用分子标记剖析油菜重要农艺性状的遗传基础
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
许多重要农艺性状是数量性状,遗传育种的相当大部分的工作就是改良这些数量性状。尽管油菜育种工作者选育了很多的优良品种,并且杂种优势在生产上得以利用,但是总的说来,选育新品种的效率还不高,这与数量性状的遗传基础及其杂种优势机理研究得不够透彻有关。分子标记的兴起,QTL定位理论的不断完善,以及不断创新的试验群体设计给数量性状的研究提供了有效手段。
     本研究利用强杂种优势的甘蓝型油菜杂交组合Quantum×No.2717-17的两个永久群体。一个为F_1小孢子培养得到的258个DH系:另一个为以DH群体为基础群体,通过系间杂交得到的258个组合的“永久F_2群体”(Immortalized F_2,IF_2)。通过三个环境下的田间试验,考察包括产量及其构成因子在内的11个性状,结合分子标记分析,对性状及其杂种优势进行QTL定位和上位性检测。主要结果如下:
     1.以207个SSR标记和190个SRAP标记构建了全长为1747.4cM的遗传连锁图谱,标记间的平均距离为4.4cM。采用共同的SSR标记,将本图谱与甘蓝型油菜通用图谱进行了初步对应。
     2.卡方测验表明,在DH群体中,129个标记(32.5%)表现显著偏分离(P<0.01),且大部分偏向母本。永久F_2群体的的位点偏分离比DH群体更严重,除在DH群体中偏分离的标记外,新增加偏分离标记36个。
     3.所有定位的397个位点的等位基因在DH群体中的分布为Quantum等位基因占52.1%.No.2717-17等位基因占47.9%,近似为1:1,略微偏向Quantum。在永久F_2群体中的分布为Quantum等位基因占28.1%,No.2717-17等位基因占23.5%,杂合型占52.3%,所以“永久F_2群体”的基因型组成与一般F_2群体组成相似。
     4.DH群体和“永久F_2”群体变异丰富,大部分性状表现出明显的超亲分离,同时表现为正态分布。两群体的性状环境间均表现出显著差异,基因型与环境显著互作。“永久F_2”群体中性状杂种优势均表现出变幅极大的分离,而且大部分性状杂种优势值表现为正态分布。
     5.应用复合区间作图法对DH群体和“永久F_2”群体进行QTL定位。QTL数目因性状而异,从13-29个不等;产量及其构成因子共定位了88个QTL,其中至少检测到两次的QTL18个:单株产量5个,单株总角果数为3个,每穗实粒数为3个,千粒重7个。其余7个农艺性状共检测到116个QTL,其中至少检测到两次的QTL有58个。
     6.无论是高值亲本,还是低值亲本,都包含有对性状表现型起增效或者起减效作用的等位基因。大部分QTL都分布在“QTL簇”中,一些连锁群包含多个QTL簇。一些QTL仅在一个群体中检测到,表现出群体特异性。
     7.定义杂种优势效应显著的位点为杂种优势位点(HL)。产量及其构成因子共定位了44个HL,重复检测的HL共5个。其他性状共检测到67个HL,重复检测的HL仅2个。与QTL定位比较,HL的检测更易受环境影响。
     8.单个HL的贡献率一般较小。有20个HL也在IF_2群体的QTL分析中检测到。与QTL类似,部分HL也成簇分布于连锁群,表明了HL的多效性。
     9.对DH群体采用混合模型的复合区间作图法,产量及其构成因子三环境下共定位到118个上位性QTL(Epistatic QTL,E-QTL);环境间仅检测到3个相同的E-QTL。其他性状定位到的E-QTLs数量为O—21个,环境间相同的E-QTLs共6个。对比单位点QTL,环境间和性状间检测到较少的相同的E-QTL,表明E-QTL更易受环境影响。部分单位点QTL也参与了位点间互作。
     10.对IF_2群体,采用双因素方差分析,检测了基因组所有可能的两位点上位性互作。所有性状都检测到大量的上位性互作位点对;部分上位性互作存在2种或者2种以上的互作类型。互作类型以加性×加性居多,显性×显性最少。对显著的互作位点,两位点基因型组合中,常常以双位点纯合类型表现最好,但同时表现最差的也常常是双位点纯合基因型;而双位点杂合基因型则很少表现为最优基因型,但同时也不表现为最差基因型。上位性互作涉及到的位点,包括性状的QTL与非QTL,其形式以非QTL位点间互作最多;互作影响参与互作的QTL的效应表达。上位性互作和QTL一样有一因多效,可能同时影响多个性状
     11.DH群体和IF_2的上位性位点较少重叠,说明上位性效应同样受遗传背景的影响
Most of the important agronomic traits in crops are quantitative,and variations in these traits are usually controlled by many minor genes.Improvement of these quantitative traits is one of the major objectives in rapeseed genetic breeding program. Many elite varieties and hybrids in Brassica napus have been developed using traditional breeding methods,but the efficiency to breed them is still low because the genetic basis for most of the quantitative traits is still unclear.The advent of molecular markers,improved QTL mapping theory and novel experimental designs accelerated the dissection of quantitative traits in the last decade in B.napus.
     In this study,we employed two permanent populations of a highly heterotic B.napus cross,Quantum×No.2717-17.One population is 258 doubled haploid (DH) lines derived from the microspore culture of F_1,and the other one is the "immortalized F_2"(IF_2) population comprising 258 crosses resulted from randomly intermating of DH lines.Field experiments with 2 replicates following a randomized complete block design were implemented in three environments.Molecular markers were used to analyze the genetic model associated with 11 traits' performance and heterosis.The main results are summarized as follow:
     1.A genetic linkage map,spanning 1747.4 cM with an average interval of 4.4 cM,was constructed using 207 simple sequence repeat(SSR) markers and 190 sequence-related amplified polymorphism(SRAP) markers.Based on the public information of microsatellites(SSR markers),our map was aligned with reference maps.
     2.In the DH population,129 markers(32.5%) skewed from the expected 1:1 genotypic segregation by Chi-square test,and most of them skewed towards the Quantum(female parent).Compared to the DH population,36 more markers in the IF_2 population showed segregation distortion.
     3.In the DH population,the allele frequencies of Quantum and No.2717-17 in all 397 informative loci were 52.1%and 47.9%respectively.The allele ratio approximated to the expected 1:1.The genome and their proportions in the IF_2 population are similar to those in an F_2 population.The proportions of the genotypes for Quantum,No.2717-17 and heterzygousity are 27.08%,24.03%and 52.3%,respectively.
     4.Most traits in both populations showed transgressive segregation and demonstrated the normal distribution.There existed significant difference in all traits among three environments.The interactions between genotype and environment were observed for all traits.Transgressive segregation was observed for all traits' heterosis in the crosses of the IF_2 population,and the heterosis values of most traits displayed the normal distribution.
     5.The entire genome was searched for QTL conferring significant effects on all scored traits by composite interval mapping in two populations.The number of QTL varied according to the different traits.A total of 88 QTL were detected for yield and its component traits in three environments and of these 18 QTL were detected for more than once.There were 116 QTL identified related to other traits, of which 58 ones were repeatedly detected.
     6.QTL positive and negative additive effects were dispersed in both parents for all the traits.Most of QTL were located in QTL clusters.Some QTL were specifically detected only in one population.
     7.By composite interval mapping,44 heterosis loci were detected for yield and its component traits in the IF2 population,and five HL were repeatedly detected.For other traits,67 HL were detected,and only two were repeatedly detected. Compared to QTL mapping,the detection of HL was more sensitive to environmental influence.
