非线性模拟电路故障诊断的Volterra模型及特征提取研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着电子产业和电子技术的迅猛发展,非线性模拟电路故障诊断问题已经成为电路故障诊断问题中的一大瓶颈。由于非线性模拟电路非常复杂,应用线性模拟电路的故障诊断方法对其进行分析,诊断效果并不理想。利用Volterra级数可以比较准确地建立常见的非线性模拟电路的故障模型,国内外已有部分学者运用这一模型进行了非线性模拟电路的故障诊断,取得了一定的成果。然而,由于Volterra级数存在维数灾难问题,实际使用时只能取其低阶有限项,使得待诊断电路的故障特征难于提取,降低了故障诊断的效果。本文针对非线性模拟电路的故障特征提取问题,致力于在使用低阶Volterra级数的条件下,提高对弱非线性电路的软硬故障的检测和定位能力;从全带Volterra级数、子带Volterra级数、分数阶Volterra级数、非参数型Volterra级数中,对非线性模拟电路进行故障特征的提取。本论文的主要工作和研究成果如下:
     (1)针对非线性模拟电路故障诊断的难题,对从全带Volterra级数中提取电路故障特征的方法进行了较为深入的研究,并结合隐马尔科夫模型进行故障诊断以验证该故障特征的有效性。首先对全带Volterra级数和隐马尔科夫模型进行介绍,在此基础上推导出比较准确的非线性模拟电路的全带Volterra级数故障模型,并从这个模型中提取出非线性模拟电路的故障特征。然后进行了计算复杂度的详细分析。最后通过仿真实验对该方法与其他故障诊断方法在故障识别能力和诊断所需要的开销两方面进行了比较;
     (2)针对从低阶全带Volterra级数中提取的故障特征在软故障定位能力上的局限性,对从子带Volterra级数中提取非线性电路故障特征的方法进行了较为深入的研究,对其原理、数学模型和具体实施步骤进行了详细的讨论。首先对小波变换进行介绍,在此基础上推导出比较准确的非线性模拟电路的子带Volterra级数模型,从这个模型中提取出非线性模拟电路的故障特征。然后进行了计算复杂度的详细分析。最后通过仿真实验对该方法与其他故障诊断方法在故障识别能力和诊断所需要的开销两方面进行了比较;
     (3)为进一步提高对非线性模拟电路的故障诊断能力,对从分数阶Volterra级数和分数阶相关函数中提取故障特征的方法进行了较为深入的研究,对其原理、数学模型和具体实施步骤进行了详细的讨论。首先对分数阶变换和分数阶相关分析方法进行介绍,在此基础上推导出比较准确的非线性模拟电路的分数阶Volterra级数模型和分数阶Volterra相关函数模型,从这些模型中,提取出非线性模拟电路的故障特征。然后进行了计算复杂度的详细分析。最后通过仿真实验对该方法与其他故障诊断方法在故障识别能力和诊断所需要的开销两方面进行了比较;
     (4)针对参数型Volterra级数计算复杂度高的问题,对非参数型Volterra级数进行了比较深入的研究。首先应用最优搜索理论得到非线性系统的优化激励信号,然后根据非线性系统的特点和优化的激励信号,推导出比较准确的非线性模拟电路的非参数型Volterra级数模型,从这个模型中,提取出非线性模拟电路的故障特征,然后进行了计算复杂度的分析。最后通过仿真实验对该方法与其他故障诊断方法在故障识别能力和诊断所需要的开销两方面进行了比较。
With the rapid development of electronic industries and technologies, the problemto diagnose faults in nonlinear analog circuits has become the bottleneck in faultdiagnosis of circuits. Since the nonlinear analog circuits are very complicated, if thediagnosis methods of linear circuits are used to analyze the nonlinear analog circuits, thediagnosis results are not satisfactory. Using the Volterra series can establish the faultmodels of common nonlinear analog circuits accurately. Some domestic and foreignresearchers have made use of the models to solve the problems of fault diagnosis ofnonlinear analog circuits and obtained certain achievements. However, since thedimensional disaster problem exists in the Volterra series, only limited lower-orderitems can be used in application, which makes the fault features be difficult to extractand the diagnosis results be decreased. This dissertation aims at the problem ofextracting fault features from nonlinear analog circuits and tries to use lower-orderitems of the Volterra series to improve the capability of detecting and locating soft andhard faults in weak nonlinear analog circuits. From the fullband Volterra series, subbandVolterra series, fractional Volterra series, non-parametric Volterra series, the faultfeatures of nonlinear analog circuits are extracted. The main works and contributions ofthe dissertation are as follows:
     (1) Considering the problem of fault diagnosis of nonlinear analog circuits, theapproach that extracts the fault features from the fullband Volterra series is studieddeeply. Combined with the hidden Markov model (HMM), the fault features are used todiagnose faults to verify the effectivenss of the fault features. Firstly, the fullbandVolterra series and the HMM are described. Then, the fullband Volterra series faultmodels of nonlinear analog circuits are derived accurately. From the model, the faultfeatures are extracted. Detailed analysis about computational complexity is made.Finally, the experiment is implemented to compare with other fault diagnosis methodsin the fault recognition capability and diagnosis cost.
