山区高墩大跨连续刚构桥风环境及风荷载研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高速公路建设进入山区,高墩大跨连续刚构桥越来越多,风荷载和风载内力逐渐成为控制此类桥梁设计的主要因素。一方面,现有的桥梁风环境研究成果多是针对平原地区进行的,而山区地形复杂多变,局部风环境影响因素多,风特性与平原区相比有很大差异,深入研究山区桥位风环境是山区桥梁抗风设计的前提;另一方面,现有的桥梁抗风研究成果多是针对悬索桥或斜拉桥进行的,针对高墩大跨连续刚构桥的抗风研究并不充分。本文以跨径98+5×185+98m、最大墩高180m的三水河大桥这一实际工程为背景,在现有研究的基础上开展山区桥位风环境及高墩大跨连续刚构桥风效应研究,主要研究内容及成果如下:
     采用不同于现有研究成果的抽样时间间隔、极值风速分布概型及风速样本整理方法,推导了考虑风速风向联合概率分布确定基本风速的计算公式,并对三水河大桥桥位附近气象站连续34年的风速风向观测资料进行了统计分析和对比。结果表明:不区分风向的传统统计分析方法对基本风速有所高估,现行规范建议的基本风速高估较多,基本风速推算宜考虑风速风向的联合概率分布,且抽样时间间隔越短越经济合理。
     建立了包括三水河大桥桥位和邻近气象站在内的大尺度数字地形模型,采用数值模拟技术研究了桥位风环境,与物理风洞试验结果进行了对比;提出了基于数值风洞技术由气象站基本风速推求桥梁设计风速的方法,推算了三水河大桥的设计基准风速并进行了分析对比。结果表明:数值风洞风剖面结果和物理风洞结果有一定偏差,但二者整体趋势的一致性较好;桥位复杂的地形环境对风场的干扰影响很大,部分风向部分桥墩风剖面不满足幂指数变化规律;来流风与河谷走向接近一致时,位于河道中的桥墩风剖面接近规范中的B类地表值;同一位置不同风向角下桥梁设计基准风速有可能存在较大差异,相同风向角下设计基准风速沿桥梁长度方向分布可能也不均衡。
     采用数值模拟方法研究了不同风攻(偏)角和有无护栏情况下桥梁不同断面的三分力系数,与物理风洞试验结果进行了对比,总结了桥梁断面气动力系数随不同影响因素的变化规律;在此基础上进一步探索了双幅桥的气动干扰机理,分析了不同干扰因素对上下游桥三分力系数的影响。研究表明:数值模拟对上游桥阻力系数精度较高,对下游桥阻力系数及上下游桥的升力系数和扭矩系数误差稍大,但总体上与物理风洞试验结果吻合较好;对阻力系数而言,来流风对上游桥的作用为较大的推力,而对下游桥的作用为相对较小的吸力,阻力系数随风攻角变化较小,随梁高增大而增大,受护栏影响显著;上下游桥升力系数和扭矩系数也受风攻(偏)角、梁高和有无护栏等因素的影响而变化。气动干扰效应对双幅下游桥的影响很大,总体上干扰效应随风攻角的变化规律不明显,随双幅桥间距减小而增大,随结构尺寸增大而增大;气动干扰效应对双幅上游桥也有一定影响,但影响相对较小。
     定量分析比较了国内外有关规范对高墩大跨连续刚构桥横桥向风荷载计算的差异,并以算例与抖振分析结果进行了对比;基于高墩大跨连续刚构桥的特点及横桥向一阶振型,考虑平均风荷载和结构脉动风荷载背影响应及共振响应,给出了方便工程应用的计算高墩大跨连续刚构桥墩底横桥向弯矩和剪力等效风荷载及风载内力的实用简化计算公式,并通过典型算例验证了简化方法的精度及适用性。对比分析表明:高墩大跨连续刚构桥基频较低,脉动风惯性力的影响不可忽略,现行规范风荷载计算时未考虑脉动风惯性力的影响,计算结果偏小较多;高墩尤其超高墩桥梁的桥墩风荷载很大,其对墩底内力的影响甚至可能超过主梁,应引起足够重视。
With the entering of expressway into mountainous area, there are more and more long-span continuous rigid frame bridges with tall piers, and wind load and internal force of wind load have gradually become the major factors of this kind of bridge design. However, on the one hand, the existing research results on bridge wind environment are conducted on flat plain, yet mountainous area has more complicated terrain and the part wind environment has more influential factors. Therefore, the wind characteristic in mountainous area is very different from that in plain. The in-depth research on wind environment of bridge site is the prerequisite of bridge wind-resistant design in mountainous area. On the other hand, existing research results on wind resistance of bridge are targeted at long-span suspension bridges or cable-stayed bridges. The wind resistance research on long-span continuous rigid frame bridges with tall piers is not sufficient. Based on a typical actual engineering San-shui-he Bridge with span of 98+5×185+98 m and maximum high pier of 180m as background, research on bridge site wind environment in mountainous area and wind effect of long-span continuous rigid frame bridge with tall piers were conducted on the basis of existing researches in this thesis. The main research results are as follows:
     By different sample interval, extreme wind speed distribution possibility and wind speed sample sorting methods from existing research, the calculation formulas to determine basic wind speed were deduced in consideration of joint probability distribution of wind speed and direction. Through the statistical analysis of the wind speed and wind direction observational data in continuous 34 years of weather station around the bridge site, the different basic wind speed gained by different methods were given and compared in the paper. The results show that the traditional analytical method, which does not distinguish wind direction, overestimates the basic wind speed. The basic wind speed of the current code recommendation is overestimated too much. The basic wind speed deduction should take joint probability distribution of wind speed and direction into consideration, and the shorter sample interval is the more economic and reasonable it is.
     A large scale digital terrain model including the bridge site and nearby weather stations was established in the paper. On the digital model, the bridge site wind environment was studied, and the results of it were compared with that of physical wind tunnel trail. A method to estimate the bridge design standard wind speed through the basic wind speed of weather station by CFD (computational fluid dynamics) technology was proposed, and be used to calculate the design standard wind speed of San-shui-he Bridge. The results show that the wind profiles of the numerical wind tunnel have a certain deviation with the physical wind tunnel results, yet the consistence of the two's overall tendency is good. The complicated terrain of bridge site in mountainous area has great interference influence on the wind field. The wind profiles in different wind direction and different location have great variation, and part of them cannot meet the power exponent change laws. When coming wind is in consistent with valley direction, the wind profile of the bridge piers in down watercourse are close to that of B type terrain in codes. The bridge design standard wind speed at the same location might have great variation in different wind direction, and its distribution along the bridge length would be uneven even in the same wind direction.