     8.The proportion of variation explained by single HL was relatively small.Twenty HL were also detected in QTL analysis.Like QTL,some HL for different traits formed clusters on linkage groups.
     9.A total of 118 epistatic QTL(E-QTL) were detected for yield and its component traits in the three environments using composite interval mapping with mixed model,and 3 of them were repeatedly detected over environments.For other traits, 0 to 21 E-QTL were resolved for each one,and 6 common E-QTL were repeatedly detected over environments.The detection of E-QTL was more sensitive to environmental effect than that of main QTL.Some main QTL were invovled in interaction.
     10.All possible two-way ANOVAs between the markers on whole linkage groups were analyzed for 11 traits in the IF_2 population.A large number of significant digenic interactions were detected for all traits.In a part of loci,two or more interaction types were detected in one pair of loci.All 4 possible digenic significant interaction types(AA,AD,DA,DD) were detected,and of them AA type occurred at predominantly high frequencies with DD type being the least frequent.For two-locus combinations of significant digenic interactions, two-locus homozygotes were the best genotypes in many cases,at the same time, another two-locus homologues combinations was also the worst genotype;On the other hand,double heterozygote were rarely the best genotype and never the worst genotype.Most interactions occurred between two loci both showing non-significant effects to traits.The effects of some QTL were influenced by epistasis.Pleiotropic effects of digenic interactions were detected between or among the related traits.
     11.The digenic interactions detected in the DH and IF_2 populations showed little overlapping,which suggested that effects of epistasis were influenced by the genetic background.
引文
1.王汉中.中国油菜品种改良的中长期发展战略.中国油料作物学报,2004,98-101
    2.王刚,潘俊松,李效尊,何欢乐,吴爱忠,蔡润.黄瓜SRAP遗传连锁图的构建及侧枝基因定位.中国科学C辑,2005,34:510-516
    3.田曾元,戴景瑞.利用cDNA-AFLP技术分析玉米灌浆期功能叶基因差异表达与杂种优势.科学通报,2002,47:1412-1416
    4.刘仁虎,孟金陵.MapDraw,在Excel中绘制遗传连锁图的宏.遗传,2003,25:317-321
    5.刘后利.作物育种研究进展.南京:东南出版,1994
    6.刘春林,官春云,李栒,阮颖,寥晓兰,熊兴华,周小云,王国槐,陈社员.油菜分子标记图谱构建及抗菌核病性状的QTLs定位.遗传学报,2000,27:918-924
    7.刘雪平.人工合成甘蓝型油菜种皮色泽、芥酸含量和花色的遗传研究.[博士学位论文].华中农业大学,2004
    8.华金平.汕优63“永久F_2”群体构建及其杂种优势的遗传研究.[博士学位论文].华中农业大学,2001
    9.朱军.遗传模型分析方法.北京,中国农业出版社,1996
    10.邢永忠.用分子标记研究水稻重要农艺性状的遗传基础.[博士学位论文].华中农业大学,1999
    11.严建兵.玉米杂种优势遗传基础及玉米与水稻比较基因组研究.[博士学位论文].华中农业大学,2003
    12.何光华,袁祚廉,郑家奎,谢戎,杨正林,黄建国,邵启明,袁玲.水稻籽粒蛋白质、游离氨基酸含量的配合力与杂种优势分析.作物学报,1996,22:192-196
    13.余四斌.优良杂交水稻汕优63杂种优势遗传学基础的分子标记剖析.[博士学位论文].华中农业大学,1997
    14.吴为人,李维明,卢浩然.基于最小二乘估计的数量性状基因座的复合区间定位法.福建农业大学学报,1996,25:394-399
    15.吴为人,周元昌,李维明.数量性状基因型选择与基因型值选择潜力的比较.科学通报,2002,47:2080-2083
    16.吴利民,倪中福,王章奎,林展,孙其信.小麦杂种及其亲本苗期叶片家族基因差异表达及其与杂种优势关系的初步研究.遗传学报,2001,8:256-266
    17.吴敏生,高志环,戴景瑞.利用cDNA-AFLP技术研究玉米基因的差异表达.作物学报,2001,27:339-342
    18.张书芬,傅廷栋,朱家成,王建平,文雁成,马朝芝.甘蓝型油菜产量及其构成因素的QTL定位与分析.甘蓝型油菜产量及其构成因素的QTL定位与分析.作物学报,2006,32:1135-1142
    19.张书芬,傅廷栋,宋文光.甘蓝型油菜单、双低雄性不育杂种的抗逆性研究.河南农业科学,1993,10:15-17
    20.张立阳,张凤兰,王 美,刘秀村,赵岫云,薛林宝.大白菜永久高密度分子遗传图谱的构建.园艺学报,2005,32:249-255
    21.张鲁刚,王鸣,,陈杭.中国白菜RAPD分子遗传图谱的构建.植物学报,2000,42(5):485-489
    22.李佳,沈斌章,韩继祥,甘莉.一种有效提取油菜叶片总DNA的方法.华中农业大学学报,1994,13:521-523
    23.沈金雄,傅廷栋,杨光圣.甘蓝型油菜SSR、ISSR标记的遗传多样性及其与杂种表现的关 系.中国农业科学,2004,37:477-483
    24.沈俊儒,吴建勇,张剑,刘平武,杨光圣.甘蓝型油菜华油杂6号及其亲本的基因差异表达研究.中国农业科学,2006,39:23-28
    25.沈俊儒,吴建勇,张剑,杨光圣.甘蓝型油菜杂种及其亲本的基因差异表达分析.中国油料作物学报,2005,27:1-6
    26.陆光远,杨光圣,傅廷栋.一个简便的适合于分析油菜中SSR位点的检测体系.中国油料作物学报,2003,25:79-81
    27.陆光远,杨光圣,傅廷栋.甘蓝型油菜分子标记连锁图谱的构建及显性细胞核雄性不育基因的图谱定位.遗传学报,2004b,31:1309-1315
    28.易斌,陈伟,马朝芝,傅廷栋,涂金星.甘蓝型油菜产量及相关性状得QTL分析.作物学报,2006,32:676-682
    29.林忠旭,张献龙,聂以春.新型标记SRAP在棉花F2分离群体及遗传多样性评价中的适用性分析.遗传学报,2004,31:622-626
    30.胡中立,刘后利.甘蓝型油菜品质性状的配合力分析及低硫苷新种质开发的理论探讨.作物学报,1989,15:221-229
    31.徐云碧,朱立煌.分子数量遗传学.北京,中国农业科技出版社,1994
    32.高用明,万平.QTL复合区间作图中标记筛选的效率及其影响因素研究.遗传学报,2002,29:555-561
    33.傅廷栋.加入WTO对我国农业的影响和发展优质油菜生产问题.安徽农学通报,2001,7:8-12
    34.傅廷栋.杂交油菜的育种与利用.武汉:湖北科学技术出版社,2000
    35.程宁辉,杨金水,高燕萍,徐明良,钱旻,葛扣麟.玉米杂种一代与亲本基因表达差异的初步研究.科学通报,1996,41:451-454
    36.虞辉,官春云,王国槐.甘蓝型油菜杂种优势与配合力及通经分析.湖南农学院学报,1989,15:21-31
    37.廖伯寿.论WTO挑战与中国油菜产业发展.中国作物学会油料作物专业委员会.迎接21世纪的中国油料科技.北京:中国农业科学技术出版社,2002,9-15
    38.潘学彪,邹军煌,陈宗祥,陆驹飞,于恒秀,李海涛,王子斌,Rush M C,朱立煌.水稻品种Jasmine 85抗纹枯病主效QTLs的分子标记定位.科学通报,1999,44:1629-1635
    39.Abel S,Mollers C,Becker H C.Development of synthetic Brassica napus lines for the analysis of "fixed heterosis" in allopolyploid plants.Euphytica,2005,146:157-163
    40.Ali M,Copeland L O,Elias S G,Kelly J D.Relationship between genetic distance and heterosis for yield and morphological traits in winter canola Brassica napus L.Theor Appl Genet,1995,91:118-121
    41.Auger D L,Gray A D,Ream T S,Kato A,Coe E H,Jr,Birchler J A.Nonadditive gene expression in diploid and triploid hybrids of maize.Genetics,2005,169:389-397
    42.Axelsson T,Shavorskaya O,Lagercrantz U.Multiple flowering time QTLs within several Brassica species could be the result of duplicated copies of one ancestral gene.Genome,2001,44:856-864
    43.Barton N H.The role of hybridization in evolution.Molecular Ecology,2001,10:551-568
    44.Berloo R V,Stare P.Marker-assisted selection in autogamous RIL populations:a simulation study.Theor Appl Genet,1998,96:147-154
    45.Bernardo R.Relationship between single-cross performance and molecular marker heterozygosity.Theor Appl Genet,1992,83:628-634
    46. Berruyer R, Adreit H, Milazzo J, Gaillard S, Berger A, Dioh W,Lebrun M H,Tharreau D. Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1. Theor Appl Genet, 2003, 107:1139-1147
    