     (2) Considering the problem of soft fault location using the fullband Volterraseries to extract fault features, the approach of extracting fault features from the subband Volterra series is studied deeply. Detailed discussions are made in theprinciples, mathematical models and practical executive steps. Firstly, the wavelettransform (WT) are described. Then, the subband Volterra series models of nonlinearcircuits are derived accurately. From the model, the fault features are extracted. Detailedanalysis about computational complexity is made. Finally, the experiments areimplemented to compare with other fault diagnosis methods in the fault recognitioncapability and diagnosis cost.
     (3) To improve the fault diagnosis capability of nonlinear analog circuits further,the approach from the fractional Volterra series and the approach from the fractionalcorrelation analysis to extract fault features are studied deeply. Detailed discussions aremade about the principles, mathematical models and practical executive steps. Firstly,the fractional transform and the fractional correlation are described. Then, the fractionalVolterra series fault models and the model of the fractional Volterra series correlationfunction are derived accurately. From the models, the fault features are extracted.Detailed analysis about computational complexity is made. Finally, the experiments areimplemented to compare with other fault diagnosis methods in the fault recognitioncapability and diagnosis cost.
     (4) Considering the problem of the computational complexity using parametricVolterra series, the method of non-parametric Volterra series is studied deeply. Firstly,the optimized excited signals are obtained by the theory of optimal search. Based on thefeatures of nonlinear systems and the optimized excited signals, the non-parametricVolterra series fault models of nonlinear analog circuits are derived accurately. From themodel, the fault features are extracted. Then, detailed analysis about computationalcomplexity is made. Finally, the experiments are implemented to compare the methodwith other fault diagnosis methods in the fault recognition capability and diagnosis cost.
引文
[1] S. Boryd, Y. S. Tang, L. O. Chua. Measuring Volterra kernels. IEEE Trans. CAS,1983,30(8):571-577
    [2] E. E. D. Van, J. Schoukens. Steady-state analysis of a periodically excited nonlinear system.IEEE Trans. Circuits Syst.,1990,37(2):232-242
    [3]林争辉.网络参数的可解性与可诊断性.上海交通大学学报,1995,29(1):48-53
    [4] K. R. E. Gad, S. M. Nakhla. A circuit reduction technique for finding the steady-state solution ofnonlinear circuits. IEEE Trans. Theory and Techniques,2000,48(12):2389-2396
    [5]刘崇新.非线性电路理论及应用.西安:西安交通大学出版社,2007
    [6] National technology roadmap for semiconductors. San Jose: Semiconductor Industry Association,1997
    [7] F. Li, P. Woo. Fault detection for linear analog IC-the method of short-circuit admittanceparameters. IEEE Trans. Circuits Syst. I: Fundamental Theory and Applications,2002,49(1):105-108