     The aerostatic coefficients of different bridge cross sections under various wind attack angles or directions and the situation with or without guardrails were studied by CFD. The results were compared with that of physical wind tunnel trail, and the change laws of the aerostatic coefficients with different influential factors were summarized. On this bases, the aerodynamic interference mechanism of double width bridge was explored, and the effects of different interference factors on aerostatic coefficients of the bridge in up and down stream were summarized. The results show that the aerostatic coefficients gained by CFD have high accuracy in upstream bridge resistance coefficient and relatively larger error in downstream bridge resistance coefficient and lift coefficient and torque coefficient of bridge in up and down stream. However, the overall results are in good agreement with the physical wind tunnel test results. For resistance coefficients, the effect of coming wind to upstream bridges is strong push, and to downstream bridges is relatively weak suction. It is affected small by wind attack angle, and becomes bigger with increase of the girder section's height, and be affected largely by guardrail. Lift coefficients in up and down stream and torque coefficients will change with the influence of the wind attack angle (or wind direction), dimension of section, guardrail and other factors. The aerodynamic interference effect has great impact on double width downstream bridge. On the whole, the change rule of interference effect with wind attack angle is not very clear, but increase with the decrease of the gap and increase with the growth of the structure sizes. The aerodynamic interference effect has certain impact on upstream bridge, but the impact is relatively small.
     The differences of transverse wind load calculation about long-span continuous rigid frame bridges with tall piers in foreign and domestic standards were quantitatively analyzed and compared, and were further compared with buffeting analytical results by a numeric example. Based on the characteristic of tall pier continuous rigid frame bridge and its first model out-of-plane, considering average wind effects and background responses of fluctuating wind and its resonant responses as well, a practical analytical formulas was proposed in this paper, which aimed at calculating the equivalent wind loads of transverse bending moment and shear force of pier-bottom on continuous rigid frame bridge with tall piers. By two examples, the accuracy and applicability of simplified method were tested. Comparative analysis show that, because the fundamental frequency of the long-span continuous rigid frame bridge with tall piers is low, the resonant response effects should not be neglored. The wind load calculated using present code was generally underestimated due to the neglect of the resonant response effects. The wind loads on pier of high pier bridges, extra high pier bridges in particular, is very large, which impact on pier bottom internal force could even surpass the girder wind loads. It should be paid sufficient attention in design of these kinds of bridges.
引文
[1-1]王文涛,刚构—连续组合梁桥[M].北京,人民交通出版社,1995.
    [1-2]周军生,楼庄鸿,大跨径预应力混凝土连续刚构桥的现状和发展趋势[J].中国公路学报,2000,13(1):31-37.
    [1-3]邓文中,代彤,重庆石板坡长江大桥复线桥总体设计[J].桥梁建设,2006,6:28-32.
    [1-4]李开言,双肢薄壁高墩刚构桥悬臂施工稳定性与风效应研究[D].长沙,中南大学博士学位论文,2005.
    [1-5]刘钥,连续刚构桥的气动性能数值模拟研究[D].长沙,湖南大学硕士学位论文,2009.
    [1-6]刘健新,张伟,张茜,洛河特大桥抗震性能计算[J].交通运输工程学报,2006,6(1):57-62.
    [1-7]雅西高速腊八斤大桥右幅合龙,中国日报网,2011-09-13,http://www.chinadaily.com.cn /dfpd/sichuan/2011-09-13/content_3760305_html(2011/10/03).
    [1-8]陈政清,桥梁风工程[M].北京,人民交通出版社,2005.
    [1-9]JTG/TD60-01-2004,公路桥梁抗风设计规范[S].北京,人民交通出版社,2004.
    [1-10]胡峰强,山区风特性参数及钢桁架悬索桥颤振稳定性研究[D].上海,同济大学博士学位论文,2006.
    [1-11]庞加斌,沿海和山区强风特性的观测分析与风洞模拟研究[D].上海,同济大学博士学位论文,2006.
    [1-12]庞加斌,宋锦忠,林志兴,山区峡谷桥梁抗风设计风速的确定方法[J].中国公路学报,2008,25(5):39-44.
    [1-13]张玥,胡兆同,刘健新,西部山区地形的斜拉桥风场特性研究[J].武汉理工大学学报,2008,30(12):154-159.
    [1-14]项海帆等,公路桥梁抗风设计指南[M].北京,人民交通出版社,1996.
    [1-15]埃米尔·希缪,罗伯特·H·斯坎伦著,风对结构的作用—风工程导论[M].刘尚培,项海帆,谢霁明译,上海,同济大学出版社,1992.
    [1-16]韩艳,陈政清,王建辉,汪志昊,贵阳小关桥双肢薄壁墩抖振响应试验与影响因素分析[J].土木工程学报,2009,42(1):4147.
    [1-17]韩艳,陈政清,罗延忠,双肢薄壁墩连续刚构桥平衡悬臂施工阶段抖振时域分析[J].中国公路学报,2008,21(1):59-64.
    [1-18]杨天才,王波,王新华,张文明,张海龙,大跨连续刚构桥最大悬臂施工阶段风致抖振响应[J].世界桥梁,2008,1:34-37.
    [1-19]李黎,胡亮,樊剑,某高墩大跨连续刚构桥抖振时域分析[J].华中科技大学学报(城市科学版),2006,23(1):1-4.
    [1-20]刘志刚,陈艾荣,等长双悬臂梁等效风荷载实用计算方法[J].同济大学学报,2002,30(5):599-603,638.
    [1-21]孙延国,连续刚构桥最大悬臂状态风载内力及抖振实用计算方法研究[D].成都,西南交通大学硕士学位论文,2005.
    [1-22]龚巧艳,大跨连续刚构桥风荷载响应研究[D].长沙,中南大学硕士学位论文,2006.
    [1-23]汪洁,高墩大跨连续刚构双幅桥风致干扰效应研究[D].西安,长安大学博士学位论文,2010.
    [1-24]Thom H. C. S., Distribution of extreme winds in the United States[J]. Journal of the Structural Division,1960,86(ST4):11-24.
    [1-25]Simiu E., Filliben J. J., Probability distributions of extreme wind speeds[J]. Journal of the Strutural Division,1976,102(ST9):1861-1877.
    [1-26]Simiu E., Changery M. J., Filliben J. J., Extreme wind speeds at 129 airport stations[J]. Journal of the Structural Division,1980,106(ST4):809-817.
    [1-27]段忠东,欧进萍,周道成,极值风速的最优概率模型[J].土木工程学报,2002,35(5):11-16.
    [1-28]葛耀君,桥梁结构风振可靠性理论及其应用研究[D].上海,同济大学博士学位论文,1997.
    [1-29]陈朝晖,管前乾,基于短期资料的重庆风速极值渐进分布分析[J].重庆大学学报(自然科学版),2006,29(12):88-92.
    [1-30]刘健新,马麟,白桦,杭州湾大桥观光塔风速风向联合分布[J].长安大学学报,2008,28(5):53-57.
    [1-31]赵林,葛耀君,项海帆,极值风速拟合优化策略[J].同济大学学报,2003,31(4):383-388.
    [1-32]赵林,葛耀君,项海帆,平均风极值分布极大似然解及其应用[J].土木工程学报,2004,37(6):41-46.
    [1-33]MC Williems B., Newmann M.M. and Sprevak D., The probability distribution of wind velocity and direction[J]. Wind Engineering, Vol.3, No.4,1979:267-273.
    [1-34]Weber R., Estimator for the standard deviation of wind direction based on moments of Cartesian components[J]. J. Appl, Meteorol 1991,30:1341-1353.
    [1-35]E. Simiu, Multidirectional analysis of extreme wind speed data[C]. Proc. of Fifth Engineering Mechanics Division Specialty conference, Laramie, WY, August 1984: 1196-1199.
