,UK, July2007:403-406.
    [113] S Mun and Fowler J E. Block compressed sensing of images using directional transforms.Proceedings of IEEE ICIP, Cairo, Egypt, November2009:3021-3024.
    [114] Davenport M and Duarte M, et al. Compressed sensing: theory and applications,Cambridge University Press,2011:1-68.
    [115] E J Candès, J Romberg. Sparsity and incoherence in compressive sampling. InverseProblem,2007,23(3):969-986.
    [116] Willett R M, Harmany Z T, and Marcia R F. Possion image reconstruction with totalvariation regularization. Proceedings of IEEE ICIP, Hong Kong, September2010:4177-4180.
    [117] M S Lobo, V L andenberghe, S Boyd, H Lebret. Applications of second-order coneprogramming. Linear Algebra and Its Applications,1998,284(1-3):193-228.
    [118] Wang Z and Bovik A C, et al. Image quality assessment: from error measurement tostructural similarity. IEEE Transaction on Image Processing,2004,3(4):600-612.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700