    47. Betran F J, RibautJ M, Beck D, Gonzalez de Leon D. Genetic Diversity, Specific Combining Ability, and Heterosis in Tropical Maize under Stress and Nonstress Environments. Crop sci, 2003, 43:797-806
    
    48. Botstein B, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map using restriction fragment length polymorphisms. Am J Hum Genet, 1980, 32: 314-331
    
    49. Boucheza A, Hospitala F, Caussea M, Gallaisa A, Charcosseta A. Marker-Assisted Introgression of Favorable Alleles at Quantitative Trait Loci Between Maize Elite Lines.Genetics, 162:1945-1959
    
    50. Breseghello F, Sorrells M E. Association Mapping of Kernel Size and Milling Quality in Wheat (Triticum aestivum L.) Cnltivars.Genetics, 2006,172:1165-1177
    
    51. Broman K W, Speed T P. A review of methods for identifying QTLs in experimental crosses. In: Seillier-Moiseiwitsch F eds., Statistics in Molecular Biology and Genetics. IMS Lecture Notes-Monograph Series, 1999, 33:114-142
    
    52. Brondani C, Rangel P, Brondani R, Ferreira M.QTL mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice (Oryza sativa) using microsatellite markers. Theor Appl Genet, 2002, 104:1192-1203
    
    53. Brucea H.The Mendelian theory of heredity and the augmentation of vigor. Science, 1910, 32:627-628
    
    54. Bryan G J, Collins A J, stephenson P, Orry A, Smith J B, Gale M D. Isolation and characterisation of microsatellites from hexaploid bread wheat. Theor Appl Genet, 1997, 94: 557-563
    
    55. Burns M J, Barnes S R, Bowman J G, Clarke M H, Werner C P, Kearsey M J. QTLs analysis of an intervarietal set of substitution lines in Brassica napus: (i) Seed oil content and fatty acid composition. Heredity, 2003, 90: 39-48
    
    56. Burr B, Burr F A, Thompson K H, Albertson M C, Stuber C W. Gene mapping with recombinant inbreds in maize. Genetics, 1988, 118: 519-526
    
    57. Butruille D V, Guries R P, Osborn T C. Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines in Brassica napus L. Genetics, 1999,153: 949-964
    
    58. Camargo L E A, Osborn T C. Mapping loci controlling flowering time in Brassica oleracea. Theor Appl Genet, 1996,92:610-616
    
    59. Cao G Q, Zhu J, He C X, Gao Y M, Wu P. QTL analysis for epistatic effects and QTL x environment interaction effects on final height of rice {Oryza sativa L.). Acta Genetica Sinica, 2001,28:135-143
    
    60. Charcosset A, Lefort-Buson M, Gallais A. Relationship between heterosis and heterozygosity at marker loci: atheoretical computation. Theor Appl Genet, 1991, 81: 571-575
    
    61. Chetelat R T, Meglic V. Molecular mapping of chromosome segments introgressed from Solanum lycopersicoides into cultivated tomato (Lycopersicon esculentum). Theor Appl Genet, 2000,100:232-241
    