    [1-36]Ge Y. J., Xiang H. F., Statistical study for mean wind velocity in Shanghai area[J]. Journal of Wind Engineering and Industrial Aerodynamics,2002,90(12-15):1585-1599.
    [1-37]杨咏昕,葛耀君,项海帆,风速风向联合分布的平均风统计分析[J].结构工程师,2002(3):29-36,46.
    [1-38]Xu Y. L., Chen J., Ng C. L. and Zhou H. J., Occurrence Probability of Wind-Rain-Reduced Stay Cable Vibration[J]. Advance in Structural Engineering,2008,11(1):53-69.
    [1-39]陈隽,赵旭东,总体样本风速风向联合分布概率分析方法[J].防灾减灾工程学报,2009,29(1):63-70.
    [1-40]顾明,陈礼忠,项海帆,上海地区风速风向联合概率密度函数的研究[J].同济大学学报,1997,25(2):166-170.
    [1-41]Gu M., Chen L. Z., Xiang H. F., Xu Y. L., Fatigue life estimation of steel girder of Yangpu cable-stayed Bridge due to buffeting[J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,80:383-400.
    [1-42]管前乾,重庆地区风速极值分布研究及不同风速谱下高层建筑顺风效应分析[D].重庆,重庆大学硕士学位论文,2006.
    [1-43]陈隽,张晓琴,风速风向联合概率密度分布的一种经验函数[C].第十四届全国结构风工程学术会议论文集,2009:51-56.
    [1-44]蒋济同,冯有良,刘德辅,考虑风向的工程设防风速研究[J].建筑结构(增刊),2010,40:451-454.
    [1-45]A.G. Davenport, The Relationship of Wind Structure to Wind Loading[C]. Paper No.2 Proc. Conf. on Wind Effects on Buildings and Structures, N. P. L.,1963.
    [1-46]A. G. Davenport, The Spectrum of Horizontal Gustiness Near the Ground in High Winds[J]. Quarterly of the Royal Met Society,1987:194-211.
    [1-47]Duchene-Marullaz P., Full-scale Measurement of the Structure of Strong Winds, CIRIA Report No.76,1978.
    [1-48]Will J. A. B., Grant A., BOYACK C. F., Offshore mean wind profile, Department of Energy, Offshore Technical Report, OTH86226,1986.
    [1-49]Sparks P. R., Reid G. T., Reid W. D., Welsh S., Welsh N., Wind conditions in hurricane Hugo by measurement, inference, and experience[J]. J. Wind Eng.& Ind. Aerodyn.,1992, 41-44:55-66.
    [1-50]Kato N., Ohkuma T., Kim J. R., Full scale measurement of wind velocity in two urban areas using an ultrasonic anemometer[J]. J. Wind Eng.& Ind. Aerodyn.,1992,41-44: 67-78.
    [1-51]Andersen O. J., Lovseth J., Gale force maritime wind, the Froya data base, Part 1:sites and instrumentation, review of the data base[J]. J. Wind Eng.& Ind. Aerodyn.,1995,57: 97-109.
    [1-52]Raupach M. R., Finningan J. J., The influence of topography on meteorological variables and surface-atmosphere interaction[J]. Journal of Hydrology,1997,190:182-213.
    [1-53]Kossmann M., Voegtlin R., Corsmeier U., Aspects of the convective boundary layer structure over complex terrain[J]. Atmospheric Environment,1998,32 (7):1323-1348.
    [1-54]Miller C. A., Davenport A. G., Guidelines for the calculation of wind speed-up in complex terrain[J]. Journal of Wind Engineering and Industrial Aerodynamics,1998,74-76: 189-197.
    [1-55]Carpenter P., Locke N., Investigation of wind speeds over multiple two-dimensional hills[J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,83(1-3):109-120.
    [1-56]王立治,章小平,城市大气近地面层湍流特征的初步研究[J].大气科学,1985,9(1):11-17.
    [1-57]王介民,山谷城市的近地层大气湍流谱特征[J].大气科学,1992,16(1):11-17.
    [1-58]王存忠,曹文俊,天津市郊大气边界层湍谱特征分析[J].气象学报,1994,52(4): 484-492.
    [1-59]陈伟,王海良,项海帆,风速统计特性研究探讨[J].石家庄铁道学院学报,1999,12(2):51-55.
    [1-60]卞建春,乔劲松,吕达仁,大气近地层湍流能谱特征的再分析[J].大气科学,2002,26(4):474-479.
    [1-61]卞林根,陈彦杰,王欣,北京大气边界层中风廓线的观测研究[J].应用气象学报,2002,13(特刊):13-25.
    [1-62]李倩,刘辉志,胡非,洪钟祥,大风天气下北京城市边界层阵风结构特征[J].中国科学院研究生院学报,2004,21(1):40-44.
    [1-63]马进,周庆桐,日本明石大桥的抗风设计介绍[J].重庆交通学院学报,1994,13(2):83-88.
    [1-64]刘聪,张忠义,黄世成,桥梁气象专题研究与服务[J].气象科技,2004,32(6):397-403.
    [1-65]刘聪,黄世成,朱安祥,江志红,苏通长江公路大桥设计风速的计算与分析[J].应用气象学报,2006,17(1):44-50.
    [1-66]刘聪,桥梁风工程若干气象问题的研究及工程化试验[D].南京,南京信息工程大学博士学位论文,2008.
    [1-67]庞加斌,宋锦忠,林志兴,四渡河峡谷大桥桥位风的湍流特性实测分析[J].中国公路学报,2010,23(3):42-47.
    [1-68]胡峰强,陈艾荣,王达磊,山区桥梁桥址风环境试验研究[J].同济大学学报(自然科学版),2006,34(6):721-725.
    [1-69]陈政清,李春光,张志田,廖建宏,山区峡谷地带大跨度桥梁风场特性试验[J].实验流体力学,2008,22(3):54-59,67.
    [1-70]周志勇,姜保宋,马如进,上海闵浦大桥桥址风环境风洞试验及数值模拟研究[J].力学季刊,2009,30(3):469-474.
    [1-71]长安大学风洞实验室,三水河特大桥抗风试验研究[R],西安,2010.
    [1-72]徐洪涛,何勇,廖海黎,马存明,鲜荣,山区峡谷大跨度桥梁桥址风场试验[J].公路交通科技,2011,28(7):84-89.
    [1-73]Maurizi A., Palma J. M., Castro F. A., Numerical simulation of the atmospheric flow in a mountainous region of the North of Portugal [J]. Journal of Wind Engineering and Industrial Aerodynamics,1998,74-76:219-228.
    [1-74]Kim H. G., Patel V. C., Test Of Turbulence Models For Wind Flow Over Terrain With Separation And Recirculation[J]. Boundary-Layer Meteorology,2000,94(1):5-21.
    [1-75]Eidsvik Karl J., A system for wind power estimation in mountainous terrain, Prediction of Askervein Hill Data[J]. Wind Energy,2005,8(2):237-249.
    [1-76]Blocken B., Stathopoulos T., Carmeliet J., CFD simulation of the atmospheric boundary layer:Wall function problems[J]. Atmospheric Environment,2007,41(2):238-252.
    [1-77]Kang S., Wei H. R., Discussion on the feasibility of CFD application of wind speed distribution in a wind farm[J]. Journal of Engineering Thermophysics,2008,29(12): 2040-2042.
