新一代短距离无线通信系统信号检测与接收技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以高速宽带、低功耗、低成本及个性化应用为特点的短距离无线通信,已成为未来泛在无线网络的重要组成部分,因而受到人们的普遍关注。本文选题来源于国家自然科学基金及国家科技重大专项等项目,具有重要的理论意义及广阔的应用前景。
     本文针对未来短距离无线通信系统信号检测与接收技术进行深入研究,重点分析了密集多径传输下的信号检测与接收机制。主要完成了以下具有创新性的研究成果:
     1.针对密集多径分簇信道下的参数提取、理论建模及模型评估问题,i)提出了一类基于突变点检测与仿生聚类机制的自动分簇识别方案,两种新算法均可显著提升密集多径信道下分簇识别与参数提取的准确度;ii)提出了一种基于Fresh反射理论的新簇内多径功率时延剖面(PDP)模型,能更为合理地匹配密集多径测量数据,并可揭示其中的大尺度级频率选择性衰落特性;iii)提出了一种基于分簇PDP包络加权的低复杂度非相干检测方案,能有效提升检测性能,也可验证密集多径分簇提取算法与新PDP模型的准确性。
     2.针对密集多径信道下低复杂度短距离无线传输场景,提出了一种统一的非相干信号检测新框架,其中包括:i)一种基于协方差矩阵及特征谱量化特征模式分类的仿生信号处理机制;ii)四种不同应用需求下的密集多径信号非相干检测方案,即基于模糊C-均值聚类的非相干盲检测方案、基于改进蚁群聚类分析的非相干盲检测方案、基于Parzen窗估计概率神经网络的在线式非相干检测方案、以及基于新数值优化算法的离线式非相干检测方案;iii)一种基于文化基因与量子计算的量子文化进化数值算法,可实现高性能模式分类与信号检测。
     3.针对密集多径传输与射频功放器件非线性失真问题,提出了一种非线性动态状态空间模型及一种基于贝叶斯统计推理框架的联合信道估计与盲信号检测方案,可直接在接收端对非线性失真与多径串扰后的接收星座图进行行盲校准。针对蒙特卡罗序贯重要性采样理论难以直接处理非线性盲均衡的难题,提出了一种通用非线性估计粒子滤波算法,并设计了一种能同时应对线性串扰与非线性失真的序贯联合盲估计方案,可有效避免传统的复杂预失真机制。
     4.针对新一代高速短距离无线局域网/个域网中波束赋形机制复杂度过高的难题,提出了两种基于无约束数值优化的新波束赋形训练算法,包括:i)一种基于Rosenbrock数值算法与新型预搜索机制的高维空间波束寻优方案,能克服Rosenbrock算法易陷入局部解的固有局限,通过逐步迭代细化方式缩小目标搜索区域,可获得100%搜索成功率,并显著降低搜索复杂度、协议包头与设备功耗;ii)一种融合了概率扰动与新型两级参数调控、并适宜于离散空间寻优的全局性数值搜索算法,能以100%概率收敛至最优解,在非视距密集多径传输下搜索到最优波束
     5.针对时间选择性衰落信道,提出了一类基于新颖动态状态空间模型的联合信道估计与盲信号检测机制,包括:i)一种基于贝叶斯统计推理框架的时变慢衰落信道下分布式认知频谱检测算法,通过迭代估计方案可联合估计出授权用户状态与时变信道增益,在无需多节点协作检测的情况下,能显著提升时变衰落信道下的分布式频谱检测性能;ii)一种基于序贯检测原理的时变密集多径信号盲检测算法,通过高效迭代机制可联合估计出时变密集多径响应与未知数据序列,能在时变性密集多径衰落下获得良好的盲检测性能。
     最后,对全文研究内容进行了总结,并对下一代短距离无线接入与互联中的信号检测与接收技术发展方向及今后工作进行了展望。
The short-range wireless communications, characterized by high-data-rate, wide bandwidth, low-power consumption, low cost and personalized ap-plications, have emerged as an important part of future ubiquitous wireless ac-cessing networks, which hence nowadays have drawn general attention. Sup-ported by the Natural Science Foundation of China as well as the National Sci-ence and Technology Major Projects, this thesis is mainly devoted to promot-ing signal processing in the future short-range wireless communications, which may have the great theoretic significance and the wide application prospect.