    62. Cheung W Y, Champagne G, Hubert N, Landry B S. Comparison of the genetic maps of Brassica napus and Brassica oleracea. Theor Appl Genet, 1997, 94: 569-582
    63.Chyi Y S,Hoeneeke M E,Sernyk,J L.A linkage map of based on restriction fragment length polymorphism loci for Brassica rapa(syn.eampestris).Genome,1992,35:746-757
    64.Cockerham C C,Zeng Z B.Design Ⅲ with marker loci.Genetics.1996,143:1437-1456
    65.David Walker,Boerma H R,All J,Parrott W.Combining cry1Ac with QTL alleles from PI 229358 to improve soybean resistance to lepidopteran pests.Mol Breeding,2002,9:43-51
    66.Delourme R,Falentin C,Huteau V,Clouet V,Horvais R,Gandon B,Specel S,Hanneton L,Dheu J E,Deschamps M,Margale E,Vincourt P,Renard M.Genetic control of oil content in oilseed rape(Brassica napus L.).Theor Appl Genet,2006,113:1331-1345
    67.Dier B W,Mc Vetty P B E,Osborn T C.Relationship between heterosis and genetic distance based on restriction fragment length polymorphism markers in oilseed rape Brassica napus L..Crop Sci,1996,36:79-83
    68.Dion Y,Gugel R K,Rakow G F W,Seguin-Swartz G,Landry B S.RFLP mapping of resistance to the blackleg disease[causal agent,Leptosphaeria maculans(Desm.) Ces.et de Not.]in canola(Brassica napus L.).Theor Appl Genet,1995,91:1190-1194
    69.Doebley J,Stec A,Gustus C.teosinte branched1 and the Origin of Maize:Evidence for Epistasis and the Evolution of Dominance.Genetics,1995,141:333-346
    70.Doi K,Iwata N,Yoshimura A.The construction of chromosome substitution lines of African rice(Oryza glaberrima Steud.) in the background of japonica rice(O.sativa L.).Rice Genetics Newsletter,1997,14:39-41
    71.Dreisigacker S,Melehinger A E,Zhang P,Ammar K,Flachenecker C,Hoisington D,Warburton M L.Hybrid performance and heterosis in spring bread wheat,and their relations to SSR-based genetic distances and coefficients of parentage.Euphytica,2005,144:51-59
    72.Dreyer F,Graichen K,Jung C.A major quantitative trait locus for resistance to Turnip Yellows Virus(TuYV,syn.beet western yellows virus,BWYV) in rapeseed.Plant Breeding,120:457-462
    73.East E M.Studies on size inheritance in Nicotiana.Genetics,1916,1:164-176
    74.East E M.Inbreeding in corn.Rep Conn Agrie.Exp.Stn.1908,pp 419-428
    75.Ecke W,Uzunova M,Weigleder K.Mapping the genome of rapeseed(Brassica napus L.).Ⅱ:Localization of genes controlling erucic acid systhesis and seed oil content.Theor Appl Genet,1995,91:972-977
    76.Edwards M D,Stuber C W,Wendel J F.Molecular marker facilitated investigations of quantitative trait loci in maize.I:Numbers genomic distribution and types of gene action.Genetics,1987,116:113-125
    77.El-Din El-Assal S,Alonso-Blanco C,Anton J M,Peeters,Vered R,Maarten K.A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2.nature genetics,29:435-440
    78.Eshed Y,Zamir D.An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL.Genetics,1995,141:1147-1162
    79.Eshed Y,Zamir D.An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTLs.Genetics,1995,141:1147-1162
    80.Fan Z,Robbins M D,Staub J E.Population development by phenotypic selection with subsequent marker-assisted selection for line extraction in cucumber(Cucumis sativus L.).Theor Appl Genet,2006,112:843-855
    81. Fasoulas A C, Allard R W. Nonallelic gene interactions in the inheritance of quantitative characters in barley. Genetics, 1962,47:899-907
    
    82. Fazio G, Chung S M, Staub J E. Comparative analysis of response to phenotypic and marker-assisted selection for multiple lateral branching in cucumber ( Cucumis sativus L.). TheorAppl Genet, 2003,107:875-883
    
    83. Ferreira M E, Rimmer S R, Williams P H, Osborn T C. Mapping loci controlling Brassica napus resistance to Leptosphaeria maculans under different screening conditions. Phytopath, 1995a, 90: 213-217
    
    84. Ferreira M E, Satagopan J, Yandell B S, Williams P H, Osborn T C. Mapping loci controlling vernalzation requirement and flowering time in Brassica napus. Theor Appl Genet, 1995b, 90: 727-732
    
    85. Ferreira M E, Williams P H and Osborn T C. RFLP mapping of Brassica using doubled haploid lines. Theor Appl Genet, 1994,89:615-621
    
    86. Ferreira M E, Williams P H, Osborn T C. Mapping of a locus controlling resistance to Alvugo Candida in Brassica napus using molecular markers. Phytopath, 1995c, 90: 218-220
    
    87. Finnegan E J. Is plant gene expression regulated globally? TRENDS in Genetics, 2001, 17: 361-365
    
    88. Flint-Garcia S A, Darrah L L, McMullen M D, Hibbard B E. Phenotypic versus marker-assisted selection for stalk strength and second-generation European corn borer resistance in maize. TheorAppl Genet, 2003,107: 1331-1336
    
    89. Foisset N, Delourme R, Barret P, Hubert N, Landry B S, Renard M. Molecular mapping analysis of Brassica napus using isozyme, RAPD and RFLP markers on double haploid progeny. Theor Appl Genet, 1996, 93:1017-1025
    
    90. Francia E, Rizza F, Cattivelli L, Stanca A M, Galiba G, T6th B, Hayes P M, Skinner J S, Pecchioni N.Two loci on chromosome 5H determine low-temperature tolerance in a 'Nure' (winter) × 'Tremois' (spring) barley map .Theor Appl Genet, 2004, 108:670-680
    
    91. Frary A, Nesbitt T C, Frary A, Grandillo S, Knaa E, Cong B, Liu J, Meller J, Elber R, Alpert K B, Tanksley S D.fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289: 85-88
    
    92. Gebhardt C, Ballvora A, Walkemeier B, Oberhagemann P, Schiller K. Assessing genetic potential in germplasm collections of crop plants by marker-trait association: a case study for potatoes with quantitative variation of resistance to late blight and maturity type. Mol Breed, 2004,13:93-102
    
    93. Gimelfarb A, Lande R. Simulation of marker assisted selection in hybrid population. Genetical Research, 1994, 63: 39-47
    
    94. Graham G I, Wolff D W, Stuber C W. Characterization of a yield quantitative trait locus on chromosome five of maize by fine mapping. Crop Sci, 1997,37: 1601-1610
    
    95. Guillaumie S, Charmet G, Linossier L, Torney V, Robert N, Ravel C. Colocation between a gene encoding the bZip factor SPA and an eQTL for a high-molecular weight glutenin subunit in wheat (Triticum aestivum).Genome, 2004,47: 705-713
    
    96. Guo M, Rupe M A, Danilevskaya O N, Yang X F, Hu Z H. Genome-wide mRNA profiling reveals heterochronic allelic variation and a new imprinted gene in hybrid maize endosperm. Plant J, 2003, 36: 30-44
    