    [1-78]杨伟,顾明,高层建筑三维定常风场数值模拟[J].同济大学学报,2003,31(6):647-651.
    [1-79]张楠,基于多孔介质模型的城市滨江大道风环境数值模拟研究[D].长沙,中南大学博士学位论文,2005.
    [1-80]李朝,近地湍流风场的CFD模拟研究[D].深圳,哈尔滨工业大学博士学位论文,2010.
    [1-81]张永胜,禹门口黄河斜拉桥风环境数值模拟研究[D].西安,长安大学硕士学位论文,2007.
    [1-82]徐洪涛,马存明,马顺康,张慎旭,山区桥梁桥址风环境数值风洞研究[J].世界桥梁,2011,3:61-64.
    [1-83]项海帆,现代桥梁抗风理论与实践[M].北京,人民交通出版社,2005.
    [1-84]Theodorsen T., General theory of aerodynamic instability and the mechanism of flutter. NACA Report No.496[R]. Langley, Va,1935.
    [1-85]Davenport A.G., Buffeting of a Suspension Bridge by Storm Winds[J]. Journal of the Structural Division,1962,88(3):233-268.
    [1-86]Davenport A.G., The response of slender, line-like structures to a gusty wind[C]. Proc. Inst. Civ. Engrg.,1962,23:389-407.
    [1-87]Scanlan R. H., Tomko J. J., Airfoil and bridge deck flutter derivatives[J]. Journal of Engineering Mechanics,1971,97(6):1717-1737
    [1-88]王福军,计算流体动力学分析-CFD软件原理与应用[M].北京,清华大学出版社,2004.
    [1-89]Son, J. S., Hanratty T. J. Numerical solution for the flow around a cylinder at Reynolds number of 40,200 and 500[J]. Journal of Fluid Mechanics,1969,35:369-386.
    [1-90]Braza M., Chassaing P., Minh I., Numerical study and Physical analysis of the Pressure and velocity fields in the near wake of a circular cylinder[J]. Journal of Fluid and Mechanics, 1986,165:79-130.
    [1-91]Lecointe Y., Piquet J., Flow structure in the wake of an oscillating cylinder[J]. Journal of Fluid Engineering,1989,111:139-148.
    [1-92]Murakami S., Numerical study on veloeity-Pressure field and wind forces for bluff bodies by k-ε, ASM and LES[J]. Journal of wind Engineering and Industrial Aerodynamics,1992, 34:2841-2852.
    [1-93]Murakami S., Lizuka S. CFD analysis of turbulent flow past square cylinder using dynamic LES[J]. Journal of Fluids and Structures,1992,13:1097-1112.
    [1-94]Selvam R. P. Finite element modeling of flow around circular cylinder using LES[J]. Journal of wind Engineering and Industrial Aerodynamics,1993,36:129-139.
    [1-95]Walther J. H., Discrete vortex method for two-dimensional flow past bodies of arbitrary shape undergoing prescribed rotary and translational motion[D]. Ph. D. thesis, Department of Fluid Mechanics, Technical University of Denmark,1994.
    [1-96]Larsen A., Walther J. H., Aeroelastic analysis of bridge girder sections based on discrete vortex simulations[J]. Journal of wind Engineering and Industrial Aerodynamics,1997, 67-68:253-265.
    [1-97]Larsen A., Prediction of aeroelastic stability of suspension bridges during erection[J]. Journal of wind Engineering and Industrial Aerodynamics,1997,72:265-274.
    [1-98]Taylor I. J., Vezza M., Anlysis of the wind loading on bridge deck sections using a discrete vortex method[C]. Proceedings of the 10th Int. Conf. on Wind Eng,1999:1345-1352.
    [1-99]曹丰产,桥梁断面的气动导数和颤振临界风速的数值计算[J].空气动力学学报,2000,18(1):26-33.
    [1-100]祝志文,桥梁风效应的数值方法及应用[D].长沙,中南大学博士学位论文,2002.
    [1-101]楼小峰,桥梁断面气动特性的数值模拟[D].上海,同济大学博士学位论文,2002.
    [1-102]李开言,陈政清,祝志文,连续刚构桥双肢薄壁高墩风荷载研究[J].桥梁建设,2004,3:12-15.
    [1-103]卢桂臣,张红芬,杨咏昕,葛耀君,西堠门大桥初步设计钢箱梁断面气动选型[J].西南交通大学学报,2005,40(4):473-477.
    [1-104]邓文,葛耀君,曹丰产,桥梁闭口箱梁三分力数值识别中的湍流模型比选[J].上海公路,2006,4:36-40.
    [1-105]瞿伟廉,刘琳娜,基于CFD的桥梁三分力系数识别的数值研究[J].武汉理工大学学报,2007,7:85-88.
    [1-106]刘琳娜,CFD方法在大跨度桥梁气动控制措施研究中的应用[D].武汉,武汉理工大学硕士学位论文,2007.
    [1-107]郭辉,大跨连续刚构桥风荷载数值模拟及空间风致响应研究[D].长沙,中南大学硕士学位论文,2008.
    [1-108]张倩,廖海黎,桥梁主梁断面气动力特性的数值模拟研究[J].工程结构,2008,28(4):83-86.
    [1-109]谭红霞,陈政清,CFD在桥梁断面静力三分力系数计算中的应用[J].工程力学,2009,26(11):68-72.
    [1-110]Jasna Bogunovic Jakobsen, Eric Hjorth-Hansen, Aeroelastic effects on a rectangular box-girder bridge[J]. Journal of wind Engineering and Industrial Aerodynamics,1998, 74-76:819-827.
    [1-111]Pedro A. Mendes, Fernando A. Branco., Unbalanced Wind buffeting effeets on bridges during double cantilever erection stages[J]. Wind and Structures,2001,4(1):45-62.
    [1-112]E. Strommen, E. Hjorth-Hansen, J. H. Kaspersen, Dynamic loading effeecs of a rectangular box girder bridge[J]. Journal of wind Engineering and Industrial Aerodynamics,2001,89:1607-1618.
    [1-113]B. J. Vikery, R. I. Basu, Across-wind vibrations of structures of circular cross-section, "Part 1, Development of a mathematical model for two-dimensional conditions", "Part 2, Development of a mathematical model for a full-scale application" [J]. Journal of wind Engineering and Industrial Aerodynamics,1983,12(1):49.
    [1-114]Giovanni Solari, Stefan Sehmidt,3-D wind-induced effects on bridges during balanced cantilever erection stages[J]. Wind and Structures,2003,6(1):1-22.
    [1-115]S. Pindado, J. Meseguer, S. Franchini, The influence of the section shape of box-girder decks on the steady aerodynamic yawing moment of double cantilever bridges under construction[J]. Journal of wind Engineering and Industrial Aerodynamics,2005,93: 547-555.
    [1-116]陈艾荣,项海帆,悬臂施工的刚构桥梁的风荷载计算方法[J].公路,1998,3:26-34.
    [1-117]陈艾荣,项海帆,大跨刚构桥梁气动弹性试验及分析[J].振动工程学报,1999,12(4):535-539.
    [1-118]郑史雄,廖海黎,周述华,大跨度刚构桥悬臂施工状态的抗风性能研究[J].西南交通大学学报,2001,1:8-11.