     This thesis mainly investigated the signal receiving techniques in next-generation short-range wireless communications, with the emphasis especially put on signal detection and reception in intensive multipath propagations. Ac-cordingly, the main innovative contributions of the investigation can be sum-marized as follows.
     1. For the issues of parameters extraction, parametric modeling and model evaluation in the intensive multipath channels,1) two kinds of efficient auto-matic cluster identification algorithms, inspired by two promising perspectives of discontinuity/singularity detection and biological pattern clustering, have been proposed, which can significantly improve the accuracy of cluster identi-fications and parameters extractions;2) a novel parametric intra-cluster power delay profile (PDP) model derived from the Fresh reflection theory is present-ed, which, for the first time, reveals a new kind large-scale frequency selectivity and can match the multipath measurement more effectively;3) a clustered PDP weighted low-complexity signal detector is proposed, which can enhance the receiving performance and is hence of significance to verify the effectiveness and accuracy of the proposed cluster identifications and PDP modeling.
     2. For the low-complexity short-range wireless communications in the p- resence of intensive multipath propagations, a unified new non-coherent signal detection framework is designed.1) A pattern classification-based noncoher-ent signal detection algorithm, based on the covariance matrix of received ran-dom signals and a developed novel characteristic spectrum, is proposed, and a promising biologically inspired signal processing (Bio-SP) framework is then suggested by combining nature intelligence inspired algorithms;2) Four non-coherent detection schemes are designed for several scenarios with different realistic requirements, i.e., the fuzzy c-means (FCM) clustering based blind noncoherent detector, the modified ant colony clustering based blind nonco-herent detector, the Parzen probabilistic neural network (PPNN) based non-coherent detector for the online data-aided (DA) case, and a new biological algorithm-based off-line supervised noncoherent detector;3) A novel quantum memetic algorithm (QMA) inspired by the memetic gene and quantum comput-ing mechanics is developed, which can realize the high-performance numerical optimization and signal classification/detection.
     3. For the complex scenarios with both intensive multipath propagations and nonlinear power amplifier distortions, a novel nonlinear dynamic state-space model (DSM) is properly formulated. On this basis, relying on the Bayesian statistical inference, a joint channel estimation and blind signal detec-tion algorithm is developed. By excluding the pre-distortion in transceiver-end with high complexity, the distorted signal constellations, after propagated from both nonlinear PA and linear multipath, are directly calibrated in receiver-end. Since the existing Monte-Carlo sequential importance sampling can hardly deal with the nonlinear equalization, a local linearization technique is introduced and a generalized particle filtering is presented. Thus, a sequentially joint and blind estimation technique is proposed which can simultaneously address both multipath interference and nonlinear distortion.
     4. Considering the high complexity of the existing beam-forming train-ing in the next-generation ultra-high speed WLANs/WPANs, from a promis-ing perspective of non-constrained numerical optimization, two efficient beam- forming training algorithms based on numerical optimization are developed.1) The first algorithm, premised on a Rosenbrock numerical search, is suggested to identify optimal beam-patterns. To overcome the shortcoming of classical Rosenbrock numerical search which may easily fall into local optimums, a pre-search algorithm inspired by the small region dividing-and-conquering is presented. The new algorithm can find the optimal beams with a success prob-ability of100%, which thereby significantly reduces the search complexity, the protocol overhead and power consumption.2) A new numerical search algo-rithm is developed by integrating the probabilistic disturbances mechanic and a novel two-level disturbances control scheme. The developed numerical algo-rithm is of special promise to the discrete-space optimization, which basical-ly avoids local optimums and the computation demanding local exploitations. This new algorithm can identify optimal beams with an probability of100%in intensive multipath propagations.