    97. Guo M, Rupe M A, Zinselmeier C, Habben J, Bowen B A, Smith O S. Allelic variation of gene expression in maize hybrids.Plant Cell,2004,16:1707-1716
    98.Guo W Z,Zhang T Z,Ding Y Z,Zhu Y C,Shen X L,Zhu X F.Molecular Marker Assisted Selection and Pyramiding of Two QTLs for Fiber Strength in Upland Cotton.Journal of Genetics and Genomics,2005,32:1275-1285
    99.Haudold B,Kroymann J,Ratzka A,Mitchell-Olds T,Withe T.Recombination and Gene Conversion in a 170-kb Genomic Region of Arabidopsis thaliana.Genetics,2002,161:1269-1278
    100.He G,Luo X,Tian F,Li K,Zhu Z,Su W,Qian X,Fu Yong,Wang X,Sun C,Yang J.Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice.Genome Res,2006,16:681-626
    101.Howell P M,Sharpe A G,Lydiate D J.Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape(Brassica napus).Genome,2003,46:454-460
    102.Hu J,Li G,Struss D,Quiros C F.SCAR and RAPD markers associated with 18-carbon fatty acids in rapeseed,Brassica napus.Plant Breeding,1999,118:145-150
    103.Hu J,Quiros C,Arus P,Strass D,Robbelen G.Mapping of a gene determining linolenic acid concentration in rapeseed with DNA-based markers.Theor Appl Genet,1995,90:258-262
    104.Hu X,Sullivan-Gilbert M,Gupta M,Thompson S A.Mapping of the loci controlling oleic and linolenie acid contents and development of fad2 and fad3 allele-specific markers in canola(Brassica napus L.).Theor Appl Genet,2006,113:497-507
    105.Hua J P,Xing Y Z,Wu W R,Xu C G,Sun X L,Yu S B,Zhang Q E Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid.Pro.Natl Acad Sci USA,2003,100:2574-2579
    106.Hua J P,Xing Y Z,Xu C G,Sun X L,Yu S B,Zhang Q.Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance.Genetics,2002,162:1885-1895
    107.Hughes S L,Hunter P J,Sharpe A G,Kearsey M J,Lydiate D J,Walsh J A.Genetic mapping of the novel Turnip mosaic virus resistance gene TuRB03 in Brassica napus,Theor Appl Genet,2003,107:1169-1173
    108.Jansen R C.Interval mapping of multiple quantitative trait loci.Genetics,1993,135:205-211
    109.Javidfar F,Ripley V L,Roslinsky V,Zeinali H,Abdmishani C.Identification of molecular markers associated with oleic and linolenic acid in spring oilseed rape(Brassica napus).Plant Breeding,125:65-71
    110.Jeon J,An G.Gene tagging in rice:a high throughput system for functional genomics.Plant Sci,2001,161:211-219
    111.Jiang C X,Zeng Z B.Multiple trait analysis of genetic mapping for quantitative trait loci.Genetics,1995,140:1111-1117
    112.Jourdren C,Barret P,Brunel D,Delourme R,Renard M.Specific molecular marker of the genes controlling linolenic acid content in rapeseed.Theor Appl Genet,1996,93:512-518
    113.Keeble F,Pellew C.The mode of inheritance of stature and of time of flowering in peas (Pisum sativum).Genetics,1910,1:47-56
    114.Kianian S F,Quiros C F.Generation ofa Brassica oleracea composite RFLP map:linkage arrangements among various populations and evolutionary implications.Theor Appl Genet,1992,84:544-554
    115.Kim J S,Chung T Y,King G J,Jin M,Yang T,J Y,Kim H,Park B.A Sequence-Tagged Linkage Map of Brassica rapa. Genetics, 2006, 174:29-39
    
    116. Kurata N, Nagamura Y, Yamamoto K,Harushima Y, Sue N, Wu J, Antoni B A, Shomura A, Shimizu T, Lin S Y. Inoue T, Fukuta A, Shimano T, Kuboki Y, Toyanla T.Miyalnoto Y, Kinhara T, Havasaka K, Miyao A, Monna L. 300 kilobase interval genetic map of rice including 883 expressed sequences. Nature Genet, 1994, 8:365-376
    
    117. Lagercrantz U, Lydiate D. Comparative genome analysis in Brassica. Genetics, 1996, 144: 1903-1909
    
    118. Lander E S, Botstein S. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989,121: 185-192
    
    119. Landry B S, Hubert N, Crete R, Chang M S, Lincoln S E, Etho T. A genetic map of Brassica oleracea based on RFLP markers detected with expressed DNA sequences and mapping of resistance gene to race 2 of Plasmodiophora brassicae (Woronin). Genome, 1992, 35: 409-420
    
    120. Landry B S, Hubert N. A genetic map of Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome, 1991,34: 543-552
    
    121. Lecomte L, Duffe P, Buret M, Servin B, Hospital F, Causse M. Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. TheorAppl Genet, 2004,109: 658-668
    
    122. Lemieux B. Overview of DNA chip technology. Mol Breed, 1998,4: 277-289
    
    123. Li G, Gao M, Yang B, Quiros C F. Gene for gene alignment between the Brassica and Arobidopsis genomes by direct transcriptome mapping. Theor Appli Genet, 2003, 107: 168- 180
    
    124. Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001,103: 455-461
    
    125. Li J X, Yu S B, Xu C G Tan Y F, Cao Y J, Li X H, Zhang Q F. Analyzing quantitative trait loci for yield using a vegetatively replicated F2 population from a cross between the parents of an elite rice hybrid. Theor Appl Genet, 2000,101: 248-254
    
    126. Li Y, Ma C, Fu T, Yang G, Tu J, Chen Q, Wang T, Zhang X, Li C. Construction of a molecular functional map of rapeseed(Brassica napus L.) using differentially expressed genes between hybrid and its parents. Euphytica, 2006,152: 25-39
    
    127. Li Z K, Luo L J, Mei H W, Wang D L, Shu Q Y, Tabien R, Zhong D B, Ying CS , Stansel J W, Khush G S, Paterson A H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. 1. Biomass and grain yield. Genetics, 2001, 158: 1737-1753
    
    128. Li Z K, Pinson S R M, Park W D, Paterson A H, Stansel J W. Epistasis for three grain yieldcomponents in rice (Oryza sativa L). Genetics, 1997,145: 453-465
    
    129. Lincoln S, Daly M, Lander E. Constructing genetic maps with Mapmaker/ Exp 3. 0. Whitehead Institute Technical Report, Cambridge, MA, USA, 1992
    
    130. Liu L Z, Meng J L, Lin N, Chen L, Tang Z L, Zhang X K, Li J N. QTLs mapping of seed coat color for yellow seeded Brassica napus. Yi Chuan Xue Bao, 2006, 33: 181-187
    