    [1-119]张淑杰,关富玲,张其林,灵江大桥施工阶段的风洞试验及抗风分析[J].桥梁建设,2002,1:55-58.
    [1-120]王中文,刘刚亮,顾金钧,虎门大桥辅航道桥悬臂施工阶段风致抖振的控制[J].桥梁建设,2002,5:50-53.
    [1-121]丁泉顺,宋锦忠,朱乐东,双肢薄壁高墩连续T构桥梁抗风试验研究[C].第十二届全国结构风工程学术会议论文集,2005:322-327.
    [1-122]祝志文,陈政清,大跨刚构桥最大悬臂施工阶段驰振稳定性的数值风洞研究[J].中南公路工程,2007,1:5-9.
    [1-123]韩万水,陈艾荣,马如进,高墩大跨刚构桥施工阶段的抗风分析[J].同济大学学报,2007,2:165-170.
    [1-124]汪斌,李永乐,郝超,欧阳韦,大跨度连续刚构桥钝体主梁气动特性数值分析[J].四川建筑科学研究,2008,34(5):29-33.
    [1-125]Rowan A. I., Stoyan S., Jiming X., Tacoma narrows 50 years later-wind engineering investigations for parallel bridges[J]. Bridge Structures:Assessment, Design and Construction,2005,11(1):3-17.
    [1-126]Zdravkovich M. M., Review of flow interference between two cylinders in various arrangement[J]. Journal of Fluids Engineering,1977,99(4):618-633.
    [1-127]Zdravkovich M. M., Review of flow interference induced oscillations in flow past two circular cylinders in various arrangement[J]. Journal of Wind Eng. Ind. Aerodyn,1988,28: 183-200.
    [1-128]Kim T., Flynn M. R., Numerical simulation of air flow around multiple objects using the discrete vortex method[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995,56:213-234.
    [1-129]楼小峰,曹丰产,林志兴,串列钝体绕流的数值计算[J].同济大学学报,2002,30(5):604-608.
    [1-130]周志勇,陈艾荣,项海帆,涡方法分析并列圆柱的旋涡脱落现象[J].空气动力学报,2003,21(1):38-46.
    [1-131]Khanduri A. C., Stathopoulos T., Bedard C., Wind-induced interference effects on building:A review of the state-of-the-art[J]. Engineering Structures,1998,20(7): 617-630.
    [1-132]黄鹏,高层建筑风致干扰效应研究[D].上海,同济大学博士学位论文,2001.
    [1-133]顾明,黄鹏,群体高层建筑风荷载干扰的研究现状及展望[J].同济大学学报,2003,31(7):762-766.
    [1-134]林志兴,葛耀君,曹丰产,钢箱梁桥的抗风问题及其对策研究[J].同济大学学报(自然科学版),2002,30(5):614-617.
    [1-135]Rowan A. Irwin., STOYANS, XIE Ji-ming, Effects of aerodynamic interferences between heaving and torsional vibration of bridge decks:the case of Tacoma Narrows Bridge[J]. Journal of wind Engineering and Industrial Aerodynamics,2003,91:1547-1557.
    [1-136]吕卫军,高墩大跨连续刚构桥风荷载研究[D].西安,长安大学硕士学位论文,2006.
    [1-137]刘志文,陈政清,刘高,邵新鹏,双幅桥面三分力系数气动干扰效应试验研究[J].湖南大学学报(自然科学版),2008,35(1):16-20.
    [1-138]汪洁,高墩大跨连续刚构双幅桥风致干扰效应研究[D].西安,长安大学博士学位论文,2010.
    [1-139]British Standards Institution, Steel, Concrete and Composite Bridges-Part 2: Specification for loads, BS5400-2[S]. London,2006.
    [1-140]American Assiciation of State Highway and Transportation Officials, AASHTO LRFD Bridge Design Specifications[S]. Washington,2007.
    [1-141]Davenport A.G., The Application of Statistical Concepts to the Wind Loading of Structures[C]. Proc. Inst. Civil. Eng.,1961,19:449-472.
    [1-142]Davenport A.G., Gust Loading Factors[J]. Journal of the Structural Division,1967,93: 11-34.
    [1-143]Liepmann H. W., On the application of statistical concepts to the buffeting problem[J]. Journal of Aeronautical Science,1952,19:793-800.
    [1-144]Vickery B. J., On the reliability of gust loading factors[C]. Proceedings of the Technical Meeting Concerning Wind Loads on Buildings and Structures, National Bureau of Standards, Building Science Series 30, Washington, D. C.,1970:93-104.
    [1-145]Simiu E., Logarithmic Profiles and Design Wind Speeds[J]. Journal of the Engineering Mechanics Division,1973,99(5):1073-1083.
    [1-146]Simiu E., Wind Spectra and Dynamic Along wind Response[J]. Journal of the Structural Division,1974,100(9):1897-1910.
    [1-147]Solari G., Along wind Response Estimation:Closed Form Solution. Journal of the Structural Division,1982,108(1):225-243.
    [1-148]Solari G., Gust Buffeting. Ⅰ:Peak Wind Velocity and Equivalent Pressure[J]. Journal of Structural Engineering,1993,119:365-382.
    [1-149]Solari G., Gust Buffeting. Ⅱ:Dynamic Along wind Response[J].Journal of Structural Engineering,1993,119:383-398.
    [1-150]Kasperski M., Extreme Wind Load Distributions for Linear and Nonlinear Design[J]. Engineering Structures,1992,14(1):27-34.
    [1-151]Holmes J.D., Along-wind Response of Lattice Towers:Part Ⅰ-Derivation of Expressions for Gust Response Factors[J]. Engineering Structures,1994,16(4):287-292.
    [1-152]Holmes J.D., Along-wind Response of Lattice Towers:Part Ⅱ-Aerodynamic Damping and Deflections[J]. Engineering Structures,1996,18(7):483-488.
    [1-153]Holmes J.D., Along-wind Response of Lattice Towers:Part Ⅲ-Effective Load Distributions[J]. Engineering Structures,1996,18(7):489-494.
    [1-154]Zhou Y., Gu M., Xiang H.F., Along wind Static Equivalent Wind Loads and Responses of Tall Buildings. Part I:Unfavorable Distributions of Static Equivalent Wind Loads[J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,79:135-150.
    [1-155]Zhou Y., Gu M., Xiang H.F., Along wind Static Equivalent Wind Loads and Responses of Tall Buildings. Part II:Effect of Mode Shapes[J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,79:151-158.
    [1-156]Zhou Y., Kareem A., Gust Loading Factors:New Model[J]. Journal of Structural Engineering,2001,127(2):168-175.
    [1-157]GB50009-2001,建筑结构荷载规范[S].北京,中国建筑工业出版社,2006.
    [1-158]陈艾荣,刘志刚,项海帆,悬索桥横向等效风荷载[J].工程力学(增刊),1998:371-377.
    [1-159]Chen A. R., Xiang H. F., Liu Z. G., Practical formulas for estimating equivalent wind loads of suspension bridges[C]. First International Symposium on Wind and Structures for the 21st Century, Korea,2000.
    [1-160]刘志刚,陈艾荣,桥梁顺风向等效风荷载计算方法及其分布[J].同济大学学报,2003,31(8):888-894.