    [8] A. Roy, S. Sunter, A. Fudoli, et al. High accuracy stimulus generation for A/D converter BIST.Proceedings of International Test Conference,2002,36(1):1031-1039
    [9] J. W. Bandler, A. E. Salama. Fault Diagnosis of Analog Circuits. Proceedings of the IEEE,1985,73(8):1279-1327
    [10]吴耀,童诗白.线性电路K故障诊断法的有效范围.电子科学学刊,1989,2(11):113-120
    [11] R. Spain, S. Upadhyaya. Linear circuit fault diagnosis using neuromorphic analyzers. IEEETrans. Circuits Syst. II: Analog and Digital Signal Processing,1997,44(3):188-196
    [12] A. Fanni, A. Guiua. Neural network diagnosis approach for analog circuits. Applied Intelligence,1999,11(2):169-186
    [13] P. N. Uariyam, S. Cheruba, A. Chatterjee. Prediction of analog performance parameters usingfast transient testing. IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems,2002,21(3):349-361
    [14] D. Feng, G. Ma, M. Liu. A general method for fault diagnosis of linear and nonlinear circuitsmultiple excitation method. International Conference on Intelligent Control and Instrumentation,Singapore,1992,1015-1018
    [15] G. B. Trevor, A. G. Rafik, B. Franck. Nonlinear system identification using a subband adaptiveVolterra filter. IEEE Trans. Instrum. Meas.,2009,58(5):1389-1397
    [16]邓勇,师奕兵,张伟.基于子带分析的非线性电路故障诊断.仪器仪表学报,2011,32(7):1564-1569
    [17] R. Kondagunturi, E. Bradley, K. Maggard, et al. Benchmark circuits for analog andmixed-signal testing. Southeastcon’99Proc. IEEE,217-220
    [18] L. Xu, J. Huang, H. Wang, et al. A novel method for the diagnosis of the incipient faults inanalog circuits based on LDA and HMM. Circuits Syst. Signal Process.,2010,29(1):577-600
    [19] A. M. Brosa, J. Figueras. On maximizing the coverage of catastrophic and parametric faults.Journal of Electronic Testing: Theory and Application,2000,16(3):251-258
    [20]邹锐.模拟电路故障诊断原理和方法.武汉:华中理工大学出版社,1988
    [21] R. Liu. Testing and diagnosis of analog circuits and system. New York: Van Nostrand Reinhold,1991
    [22]王波,刘连惠,陈晓明.模拟电路故障字典开发平台.计算机测量与控制,2006,12(10):1281-1283
    [23] Y. Avargel, I. Cohen. Modeling and identification of nonlinear systems in the short-time Fouriertransform domain. IEEE Trans. Signal. Process.,2010,58(1):291-304
    [24] S. Majumdar, H. Parthasarathy. Wavelet-based transistor parameter estimation. Circuits Syst.Signal Process.,2010,29(5):953-970
    [25]邹晓松,罗先觉.一种基于多频灵敏度分析的模拟电路K故障诊断方法.微电子学与计算机.2005,22(3):140-143
    [26] J. Roh, J. A. Abraham. Subband filtering for time and frequency analysis of mixed-signal circuittesting. IEEE Trans. Instrum. Meas.,2004,53(2):602-611
    [27]孙秀斌.混合信号电路故障诊断的内建自测试(BIST)方法研究:[博士学位论文].成都:电子科技大学,2004
    [28] Condition for network-element-value solvability. IRE Trans. Circuits Theory,1962,9(1):25-29
    [29] N. Navid, J. Willson. A theory and an algorithm for analog circuit fault diagnosis. IEEE Trans.CAS,1979,26(7):440-457