    131. Liu R, Qian W, Meng J. Association of RFLP markers and biomass heterosis in trigenomic hybrids of oilseed rape (Brassica napus ×B. campestris). Theor Appl Genet, 2002, 105: 1050-1057
    132.Lombard V,Delourme R.A consensus linkage map for rapeseed(Brassica napus L.):construction and integration of three individual maps from DH populations.Theor Appl Genet,2001,103:491-507
    133.Lowe A J,Moule C,Trick M,Edwards K J.Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species.Theor Appl Genet,2004,108:1103-1112
    134.Lu H,Romero-Severson J,Bernardo R.Chromosomal regions associated with segregation distortion in maize.Theor Appl Genet,2002,105:622-628
    135.Luo L J,Li Z K,Mei H W,Shu Q Y,Tabien R,Zhong D B,Ying C S,Stansel J W,Khush G S,Paterson A H.Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice.Ⅱ.Grain yield components.Genetics,2001,158:1755-1771
    136.Luo Z W,Woolliams J A.Estimation of genetic parameters using linkage between a marker gene and a locus underlying a quantitative character in F2 populations.Heredity,1993,70:245-253
    137.Manzanares-Dauleux M J,Delourme R,Baron F,Thomas G.Mapping of one major gene and of QTLs involved in resistance to elubroot in Brassica napus.Theor Appl Genet,2000,101:885-891
    138.Marwede V,Gül M K,Becker H C,Ecke W.Mapping of QTL controlling tocopherol content in winter oilseed rape.Plant Breeding,2005,124:20-26
    139.Matsumoto E,Yasui C,Ohi M,Tsukada M.Linkage analysis of RFLP markers for clubfoot resistance and pigmentation in Chinese cabbage(Brassica rapa ssp.pekinensis).Euphytica,1998,104:79-86
    140.McCallum C M,Comai L,Greene E A,Henikoff S.Targeting induced local lesions IN genomes(TILLING) for plant functional genomics.Plant Physiol,2000,123:439-442
    141.McGrath J M,Quiros C F.Generation of alien chromosome addition lines from Synthetic Brassica napus,morphology,cytology,fertility,and chromosome transmission.Genome,1990,33:374-383
    142.Melchinger A E.Genetic diversity and heterosis.In:Coors J G and Pandey S eds.The genetics and exploitation of heterosis in crops.ASA,CSSA,and SSSA,Madison,WI,1999,pp 99-118
    143.Milborrow B V,A biochemical mechanism for hybrid vigour.Journal of Experimental Botany,1998,49:1063-1071
    144.Zhang Q,Saghai Maroof M A,Yang G P,Liu K D Zhou Z Q,Gravois K A,Xu C G,Gao Y J.International Rice Research Institute.Rice genetics Ⅲ.Proceedings of the Third International Rice Genetics Symposium,1996,pp 317-326
    145.Moreau L,Charcosset A,Hospital F,Gallais A.Marker-assisted selection efficiency in populations of finite size.Genetics,148:1353-1365
    146.Muhammad T,Jerzy P.DNA and hitone methylation in plants.TRENDS in Genetics,2004,20:244-251
    147.Nadeau J H,Frankel W N.The roads from phenotypic variation to gene discovery:mutagenesis versus QTLs.Nat Genet,2000,25:381-384
    148.Omholt S W,Plahte E,φyehaug L,Xiang K.Gene regulatory networks generating the phenomena ofadditivity,dominance and epistasis.Genetics,2000,155:969-980
    149.Osborn T C,Kole C,Parkin I A,Sharpe A G,Kuiper M,Lydiate D J,Trick,M.Comparison of flowering time gene in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics, 1997, 146:1123-1129
    
    150. Palaisa K, Morgante M, Tingey S, Rafalski A. Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. Pro Natl Acad Sci USA, 2004, 101: 9885-9890
    
    151. Parkin I A P, Sharpe A G, Keith D J, Lydiate D J. Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome, 1995, 38: 1122-1131
    
    152. Parkin I A, Gulden S M., Sharpe A G, Lukens L, Trick M, Osbom, T C, Lydiate D J. Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics, 2005, 171:765-781
    
    153. Parkin I A, Sharpe A G, Lydiate D J. Patterns of genome duplication within the Brassica napus genome. Genome, 2003,46: 291-303
    
    154. Pilet M L, Delourme R, Foisset N, Renard M. Identification of loci contributing to quantitative field resistance to blackleg disease, causal agent Leptosphaeria maculans (Desm) Ces et de Not., in winter rapeseed (Brassica napus L.). Theor Appl Genet, 1998a, 96: 23-30
    
    155. Pilet M L, Delourme R, Foisset N, Renard M. Identification of QTLs involved in field resistance to light leaf spot (Pyrenopeziza brassicae) and blackleg resistance (Leptosphaeria maculans) in winter rapeseed {Brassica napus L). Theor Appl Genet, 1998b, 97: 398-406
    
    156. Pilet M L, Duplan G, Archipiano M, Barret P, Baron C, Horvais R, Tanguy X, Lucas M O, Renard M, Delourme R. Stability of QTL for Field Resistance to Blackleg across Two Genetic Backgrounds in Oilseed Rape. Crop Sci, 2001, 41: 197-205
    
    157. Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger MJ, Vincourt P, Blanchard P. Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. TheorAppl Genet, 2005, 111.1514-1523
    
    158. Price A H, Steele K A, Moore B J, Barraclough P B, Clark L J.A combined RFLP and AFLP linkage map of upland rice (Oryza sativa L.) used to identify QTLs for root-penetration ability. Theor Appl Genet, 2000, 100:49-56
    
    159. Price A H. Believe it or not, QTLs are accurate! TRENDS in Plant Science, 2006,11:213-216
    
    160. Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I. A comparative linkage map of oilseed rape and its use for QTLs analysis of seed oil and erucic acid content. Theor Appl Genet, 2006, 114:67-80
    
    161. Quijada P A, Maureira I J, Osborn T C. Confirmation of QTLs controlling seed yield in spring canola (Brassica napus) hybrids. Mol Breed, 2004, 13:193-200
    
    162. Quijada P A, Udall J A, Lambert B, Osborn T C. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. identification of genomic regions from winter germplasm. Theor Appl Genet, 2006, 113: 549-561
    
    163. Rajcan I, Kasha K J,Kott L S.Beversdorf W D. Detection of molecular markers associated with linolenic and erucic acid levels in spring rapeseed (Brassica napus L.). Euphytica, 1999, 105: 173-181
    
    164. Riaz A, Li G, Quresh Z, Swati M S, Quiros C F. Genetic diversity of oilseed Brassica napus inbred lines based on sequence-related amplified polymorphism and its relation to hybrid performance. Plant Breeding, 2001,120:411-415
    