     5. In order to address the difficulty of signal detections in the presence of dynamic time-varying fading propagations, a novel dynamic state-space model is developed and then a unified joint channel estimation and blind signal de-tection is proposed.1) A distributed spectrum sensing algorithm for cognitive radios is proposed which relies on the Bayesian statistical inference and Monte-Carlo random sampling theorem. The time-varying fading gain, accompanying the primary user working state, is iteratively estimated in time. To the best of our knowledge, for the first time, this new spectrum sensing algorithm real-izes the joint estimation of unknown primary state and time-varying channel gain, which can significantly improve the sensing performance in time-varying fading channel.2) A blind signal detection algorithm in the presence of time-varying intensive multipath propagations is proposed. An efficient iterative detection algorithm is designed which can jointly estimate the time-varying multipath channel and the unknown transmitted symbols. The new algorith-m can significantly enhance the blind detection performance in time-varying intensive multipath propagations.
     Finally, the investigations of the whole dissertation are summarized. On this basis, several valuable research directions on signal reception techniques in future short-range wireless connecting are discussed.
引文
[1]O'Droma, S. Mairtin, Ganchev, Ivan, "Toward a ubiquitous consumer wireless world," IEEE Wireless Communications, vol.14, no.1, Feb.2007, pp 52-63.
    [2]Y. D. Lee, W. Y. Chung, "Wireless sensor network based wearable smart shirt for ubiquitous health and activity monitoring," Sensors and Actuators B:Chemical, vol.40, no.2, July 2009, pp.390-395.
    [3]Giulio Iacucci, Kari Kuutti, "Everyday Life as a Stage in Creating and Performing Scenarios for Wireless Devices," Personal and Ubiquitous Computing, vol.6, no.4, Sept.2002, pp.299-306.
    [4]S. Zhang, M. H Ang, W. D. Xiao, C. K. Tham,"Detection of Activities by Wireless Sensors for Daily Life Surveillance:Eating and Drinking," Sensors, vol.9,2009, pp.1499-1517.
    [5]T. S. Rappaport, Wireless Communications:Principles and Practice 2nd Edition, IEEE Press Piscat-away, NJ, USA.
    [6]T. S. Rappaport, "The Wireless Revolution," IEEE Communications Magazine, vol.29, no.11,1991, pp.52-71.
    [7]H. Atarashi, S. Abeta, M. Sawahashi, "Broadband packet wireless access appropriate for high-speed and high-capacity throughput," in Proc. of IEEE 53th Vehicular Technology Conference (VTC 2001), vol.1,2001, pp.566-570.
    [8]S. Roy, J. R. Foerster, V. S. Somayazulu, D. G. Leeper, "Ultra-wideband Radio Design:The Promise of High-speed, Short-range Wireless Connectivity," Proceedings of the IEEE, vol.92, no.2, Feb. 2004, pp.295-311.
    [9]P. Xia, X. Qin, H. Niu, H. Singh, H. Shao, J. Oh, C. Kweon, S. Kim, S. Yong, C. Ngo, "Short Range Gigabit Wireless Communications Systems:Potentials, Challenges and Techniques," in Proc. of the International Conference on Ultra-wideband (ICUWB 2007),24th -26th Sept.2007, pp.123-128.
    [10]E. Callaway, P. Gorday, L. E.Hester, et.al., "Home Networking With IEEE 802.15.4:a Developing Standard for Low-rate Wireless Personal Area Networks," IEEE Communications Magazine, vol.40, no.8, Aug.2002, pp.70-77.
    [11]D. Porcino, W. Hirt, "Ultra-wideband Radio Technology:Potential and Challenges Ahead," IEEE Communications Magazine, vol.41, no.7,2003, pp.66-74.
    [12]P. Smulders, "Exploiting the 60-GHz Band for Local Wireless Multimedia Access:Prospects and Future Directions," IEEE Communications Magazine, vol.40, no.1,2002, pp.140-147.
    [13]P. Cheolhee, T.S. Rappaport, "Short-Range Wireless Communications for Next-Generation Net-works:UWB,60 GHz Millimeter-Wave WPAN, and ZigBee," IEEE Wireless Communications, vol. 14, no.4,2007, pp.70-78.
    [14]S. Kato, H. Harada, R. Funada, T. Baykas, C. S. Sum, J. Wang, M. A. Rahman, "Single Carrier Transmission for Multi-Gigabit 60-GHz WPAN System," IEEE Journal on Selected Areas In Com-munications, vol.27, no.8, Oct 2009, pp.1466-1478.