    [1-161]季凯,桥梁顺风向等效风荷载实用计算方法研究[D].上海,同济大学硕士学位论文,2005.
    [1-162]刘志刚,桥梁顺风向风荷载研究[D].上海,同济大学硕士学位论文,2001.
    [1-163]刘志刚,陈艾荣,等长双悬臂梁等效风荷载实用计算方法[J].同济大学学报,2002,30(5):599-603,638.
    [1-164]程兆君,大跨度连续刚构桥抗风分析[D].武汉,武汉理工大学硕士学位论文,2006.
    [1-165]JTG/TD60-2004,公路桥梁设计通用规范[S].北京,人民交通出版社,2004.
    [1-166]日本道路协会,道路桥耐风设计便览[S].2007.
    [2-1]E. Simiu, Multidirectional analysis of extreme wind speed data[C]. Proc. of Fifth Engineering Mechanics Division Specialty conference, Laramie, WY, August 1984: 1196-1199.
    [2-2]Ge Y. J., Xiang H. F., Statistical study for mean wind velocity in Shanghai area[J]. Journal of Wind Engineering and Industrial Aerodynamics,2002,90(12-15):1585-1599.
    [2-3]杨咏昕,葛耀君,项海帆,风速风向联合分布的平均风统计分析[J].结构工程师,2002(3),29-36:46.
    [2-4]管前乾,重庆地区风速极值分布研究及不同风速谱下高层建筑顺风效应分析[D].重庆,重庆大学硕士学位论文,2006.
    [2-5]刘健新,马麟,白桦,杭州湾大桥观光塔风速风向联合分布[J].长安大学学报,2008,28(5):53-57.
    [2-6]Xu Y. L., Chen J., Ng C. L. and Zhou H. J., Occurrence Probability of Wind-Rain-Reduced Stay Cable Vibration[J]. Advance in Structural Engineering,2008,11(1):53-69.
    [2-7]陈隽,赵旭东,总体样本风速风向联合分布概率分析方法[J].防灾减灾工程学报,2009,29(1):63-70.
    [2-8]葛耀君,桥梁结构风振可靠性理论及其应用研究[D].同济大学博士学位论文,1997.
    [2-9]J. Pickands, Statistical inference using extreme order statistics, Annals of statistics,1975(3).
    [2-10]G. R. Dargahi-Noubari, New method for prediction of extreme wind speeds[J]. Journal of Engineering Mechanics,1989,115(4):859-866.
    [2-11]Thom H. C. S., Distribution of extreme winds in the United States[J]. Journal of the Structural Division,1960,86(ST4):11-24.
    [2-12]Simiu E., Changery M. J., Filliben J. J., Extreme wind speeds at 129 airport stations[J]. Journal of the Structural Division,1980,106(ST4):809-817.
    [2-13]段忠东,欧进萍,周道成,极值风速的最优概率模型[J].土木工程学报,2002,35(5):11-16.
    [2-14]庞加斌,宋锦忠,林志兴,山区峡谷桥梁抗风设计风速的确定方法[J].中国公路学报,2008,25(5):39-44.
    [2-15]陈朝晖,管前乾,基于短期资料的重庆风速极值渐近分布分析[J].重庆大学学报,2006,29(12):88-92.
    [2-16]JTG/TD60-01-2004,公路桥梁抗风设计规范[S].北京,人民交通出版社,2004.
    [3-1]胡峰强,陈艾荣,王达磊,山区桥梁桥址风环境试验研究[J].同济大学学报(自然科学版),2006,34(6):721-725.
    [3-2]张永胜,禹门口黄河斜拉桥风环境数值模拟研究[D].西安,长安大学硕士学位论文,2007.
    [3-3]陈政清,李春光,张志田,廖建宏,山区峡谷地带大跨度桥梁风场特性试验[J].实验流体力学,2008,22(3):54-59,67.
    [3-4]张玥,胡兆同,刘健新,西部山区地形的斜拉桥风场特性研究[J].武汉理工大学学报,2008,30(12):154-159.
    [3-5]庞加斌,宋锦忠,林志兴,四渡河峡谷大桥桥位风的湍流特性实测分析[J].中国公路学报,2010,23(3):42-47.
    [3-6]徐洪涛,何勇,廖海黎,马存明,鲜荣,山区峡谷大跨度桥梁桥址风场试验[J].公路交通科技,2011,28(7):84-89.
    [3-7]项海帆,现代桥梁抗风理论与实践[M].北京,人民交通出版社,2005.
    [3-8]王福军,计算流体动力学分析-CFD软件原理与应用[M].北京,清华大学出版社,2004.
    [3-9]杨伟,顾明,高层建筑三维定常风场数值模拟[J].同济大学学报,2003,31(6):647-651.
    [3-10]祝志文,桥梁风效应的数值方法及应用[D].长沙,中南大学博士学位论文,2002.
    [3-11]董香婷,风障对桥面风环境影响的数值模拟研究[D].杭州,浙江大学硕士学位论文,2007.
    [3-12]张远君,计算流体力学大全[M].北京,航空航天大学出版社,1991.
    [3-13]H. K. versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics, The Finite Volume Method[M], Wiley, Newyork,1995.
    [3-14]韩志斌,建筑结构风荷载的数值模拟研究[D].武汉,武汉理工大学博士学位论文,1999.
    [3-15]B. E. Launder, D. B. Spalding, Lectures in Mathematical Models of Turbulence[M], Academic Press, London,1972.
    [3-16]Druilhet A., Durand P., Experimental investigation of atmospheric boundary layer turbulence[J]. Atmospheric Research,1997,43:345-388.
    [3-17]Batchvarova E., Gryning S. E., Wind climatology, atmospheric turbulence and internal boundary layer development in Athens during the Mmedcaphot-Trace experiment[J]. Atmospheric Environment,1998,32(12):2055-2069.
    [3-18]ChenQingyan, etc, Application of CFD tools for indoor and outdoor environment design[J]. Intennational Jounral on Architectural Science,2000,1(1):1-5.
    [3-19]T. H. Shih, W. W. Liou, A. Shabbir, Z. G. Yang, J. Zhu, A new k-ε eddy viscosity model for high Reynolds number torbulen tflows[J]. Compute Fluiids,1995,24(3):227-238.
    [3-20]李朝,近地湍流风场的CFD模拟研究[D].深圳,哈尔滨工业大学博士学位论文,2010.
    [3-21]张玥,西部山区谷口处桥位风特性观测与风环境数值模拟研究[D].西安,长安大学博士学位论文,2010.
    [3-22]Katarzyna, K., Wojciech M., Agnicszka J. K., Multicriteria optimization of the building arrangement with application of numerical simulation[J]. Building and Environment,2000, 35(6):537-544.
    [3-23]温正,任毅如,FLUENT流体计算应用教程[M],北京,清华大学出版社,2009.
    [3-24]高志飞,彭兴黔,崔利民,珠海,山体环境对建筑屋面风压影响的数值模拟[J].华侨大学学报(自然科学版),2011,32(2):210-214.
    [3-25]黄本才,结构抗风分析原理及应用[M].上海,同济大学出版社,2008.
    [3-26]JTG/TD60-01-2004,公路桥梁抗风设计规范[S].北京,人民交通出版社,2004.
    [3-27]长安大学风洞实验室,三水河特大桥抗风试验研究[R],西安,2010.