    165. Rieseberg L H, Baird S J E, Gardner K A. Hybridization, introgression, and linkage evolution. Plant Mol Bio,2000,42:205-224
    166.Robert L S,Robson F,Sharpe A,Lydiate D,Coupland G.Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus,Plant Mol Bio,1998,37:763-772
    167.Robertson D S.Differential activity of the maize mutator Mu at different loci and in different cell lineages.Mol Gen Genet,1985,200:9-13
    168.Rocherieux J,Glory P,Giboulot A,Boury S,Barbeyron G,Thomas G,Manzanares-Dauleux M J.Isolate-specific and broad-spectrum QTLs are involved in the control of clubroot in Brassica oleracea.Theor Appl Genet,2004,108:1555-1563
    169.Romagnoli S,Maddaloni M,Livini C,Motto M.Relationship between gene expression and hybrid vigor in primary root tips of young maize(Zea mays L.) plantlets.Theor Appl Genet,1990,80:769-775
    170.Schierholt A,Becket H C,Ecke W.Mapping a high oleic acid mutation in winter oilseed rape (Brassica napus L.).Theor Appl Genet,2000,101:897-901
    171.Sebastian R L,Howell E C,King G J,Marshall D F,Kearsey M J.An integrated AFLP and RFLP Brassica oleracea linkage map from two morphologically distinct doubled-haploid mapping populations.Theor Appl Genet,2000,100:75-81
    172.Semel Y,Nissenbaum J,Menda N,Zinder M,Krieger U,Issman N,Pleban T,Lippman Z,Gur A,Zamir D.Overdominant quantitative trait loci for yield and fitness in tomato.Proc Natl Acad Sci USA,2006,103:12981-12986
    173.Semon M,Nielsen R,Jones M P,McCoueh S R.The Population Structure of African Cultivated Rice Oryza glaberrima(Steud.).Genetics,2005,169:1639-1647
    174.Sernyk J L,Stefansson B R.Heterosis in summer rape(B.napus).Can J Plant Sci,1983,63:407-413
    175.Settles A M,Latshaw S,McCarty D R.Molecular analysis of high-copy insertion sites in maize.Nucleic Acids Res,2004,32:e54
    176.Sharpe A G,Parkin I A P,Keith D J,Lydiate D J.Frequent nonreciprocal translocations in the amphidiploid genome of oilseed rape(Brassica napus).Genome,1995,38:1112-1121
    177.Shen J X,Fu T D,Yang G S,Ma C Z,Tu J X.Genetic analysis of rapeseed self-incompatibility lines reveals significant heterosis of different patterns for yield and oil content traits.Plant Breeding,2005,124:111-116
    178.Shen J X,Fu T D,Yang G S,Tu J X,Ma C Z.Prediction of heterosis using QTLs for yield traits in rapeseed(Brassica napus L.).Euphytica,2006,151:165-171
    179.Shen X,Guo W,Lu Q,Zhu X,Yuan Y,Yu J Z,Kohel R J,Zhang T.Molecular mapping of QTLs for fiber qualities in three diverse lines in Upland cotton using SSR markers.Mol Breeding,2005,15:169-181
    180.Shull G H.Beginnings of the heterosis concept.In:Heterosis J.W.Gowen Eds.Iowa State College Press.Ames,1952,pp.14-48
    181.Shuli G H.The composition of a field of maize.Am.Breeders Assoc Rep,1908,4:296-301
    182.Slocum M K,Figdore S S,Kennard W C,Suzuki J Y,Osborn T C.Linkage arrangement of restriction fragment length polymorphism loci in Brassica oleracea.Theor Appl Genet,1990,80:57-64
    183.Song K,Siocum M K,Osborn T C.Molecular marker analysis of genes controlling morphological variation in Brassica rapa(syn.Campestris).Theor Appl Genet,1995,90: 1-10
    
    184. Song K, Suzuki J Y, Slocum M K, Williams P H, Osborn T C. A linkage map of Brassica rapa (syn. Campestris) based on restriction length polymorphism loci. Theor Appl Genet, 1991,82:296-304
    
    185. Song R, Messing J. Gene expression of a gene family in maize based on noncollinear haplotypes. Proc Natl Acad Sci USA, 2003,100: 9055-9060
    
    186. Srivastava H K. Heterosis and intergenomic complementation mitochondria, chloroplast, and nucleus. In: Frankel R eds, heterosis, reappraisal of theory and practice. Springer Berlin Heidelberg, New York, 1983, pp 260-286
    
    187. Stam P.Construction of integrated genetic linkage maps by means of a new computer package: Join Map. Plant J, 1993, 3:739-744
    
    188. StatSoft Inc. Statistica. Tulsa O K, 1997
    
    189. Stuber C W, Lincoln S E, Wolff D W, Helentjaris T, Lander E S. Indentification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 1992, 132: 823-839
    
    190. Stuber C W. Mapping and manipulating quantitative trait in maize. Trends in Genetics, 1995,11:477-481
    
    191. Stupar R M, Springer N M. Cis-transcriptional variation in maize inbred lines B73 and Mo 17 leads to additive expression patterns in the F_1 hybrid. Genetics, 2006,173: 2199-2210
    
    192. Sun Q X, Ni Z F, Liu Z Y. Differential gene expression between wheat hybrids and their parental inbreds in seedling leaves. Euphytica, 1999,106:117-123
    
    193. Sun Z, Wang Z, Tu J, Zhang J, Yu F, McVetty P B E, Li G An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers. Theor Appl Genet, 2007,114: 1305-1317
    
    194. Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Kondo M, Fujimura M, Nunome T, Fukuoka H, Hirai M, Matsumoto S. Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetic origin of clubroot resistance. Genetics, 2006,173:309-319
    
    195. Swanson-Wagner R A, Jia Y, DeCook R, Borsuk L A, Nettleton D, Schnable P S. All possible modes of gene action are observed in a global comparison of gene expression in a maize F_1 hybrid and its inbred parents. Proc Natl Acad Sci USA, 2006,103: 6805-6810
    
    196. Tanhuanpaa P K, Vilkki J P, Vilkki H J. Association of RAPD marker with linolenic acid concentration in the seed oil of rapeseed (Brassica napus L.). Genome, 1995, 38: 414-416
    
    197. Tanksley S D, Ganai M W, Prince J C, deVicente M C, Bonierbale M W, Broun P, Fulton T M, Giovannoni J J, Grandillo S, Martin G B, Messeguer R, Miller J C, Miller L, Paterson A H, Pinedo , Roder M S, Wing R A, Wu W, Young N D. High density molecular linkage maps of the tomato and potato genomes: biological inferences and practical applications. Genetics, 1992, 132:1141-1160
    
    198. Thoday J M. Location of polygenes. Nature, 1961, 191:368-370
    
    199. Thormann C E, Romero J, Mantet J, Osborn T C. Mapping loci controlling the concentrations of erucic and linolenic acids in seed oil of Brassica napus L. Theor Appl Genet, 1996, 93: 282-286
    