    [30] V. Viavanthan, S. V. Alberto. Diagnosability of nonlinear circuits and systems-part1: the dccase. IEEE Trans. CAS,1981,28(11):1093-1102
    [31] R. Sacks, S. V. Alberto, V. Visvanathan. Diagnosability of nonlinear circuits and systems-part2:dynamical systems. IEEE Trans. CAS,1981,28(11):1103-1108
    [32] Z. Huang, C. Liu, R. Liu. Node fault diagnosis and a design of testability. IEEE Trans. CAS,1983,30(5):257-265
    [33] W. Maly, Z. Pizlo. Tolerance assignment for IC selection tests. IEEE Trans. Computer-AidedDesign of Integrated Circuits and Systems,1985,4(2):156-162
    [34] J. A. Starzyk, M. A. El-Gamal. Artificial neural network for testing analog circuits. IEEEInternational Symposium on Circuits and Systems,1990,1851-1854
    [35] M. Aminian, F. Aminian. Neural-network based analog-circuit fault diagnosis using wavelettransform as preprocessor. IEEE Trans. Circuits and Systems II: Analog and Digital SignalProcessing,2000,47(2):151-156
    [36] D. Grzechca, J. Rutkowski. Use of neural network and fuzzy logic to time domain analogtasting. Proceedings of the9th International Conference on2002Neural Information Processing,2002,2601-2604
    [37] V. N. Vapnik. Statistical learning theory. New York: Springer,1995
    [38] R. Rajsuman. Iddq testing for CMOS VLSI. Proceedings of the IEEE,2000,88(4):544-568
    [39] S. Bhunia, K. Roy. Dynamic supply current testing of analog circuits using wavelet transform.Proceedings20th IEEE VLSI Test Symposium,2002,302-307
    [40] S. M. Gowda, B. J. Sheu, J. Choi, et al. Design and characterization of analog VLSI neuralnetwork modules. IEEE Journal of Solid-State Circuits,1993,28(3):301-313
    [41] V. Stopjakov, P. Malosek, V. Nagy. Neural network-based defect detection in analog and mixedIC using digital signal preprocessing. Journal of Electrical Engineering,2006,57(5):249-257
    [42] S. G. Mallat. A theory for multiresolution signal decomposition:the wavelet representation,IEEE Trans. PAMI,1989,11(7):674-693
    [43] I. Daubechies. Wavelet transform, time-frequency localization and signal analysis. IEEE Trans.Information Theory,1990,36(5):961-1005
    [44] I. Daubechies. Ten lectures on wavelets. Philadelphia: Socicty for Industrial and AppliedMathematics,1992
    [45] Y. Meyer. Wavelets: algorithms and application. Philadelphia: Socicty for Industrial and AppliedMathematics,1993
    [46] C. Evans, D. Rees, D. L. Jones. Design of test signals for identification of linear Systems withnonlinear distortions. IEEE Trans. Instrum. Meas.,1992,41(6):768-774
    [47] C. Evans, D. Rees, L. Jones. Nonlinear disturbance errors in system identification usingmultisine test signals. IEEE Trans. Instrum. Meas.,1994,43(2):238-244
    [48] C. Evans, D. Rees, L. Jones, et al. Periodic signals for measuring nonlinear Volterra kernels.IEEE Trans. Instrum. Meas.,1996,45(2):362-371
    [49] M. Weiss, C. Evans, D. Rees. Identification of nonlinear cascade systems using paired multisinesignals. IEEE Trans. Instrum. Meas.,1998,47(1):332-336