    [3-28]刘聪,桥梁风工程若干气象问题的研究及工程化试验[D].南京,南京信息工程大学博士学位论文,2008.
    [3-29]刘聪,张忠义,黄世成,桥梁气象专题研究与服务[J].气象科技,2004,32(6):397-403.
    [3-30]胡峰强,山区风特性参数及钢桁架悬索桥颤振稳定性研究[D].上海,同济大学博士学位论文,2006.
    [3-31]庞加斌,沿海和山区强风特性的观测分析与风洞模拟研究[D].上海,同济大学博士学位论文,2006.
    [3-32]刘聪,黄世成,朱安祥,江志红,苏通长江公路大桥设计风速的计算与分析[J].应用气象学报,2006,17(1):44-50.
    [3-33]庞加斌,宋锦忠,林志兴,山区峡谷桥梁抗风设计风速的确定方法[J].中国公路学报,2008,25(5):39-44.
    [3-34]徐洪涛,马存明,马顺康,张慎旭,山区桥梁桥址风环境数值风洞研究[J].世界桥梁,2011,3:61-64.
    [4-1]JTG/TD60-01-2004,公路桥梁抗风设计规范[S].北京,人民交通出版社,2004.
    [4-2]李寿英,顾明,斜、直圆柱绕流的CFD模拟[J].空气动力学学报,2005,23(2):222-227.
    [4-3]黄林,廖海黎,矩形渡槽槽体结构绕流流场数值模拟研究[J].试验流体力学,2006,20(3):53-58.
    [4-4]林斌,孙晓颖,武岳,大庆石油学院体育馆屋面风荷载的风洞试验及CFD数值模拟[J].沈阳建筑大学学报(自然科学版):2006,22(3):357-361.
    [4-5]李朝辉,戴景民,燃气单钝体绕流流场特性的数值模拟研究[J].中国测试技术,2007,33(5):7-9.
    [4-6]汪斌,李永乐,郝超,欧阳韦,大跨度连续刚构桥钝体主梁气动特性数值分析[J].四川建筑科学研究,2008,34(5):29-33.
    [4-7]谭红霞,陈政清,CFD在桥梁断面静力三分力系数计算中的应用[J].工程力学,2009,26(11):68-72.
    [4-8]长安大学风洞实验室,三水河特大桥抗风试验研究[R].西安,2010.
    [4-9]陈政清,桥梁风工程[M].北京,人民交通出版社,2005.
    [4-10]王福军,计算流体动力学分析-CFD软件原理与应用[M].北京,清华大学出版社,2004.
    [4-11]李开言,双肢薄壁高墩刚构桥悬臂施工稳定性与风效应研究[D].长沙,中南大学博士学位论文,2005.
    [4-12]埃米尔·希缪,罗伯特·H·斯坎伦著,风对结构的作用—风工程导论[M].刘尚培,项海帆,谢霁明译,上海,同济大学出版社,1992.
    [4-13]Kral, L. D., Recent experience with different turbulence models applied to the calculation of flow over aircraft components[J]. Progress in Aerospace Sciences,1998,34(7-8): 481-541.
    [5-1]Honda A, Shiraishi N., Motoyama S., Aerodynamic stability of Kansai International Airport access bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics,1990,33(1-2): 369-376.
    [5-2]JTG/TD60-2004,公路桥梁设计通用规范[S].北京,人民交通出版社,2004.
    [5-3]郭震山,孟晓亮,周奇,朱乐东,既有桥梁对邻近新建桥梁三分力系数的气动干扰效应[J].工程力学,2010,27(9):181-186,200.
    [5-4]Rowan A. I., Stoyan S., Jiming X., Tacoma narrows 50 years later-wind engineering investigations for parallel bridges[J]. Bridge Structures:Assessment, Design and Construction,2005,11(1):3-17.
    [5-5]刘志文,陈政清,胡建华,贺拴海,大跨度双幅桥面桥梁气动干扰效应[J].长安大学学报(自然科学版),2008,28(6):55-59.
    [5-6]吕卫军,高墩大跨连续刚构桥风荷载研究[D].西安,长安大学硕士学位论文,2006.
    [5-7]刘钥,连续刚构桥的气动性能数值模拟研究[D].长沙,湖南大学硕士学位论文,2009.
    [5-8]汪洁,高墩大跨连续刚构双幅桥风致干扰效应研究[D].西安,长安大学博士学位论文,2010.
    [5-9]Beeker S., Lienhart H.,Durst F., Flow around three-dimensional obstacles in boundary layers[J]. Journal of wind engineering and industrial aerodynamics,2002,90:265-279.
    [6-1]项海帆,现代桥梁抗风理论与实践[M].北京,人民交通出版社,2005.
    [6-2]Davenport A.G., The Application of Statistical Concepts to the Wind Loading of Structures[J]. Proc. Inst Civil. Eng.,1961,19:449-472.
    [6-3]Davenport A.G., Gust Loading Factors[J]. Journal of the Structural Division,1967,93: 11-34.
    [6-4]Dyrbye C, Hansen S.O., Wind Loads on Structures[M]. Wiley, England,1997.
    [6-5]Zhou Y., Kareem A., Gust Loading Factors:New Model[J]. Journal of Structural Engineering,2001,127(2):168-175.
    [6-6]JTG/TD60-2004,公路桥梁设计通用规范[S].北京,人民交通出版社,2004.
    [6-7]JTG/TD60-01-2004,公路桥梁抗风设计规范[S].北京,人民交通出版社,2004.
    [6-8]日本道路协会,道路桥耐风设计便览[S].2007.
    [6-9]BS5400, Steel, Concrete and Composite Bridges-Part 2:Specification for loads[S].2006.
    [6-10]American Association of State Highway and Transportation Officials, AASHTO LRFD Bridge Design Specifications[S].2007.
    [6-11]GB50009-2001,建筑结构荷载规范[S].北京,中国建筑工业出版社,2006.
    [6-12]陈政清,桥梁风工程[M].北京,人民交通出版社,2005.
    [6-13]孙延国,连续刚构桥最大悬臂状态风载内力及抖振实用计算方法研究[D].成都,西南交通大学硕士学位论文,2008.
    [6-14]Scanlan, R. H., The action of flexible bridges under wind, Ⅱ:buffeting theory [J]. Journal of Sound and Vibration,1978,60(2):201-211.
    [6-15]Scanlan, R. H., Problematic in formulation of wind-force model for bridge decks [J]. Journal of Struct. Engrg.,1993,119(7):1433-1446.
    [6-16]Jain A., Jones N. P., Scanlan, R. H., Coupled flutter and buffeting analysis of long-span bridges[J]. Journal of Struct. Engrg.,1996,122(7):716-725.
    [6-17]Cai C. S., Albrecht P., Bosch H. R., Flutter and buffeting analysis. I:finite-element and RPE solution[J]. Journal of Bridge Engrg.,1999,4(3):174-180.
    [6-18]李黎,胡亮,樊剑,某高墩大跨连续刚构桥抖振时域分析[J].华中科技大学学报(城市科学版),2006,23(1):1-4.
    [6-19]韩艳,陈政清,罗延忠,双肢薄壁墩连续刚构桥平衡悬臂施工阶段抖振时域分析[J].中国公路学报,2008,21(1):59-64.