    200. Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S.Dwarf8 polymorphisms associate with variation in flowering time. Nature Genetics, 2001, 28: 286-289
    201.Toroser D,Thormann C E,Osborn T C,Mithen R.RFLP mapping of quantitative trait loci controlling seed aliphatic-glucosinolate content in oilseed rape(Brassica napus).Theor Appl Genet,1995,91:802-808
    202.Udall J A,Quijada P A,Lambert B,Osborn T C.Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed(Brassica napus L.):2.dentification of alleles from unadapted germplasm.Theor Appl Genet,2006,113:597-609
    203.Udall J A,Quijada P A,Osborn T C.Detection of chromosomal rearrangements derived from homoeologous recombination in four mapping populations of Brassica napus L.Genetics,2005,169:967-979
    204.Uzunova M,Ecke W,Weissleder K,Rowelen G.Mapping the genome of rapeseed(Brassica napus L.) I.Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content.Theor Appl Genet,1995,90:194-204
    205.Vladuta C,McLaughlin J,Phillips R L.Fine mapping and characterization of linked quantitative in the transition of the maize apical meristem from vegetative to generative structures.Genetics,1999,153:993-100
    206.Vuylsteke M,Eeuwijk F V,Hummelen P V,Kuiper M,Zabeau M,Genetic analysis of variation in gene expression in Arabidopsis thaliana.Genetics,2005,171:1267-1275
    207.Wang D L,Zhu J,Li Z K,Paterson A H.Mapping QTLs with epistatic effects and QTLs environment interactions.Theor Appl Genet,1999,99:1255-1264
    208.Wang S,Basten C J,Zeng ZB.Windows QTL Cartographer 2.0,Department of Statistics,North Carolina State University,Raleigh,NC,2006
    209.Waterhouse P M,Helliwell C A.Exploring plant genomes by RNA-induced gene silencing.Nat Rev Genet,2003,4:29-38
    210.Wilson W A,Harrington S E,Woodman W L,Lee M,Sorrells M E,McCouch S R.Inferences on the genome structure of progenitor maize through comparative analysis of rice,maize and the domesticated panicoids.Genetics,1999,153:453-473
    211.Wright S.Evolution and Genetics of Populations.Chicago:Univ Chicago Press,Vol.1,1968
    212.Wu L,Ni Z,Meng F,Lin Z,Sun Q.Cloning and characterization of leaf cDNAs that are differentially expressed between wheat hybrids and their parents.Mol Gen Genomics,2003,270:281-286
    213.Xiao J H,Li J M,Tanksley S D.Dominance is the major genetic basis of beterosis in rice as revealed by QTLs analysis using molecular markers.Genetics,1995,140:745-754
    214.Xing Y Z,Tan Y F,Hua J P,Sun X L,Xu C G.And Zhang QF Characterization of the main effects,epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice.Theor Appl Genet,2002,105:248-257
    215.Xiong L Z,Yang G P,Xu C G,Zhang Q F,Saghai Maroof MA.Relationships of differential gene expression in leaves with heterosis and heterozygosity in a rice diallei cross.Mol Breed,1998,4:129-136
    216.Yamamoto T,Kuboki Y,Lin S Y,Sasaki T,Yano M.Fine mapping of quantitative trait loci Hd-1,Hd-2,and Hd-3,controlling heading date of rice,as single Mendelian factors.Theor Appl Genet,1998,97:37-44
    217.Yamamoto T,Lin H,Sasaki T,Yano M.Identification of Heading Date Quantitative Trait Locus Hd6 and Characterization of Its Epistatic Interactions With Hd2 in Rice Using Advanced Backcross Progeny. Genetics, 2000, 154: 885-891
    
    218. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L.Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y.Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. The Plant Cell, 2000,12:2473-2483
    
    219. Yao Y, Ni Z, Zhang Y, Chen Y, Ding Y, Han Z, Liu Z, Sun Q. Identification of differentially expressed genes in leaf and root between wheat hybrid and its parental inbreds using PCR-based cDNA subtraction. Plant Mol Bio, 2005, 58: 367-384
    
    220. Yousef G G, Juvik J A. Enhancement of Seedling Emergence in Sweet Corn by Marker-Assisted Backcrossing of Beneficial QTL. Crop Sci, 2002,42: 96-104
    
    221. Yousef G G, Juvik. Comparison of phenotypic and marker-assisted selection for quantitative traits in sweet corn. Crop Sci, 2001,41: 645-655
    
    222. Yu C Y, Hu S W, Zhao H X, Guo A G, Sun G L. Genetic distances revealed by morphological characters, isozymes, proteins and RAPD markers and their relationships with hybrid performance in oilseed rape (Brassica napus L.). TheorAppl Genet, 2005, 110: 511 -518
    
    223. Yu F, Lydiate D J, Rimmer S R. Identification of two novel genes for blackleg resistance in Brassica napus. Theor Appl Genet, 2005,110:969-979
    
    224. Yu S B, Zhang Q F, Saghai Maroof M A. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 1997,94: 9226-9231
    
    225. Zabeau M, Vos P. Selective restriction fragment amplification: a general method for DNA fingerprinting. Patent Application World intellectual Property Organization, WO, 1993, 93/06239
    
    226. Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994,136: 1457-1468
    
    227. Zhang Y, Luo L, Xu C, Zhang Q, Xing Y. Quantitative trait loci for panicle size, heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rice (Oryza sativa).Theor Appl Genet, 2006, 113:361-368
    
    228. Zhang Y, Ni Z, Yao Y, Zhao J, Sun Q, Analysis of genome-wide gene expression in root of wheat hybrid and its parents using Barley 1 Genechip. Progress In Natural Science, 2006, 16:712-720
    
    229. Zhao J, Becker H C, Zhang D, Yang Y, Ecke W. Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet, 2006, 113: 33-38
    
    230. Zhao J, Becker H C, Zhang D, Zhang D,Ecke W. Oil Content in a European x Chinese Rapeseed Population QTL with Additive and Epistatic Effects and Their Genotype-Environment Interactions. Crop Sci, 2005a, 45:51-59
    
    231. Zhao J Y,Becker H C,Ding H D,Zhang Y F,Zhang D Q,Ecke W.QTL of Three Agronomically Important Traits and Their Interactions with Environment in a European × Chinese Rapeseed Population.Acta Genetica Sinica,2005b,32:969-978
    
    232. Zhao J, Meng J. Detection of loci controlling seed glucosinolate content and their association with Sclerotinia resistance in Brassica napus. Plant Breeding, 2003a, 122: 19-23
    
    233. Zhao J, Meng J. Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed {Brassica napus L.). Theor Appl Genet, 2003b, 106:759-764
    
    234. Zhao J, Udall J A, Quijada P A, Grau C R, Meng J, Osborn T C. Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous non-reciprocal transposition in Brassica napus L.Theor Appl Genet,2006,112:509-516
    235.Zhao M F,Li X H,Yang J B,Xu C G,Hu R Y,Liu D J,Zhang Q,Relationship between molecular marker heterozygosity and hybrid performance in intra- and inter-subspecific crosses of rice.Plant Breeding,1999,118:139-144
    236.Zhou W C,Kolb F L,Bai G H,Domier L L,Boze L K,Smith N J.Validation of a major QTL for scab resistance with SSR markers and use of marker-assisted selection in wheat.Plant Breeding,2003,122,40-46
    237.Zhou Y C,Wu W R,Qi J M.Approximate estimation of minimal sample size required for marker-assisted backcross breeding.Acta Genetica Sinica,2003,30:625-630
    238.Zhu J,Weir B S.Mixed model approaches for genetic analysis of quantitative traits[A].In:Chen L S,Ruan S G,and Zhu J eds.Advanced Topics in Biomathematics:Procceedings of International Conference on Mathematical Biology.Singapore:World Scientific Publishing Co,1998,321-330

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700