    [50] L. A. Zadeh. Outline of a new approach to the analysis of complex systems and decisionprocesses. IEEE Trans. Syst. Man. Cybernetics,1973,3(1):28-34
    [51] L. A. Zadeh. Fuzzy sets and their applications to cognition and decision Processes. IEEE Trans.Syst. Man. Cybernetics,1977,7(2):122–123
    [52] J. LEE, S. D. Bedrosian. Fault isolation algorithm for analog electronic.IEEE Trans. CAS,1979,26(7):518-522
    [53] A. Torralba, J. Chavez, L. G. Franquelo. Fault detection and classification of analog circuits bymeans of fuzzy logic-based techniques. IEEE International Symposium on Circuits and Systems,1995,1828-1831
    [54] M. Catelani, A. Fort. Soft fault detection and isolation in analog circuits: some results and acomparison between a fuzzy approach and radial basis-function network. IEEE Trans. Instrum.Meas.,2002,51(2):196-202
    [55] J. H. Holland. Adaptation in natural and artificial systems. New York: Academic Press,1975
    [56] F. Grasso, S. Manetti, M. C. Piccirilli. An approach to analog fault diagnosis using geneticalgorithms. IEEE Melecon,2004,111–114
    [57] R. Eberhart, J. Kennedy. A new optimizer using particle swarm theory. Proceedings of the6thInternational Symposium on Micro Machine and Human Science, Nagoya,1995,39-43
    [58] Y. Deng, Y. Shi, L. Zhou. An approach of fault diagnosis in nonlinear circuits. Proceedings ofInternational Conference on Communications, Circuits and Systems,2010,796-799
    [59] L. R. Rabiner, B. H. Juang. An introduction to hidden Markov models. IEEE ASSP Mag.,1986,3(1):4-15
    [60] M. Fares, B. Kaminska. A fuzzy nonlinear programming approach to analog circuit design.IEEE Trans. Computer-aided Design of Integrated Circuits and Systems,1995,14(7):785-793
    [61] D. G. Luenberger. Linear and nonlinear programming (2nd Ed). London: Kluwer Academic,2004
    [62] Y. Shi, L. Zhou, W. Zhang. Diagnosis of soft-fault in analog circuit based on FNLP. Proceedingsof International Conference on Communications, Circuits and Systems,2009:1078-1081
    [63] P. Koukoulas, N. Kalouptsidis. Nonlinear system identification using gaussian inputs. IEEETrans. Signal. Process.,1995,43(8):1831-1841
    [64] J. Yang, S. X-D. Tan. Nonlinear transient and distortion analysis via frequency domain Volterraseries. Circuits, Syst. Signal Process.,2006,25(3):295-314
    [65] Y. A. Kinbangou, G. Favier. Identification of parallel-cascade wiener systems using jointdiagonalization of third-order Volterra kernel slices. IEEE Signal Process. Lett.,2009,16(3):188-191
    [66] T. H. Wang, T. J. Brazil. Volterra-mapping-based behavioral modeling of nonlinear circuitsand systems for high frequencies. IEEE Trans. Microwave Theory Tech.,2003,51(5):1433-1440
    [67] S. Pavan. Efficient simulation of weak nonlinearities in continuous-time oversamplingconverters. IEEE Trans. Circuits Syst. I,2010,57(8):1925-1934