    [6-20]Davenport A.G., Buffeting of a suspension bridge by storm winds[J].Journal of Structural Engineering,1962,88(6):233-264.
    [6-21]R. H. Scanlan, Problematic in formulation of wind-force model for bridge decks[J]. Journal of Structural Engineering,1993,119(7):1433-1446.
    [6-22]R. H. Scanlan, Airfoil and bridges deck flutter derivatives,1971, EM6,1717-1733.
    [6-23]陈伟,大跨度桥梁抖振反映谱研究[D].上海,同济大学博士学位论文,1993.
    [6-24]Jain A, Jones N. P., R. H. Scanlan, Coupled flutter and buffeting analysis of long-span bridges[J]. Journal of Structural Engineering,1996,122(7):716-725.
    [6-25]Kiviluoma R. Coupled-model buffeting and flutter analysis of bridges[J]. Computer and structures,1998,70(2):219-228.
    [6-26]丁泉顺,大跨度桥梁祸合颤抖振响应的精细化分析[D].上海,同济大学博士学位论文,2001.
    [6-27]陈基发,沙志国,建筑结构荷载设计手册[M].北京,中国建筑工业出版社,2004.
    [6-28]日本土木协会,桥梁耐风设计-基准及最近进步[M].2003.
    [6-29]张相庭,工程结构风荷载理论和抗风计算手册[M].上海,同济大学出版社,1990.
    [6-30]长安大学风洞实验室,三水河特大桥抗风试验研究[R],西安,2010.
    [6-31]Tamura Y., Kawai H., Uematsu Y., Marukawa H., Fjii K., Taniike Y., Wind load and wind-induced response estimations in the Recommendations for Loads on Buildings[J]. Engineering Structures,1996,18(6):399-411.
    [6-32]张相庭,王志培,黄本才,王国砚,结构振动力学[M].上海,同济大学出版社,2005.
    [6-33]Solari G., Alongwind response estimation:structural classification[J]. Journal of Struct. Engrg.,1983,109(2):575-581.
    [7-1]Davenport A.G., The Application of Statistical Concepts to the Wind Loading of Structures[C]. Proc. Inst Civil. Eng.,1961,19:449-472.
    [7-2]Davenport A.G., Note on the Distribution of the Largest Value of a Random Function with Application to Gust Loading[C]. Proc. ICE,1964,28:187-197.
    [7-3]Davenport A.G., Gust Loading Factors[J]. Journal of the Structural Division,1967,93: 11-34.
    [7-4]Kasperski M., Extreme Wind Load Distributions for Linear and Nonlinear Design[J]. Engineering Structures,1992,14(1):27-34.
    [7-5]Holmes J. D., Equivalent Time Averaging in Wind Engineering[C]. Proceedings of the Ninth International Conference on Wind Engineering, New Delhi, January,1995: 1849-1858.
    [7-6]Zhou Y., Gu M., Xiang H.F., Along wind Static Equivalent Wind Loads and Responses of Tall Buildings. Part Ⅰ:Unfavorable Distributions of Static Equivalent Wind Loads[J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,79:135-150.
    [7-7]Zhou Y., Gu M., Xiang H.F., Along wind Static Equivalent Wind Loads and Responses of Tall Buildings. Part Ⅱ:Effect of Mode Shapes[J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,79:151-158.
    [7-8]Zhou Y., Kareem A., Gust Loading Factors:New Model[J].Journal of Structural Engineering,2001,127(2):168-175.
    [7-9]GB50009-2001,建筑结构荷载规范[S].北京,中国建筑工业出版社,2006.
    [7-10]项海帆,现代桥梁抗风理论与实践[M].北京,人民交通出版社,2005.
    [7-11]陈艾荣,刘志刚,项海帆,悬索桥横向等效风荷载[J].工程力学(增刊),1998:371-377.
    [7-12]刘志刚,陈艾荣,项海帆,考虑背景响应的斜拉桥侧向抖振响应分析[J].中国公路学报,2000,13(2):4347.
    [7-13]刘志刚,陈艾荣,项海帆,大跨桥梁侧向抖振加速度和抖振惯性荷载[J].同济大学学报,2001,29(1):30-34.
    [7-14]刘志刚,桥梁顺风向风荷载研究[D].上海,同济大学硕士学位论文,2001.
    [7-15]Xinzhong Chen., Ahsan Kareem, Equivalent static buffeting loads for buffeting response of bridges[J]. Journal of Structural Engineering,2001,127(12):1467-1475.
    [7-16]季凯,桥梁顺风向等效风荷载实用计算方法研究[D].上海,同济大学硕士学位论文,2005.
    [7-17]刘志刚,陈艾荣,等长双悬臂梁等效风荷载实用计算方法[J].同济大学学报,2002,30(5):599-603,638.
    [7-18]李开言,双肢薄壁高墩刚构桥悬臂施工稳定性与风效应研究[D].长沙,中南大学博士学位论文,2005.
    [7-19]龚巧燕,大跨连续刚构桥风荷载响应研究[D].长沙,中南大学硕士学位论文,2006.
    [7-20]孙延国,连续刚构桥最大悬臂状态风载内力及抖振实用计算方法研究[D].成都,西南 交通大学硕士学位论文,2008.
    [7-21]宁晓骏,李睿,杨昌正,安潇竹,超高墩设计研究[J].公路交通技术,2008(1):87-90.
    [7-22]JTG/TD60-01-2004、公路桥梁抗风设计规范[S].北京,人民交通出版社,2004.
    [7-23]Holmes J.D., Along-wind Response of Lattice Towers:Part Ⅰ-Derivation of Expressions for Gust Response Factors[J]. Engineering Structures,1994,16(4):287-292.
    [7-24]Holmes J.D., Along-wind Response of Lattice Towers:Part Ⅱ-Aerodynamic Damping and Deflections[J]. Engineering Structures,1996,18(7):483-488.
    [7-25]Holmes J.D., Along-wind Response of Lattice Towers:Part Ⅲ-Effective Load Distributions[J]. Engineering Structures,1996,18(7):489-494.
    [7-26]Liepmann H. W., on the application of statistical concepts to the buffeting problem[J]. Journal of Aeronautical Science,1952,19:793-800.
    [7-27]Dyrbye C., Hansen S.O., Wind Loads on Structures[M]. Wiley, England,1997.
    [7-28]Chen A. R., Xiang H. F., Liu Z. G., practical formulas for estimating equivalent wind loads of suspension bridges[C]. first international symposium on wind and structures for the 21st century,2000.1, Korea.
    [7-29]Mendes P. A., Branco F. A., Unbalanced Wind Buffeting Effects on Bridges During Double Cantilever Erection Stages[J]. Wind and Structures,2001,4(1):45-62.
    [7-30]Scanlan, R. H., The action of flexible bridges under wind, Ⅱ:buffeting theory[J]. Journal of Sound and Vibration,1978,60(2):201-211.
    [7-31]Jain A., Jones N. P., Scanlan, R. H., Coupled flutter and buffeting analysis of long-span bridges[J]. Journal of Struct. Engrg.,1996,122(7):716-725.
    [7-32]陈政清,桥梁风工程[M].北京,人民交通出版社,2005.
    [7-33]张相庭,王志培,黄本才,王国砚,结构振动力学[M].上海,同济大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700