    [68] C. Yang, S. Tian, B. Long, et al. Methods of handling the tolerance and test-point selectionproblem for analog-circuit fault diagnosis. IEEE Trans. Instrum. Meas.,2011,60(1):176-185
    [69] J. A. Starzyk, D. Liu, Z. Liu, et al. Entropy-based optimum test nodes selection for the analogfault dictionary techniques. IEEE Trans. Instrum. Meas.,2004,53(3):754-761
    [70]周玉芬,高锡俊.模拟电路故障诊断.北京:国防工业出版社,1989
    [71]赵国南,郭玉顺.模拟电路故障诊断.哈尔滨:哈尔滨工业大学出版社,1991
    [72]唐人亨.模拟电子系统的自动故障诊断.北京:高等教育出版社,1991
    [73]杨士元,童诗白.模拟系统的故障诊断与可靠性设计.北京:清华大学出版社,1993
    [74]陈光礻禹,潘中良.可测性设计技术.北京:电子工业出版社,1996
    [75]曹建福,韩崇昭,方洋旺.非线性系统理论及应用.西安:西安交通大学出版社,2001
    [76]孙义创.线性电路的K故障定位理论.系统工程与电子技术,1999,21(1):57-70
    [77]谢宏,何怡刚.小波神经网络在模拟电路故障诊断中的应用研究.湖南大学学报(自然科学版),2004,31(4):38-40
    [78]王承,陈光礻禹,谢永乐.小波一神经网络在模拟电路故障诊断中的应用,系统仿真学报,2005,17(8):40-43
    [79]梁戈超,何怡刚.基于模糊神经网络融合遗传算法的模拟电路故障诊断法.电路与系统学报,2004,9(2):54-57
    [80]彭种,樊锐.基于人工神经网络的电路故障诊断专家系统.系统工程与电子技术,2002,24(10):116-119
    [81]谭阳红,何怡刚.大规模电路故障诊断神经网络方法.电路与系统学报,2001,6(4):25-28
    [82]谢永乐,李西峰.模拟集成电路参数型故障定位方法.半导体学报,2008,29(3):598-605
    [83]谢永乐.模拟VLSI测试的小波滤波器组方法.计算机辅助设计与图形学学报,2007,19(11):1459-1464
    [84]凌燮亭.非线性电路的故障分析.电子学报,1981,9(1):70-77
    [85]马文勇,吴成禧,刘大荣.非线性电路的节点故障诊断.中国电子学会线路与系统学会第五届年会论文集,1984
    [86]袁海英,陈光礻禹,谢永乐,等.基于非线性电路频域核估计和神经网络的故障诊断.控制与决策,2007,22(4):473-476
    [87]唐静远,师奕兵,周龙甫.非线性模拟电路故障诊断的小波领袖多重分形分析方法.控制与决策,2010,25(4):605-609
    [88]焦李成.非线性电路和系统的灵敏度分析-非线性传递函数法.电子科学学刊,1989,11(2):129-136
    [89]李建宇,林争辉. IC可测试性分析的一种符号方法.上海交通大学学报,1998,32(8):6-11
    [90]林争辉,武强.非线性电路故障诊断的理论和算法.上海交通大学学报,1995,29(1):16-21
    [91]赵建,林争辉.非线性电阻电路的单故障诊断的一种方法.上海交通大学学报,1997,31(5):52-57
    [92]赵建,林争辉.非线性动态电路故障诊断的递推方法.上海交通大学学报,1998,32(1):8-11
    [93]崔江,王友仁.基于聚类预处理和支持向量机的模拟电路故障诊断技术.计算机应用,2006,26(8):1977-1981
    [94]唐静远,师奕兵,张伟.基于支持向量机集成的模拟电路故障诊断.仪器仪表学报,2008,29(6):1216-1220
    [95]马超,陈西宏,徐宇亮,等.基于支持向量机属性约简集成的模拟电路故障诊断.仪器仪表学报,2011.32(3):660-666
    [96]王文正,唐晓泉,欧文,等. Volterra泛函级数辨识方法的综述及一种简化方法.非线性动力学学报,1999,6(1):30-36
    [97]欧文,韩崇昭,王文正. Volterra泛函级数在非线性系统辨识中的应用.控制与决策,2002,17(2):239-242
    [98]殷时蓉,陈光礻禹,谢永乐. Volterra核的测量及在非线性模拟电路测试中的应用.控制与决策,2006,21(10):1134-1138
    [99]刘本德,胡昌华.基于Volterra频域核辨识的非线性模拟电路故障诊断.控制与决策,2009,24(8):1167-1171
    [100]孔祥玉,韩崇昭.一种全解耦的RLS自适应Volterra滤波器.电子学报,2004,32(4):687-689
    [101]李义府,谢宏.非线性网络广义频率响应函数统一递推分析法.中南大学学报,2004,35(2):268-272
    [102]项莉萍,张志刚.基于Volterra级数的MOSFET非线性电路分析.阜阳师范学院学报(自然科学版),2007,24(2):60-62
    [103]胡钋,韩进能.渥尔特拉最佳滤波器及其应用于非线性系统辨识.武汉大学学报,2004,37(1):120-124
    [104]胡庚,王红,杨士元.非线性模拟电路的故障诊断方法.计算机辅助设计与图形学学报,2009,21(1):1-5
    [105]孟庆丰,孙敬远,焦李成.基于形状和位置可调非参数原子的信号波形提取方法.西安交通大学学报,2006,40(8):928-932
    [106]汪鹏,杨士元.模拟电路故障诊断测试节点优选新算法.计算机学报,2006,29(10):1780-1784
    [107]陈圣俭,洪炳熔,王月芳,等.可诊断容差模拟电路软故障的新故障字典法.电子学报,2000,28(2):127-129
    [108]马红光,韩崇昭,孔祥玉,等.基于Lyapunov指数的非线性模拟电路故障诊断方法.电路与系统学报,2004,9(4):71-74
    [109]许丽佳,黄建国,王厚军.基于HMM的模拟电路故障诊断方法.计算机辅助设计与图形学学报,2010,22(7):1216-1223
    [110]“半导体集成化芯片系统基础研究”重大研究计划.国家自然科学基金委员会,2002
    [111] W. J. Rugh. Nonlinear system theory-the Volterra/Wiener approach. Baltimore: The JohnsHopkins Univ. Press,1981
    [112]谢宏,何怡刚.非线性模拟动态电路故障诊断的频域方法.仪器仪表学报,2006,27(5):512-514
    [113] J. Yang, Y. Xu, C. Chen. Human action learning via hidden Markov model. IEEE Trans. Syst.Man. Cybern. Part A, Syst. Humans,1997,27(1):34-44
    [114] B. H. Juang, L. R. Rabiner. Hidden Markov models for speech recognition. Technometrics,1991,33(3):251-272
    [115] G. H. GoluB, C. F. V. Loan. Matrix Computations (3rd Ed). Baltimore: The Johns HopkinsUniv. Press,1996
    [116] P. Wang, S. Yang. A new diagnosis approach for handling tolerance in analog and mixed-signalcircuits by using fuzzy math. IEEE Trans.Circuits Syst. I,2005,52(10):2118-2127
    [117]张贤达.现代信号处理(第2版).北京:清华大学出版社,2002
    [118] J. S.贝达特, A. G.皮尔索(著),凌福根(译).相关分析和谱分析的工程应用(中文版,第1版).北京:国防工业出版社,1983
    [119] V. Namias. The fractional order Fourier transform and its application to quantum mechanics J.Inst. Maths. Applics,1980,25(4):241-265
    [120] H. M. Ozaktas, Z. Zalevsky, M. A. Kutay. The fractional Fourier transform with applications inoptics and signal processing. New York: J. Wiley,2001
    [121] L. B. Almeida. The fractional Fourier transform and time-frequency representations. IEEETrans. signal process.,1994,42(11):3084-3091
    [122] M. Raymer, M. Beck, D. F. McAliste. Complex wave-field reconstruction using phase-spacetomography. Phys. Rev. Lett.,1994,72(11):1137-1140
    [123] S. Liu, H. Ren, J. Zhang, et al. Image-scaling problem in the optical fractional Fouriertransform. Applied Opt.,1997,36(23):5671-5674
    [124]孙晓兵,保铮.分数阶Fourier变换及其应用.电子学报,1996,24(12):60-65
    [125] Q. Dong, R. Tao, S. Zhou, et al. The fractional Fourier analysis of multicomponent LFM signal.Chinese Journal of Electronics,1999,8(3):326-329
    [126]董永强,陶然,周思永,等.基于分数阶Fourier变换的SAR运动目标检测与成像.兵工学报,1999,20(2):132-136
    [127]平先军,陶然,周思永.一种新的分数阶Fourier变换快速算法.电子学报,2001,29(3):406-408
    [128]陶然,齐林,王越.分数阶Fourier变换的原理与应用(第1版).北京:清华大学出版社,2004
    [129] O. Akay, G. F. Boudreaux-Bartels. Fractional convolution and correlation via operator methodsand an application to detection of linear FM signals. IEEE Trans. Signal Process.,2001,49(5):979-993
    [130] M. Catelani, A. Fort. Soft fault detection and isolation in analog circuits: some results and acomparison between a fuzzy approach and radial basis function networks. IEEE Trans. Instrum.Meas.,2002,51(2):196-202
    [131] S. Halgas. Multiple soft fault diagnosis of nonlinear circuits using the fault dictionaryapproach. Bulletin of the polish academy of science technical sciences,2008,56(1):53-58
    [132] F. Aminian, M. Aminian, H. W. Collins. Analog fault diagnosis of actual circuits using neuralnetworks. IEEE Trans. Instrum. Meas.,2002,51(3):544-550
    [133] L. D. Stone. Theory of optimal search. New York: Academic Press,1975
    [134]朱清新.离散和连续空间中的最优搜索理论.北京:科学出版社,2005
    [135]殷时蓉,陈光礻禹,谢永乐.应用Elman网络优化非线性模拟电路测试激励.电子科技大学学报,2008,37(4):574-577
    [136]孙立平,刘阳,李联,等.一种高性能的四象限模拟乘法器.电子学报,1997,25(8):18-22
    [137]姚齐国.几种非线性电路的数值分析与优化设计[博士学位论文].武汉:华中科技大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700