    [15]J. B. Kenney, "Dedicated Short-Range Communications (DSRC) Standards in the United States," Proceedings of the IEEE, vol.99, no.7,2011, pp.1162-1182.
    [16]T. Kaiser, F. Zheng, E. Dimitrov, "An Overview of Ultra-Wide-Band Systems With MIMO," Pro-ceedings of the IEEE, vol.97, no.2,2009, pp.285-312.
    [17]G. Retz, H. N. Shanan, K. Mulvaney, et.al. "Radio transceivers for wireless personal area networks using IEEE802.15.4," IEEE Communications Magazine, vol.47, no.9,2009, pp.150-158.
    [18]H. Singh, J. Oh, C. Y. Kweon, X. P. Qin, H. R. Shao, and C. Ngo, "A 60 GHz Wireless Network for Enabling Uncompressed Video Communication," IEEE Commun. Mag., vol.46, no.12, Dec.2008, pp.71-78.
    [19]E. Lahetkangas, K. Pajukoski, E. Tiirola, J. Hamalainen, Z. Zhong, "On the Performance of LTE-Advanced MIMO:How To Set and Reach Beyond 4G Targets," in Proc of 8th European Wireless Conference,2012, pp.1-6.
    [20]Y. Akimoto, Y. Shirato, K. Wantanabe, "A High-precision AFC Circuit Applied to 64QAM Point-to-multipoint Burst Communications," in Proc of IEEE Wireless Communications and Networking Conference (WCNC), vol.1,2005, pp.562-567.
    [21]A. Tarighat, A. H. Sayed, "MIMO OFDM Receivers for Systems With IQ Imbalances," IEEE Trans-actions on Signal Processing, vol.53, no.9,2005, pp.3583-3596.
    [22]R. Kraemer, M. D. Katz, Short-Range Wireless Communications:Emerging Technologies and Ap-plications. London, U.K.:Wiley,2009.
    [23]Z. Q. Yu, J. Y. Zhou, J. N. Zhao, W. Hong, "Design of a wideband RF receiver for the next-generation wireless communication system," in Proc. of Asia Pacific Microwave Conference (APMC 2009),2009, pp.465-468.
    [24]Bin Li, Zheng Zhou, Weixia Zou, "Ultra-Spectra Communication System (USCS):A Promising Way to Energy Efficient Green Communication Networks," Springer EURASIP Journal on Wireless Communications and Networking, Special issue on Green Radio, doi:10.1186/1687-1499-2012-47, 2012,2012.47.
    [25]T. Zasowski, A. Wittneben, "Performance of UWB Receivers with Partial CSI Using a Simple Body Area Network Channel Model," IEEE Journal on Selected Areas in Communications, vol.27, no.1, 2009, pp.17-26.
    [26]L. Q. Yang, G. B. Giannakis, "Ultra-wideband Communications:An Idea Whose Time Has Come," IEEE Signal Processing Magazine, vol.21, no.6,2004, pp.26-54.
    [27]A. F. Molisch, "Ultra-Wideband Propagation Channels," Proceedings of the IEEE, vol.97, no.2, Feb.2009, pp.353-371.
    [28]J. Foerster, Ed., "IEEE 802.15.SG3a Channel modeling sub-committee Report Final," IEEE p802.15-02/490r1-SG3a, Feb.2003.
    [29]A. F. Molisch et al., "IEEE 802.15.4a Channel Model -Final Report," IEEE 802,15-04-0662-00-004a, Nov.2004.
    [30]Bin Li, Zheng Zhou, Weixia Zou, "Characterization on Clustered Propagations of UWB in Vehi-cle Passenger Cabin:Measurement, Cluster Identification and Modeling Evaluation," IEEE Sensors Journal, vol.13, no.4,2013, pp.1288-1300.
    [31]Bin Li, Zheng Zhou, Dejian Li, Shijun Zhai. "Efficient Cluster Identification for Measured Ultra-wideband Channel Impulse Response in Vehicle Cabin," Progress In Electromagnetics Research, vol. 117,2011, pp.121-147.
    [32]K. Witrisal, G. Leus, G. Janssen, M. Pausini, F. Troesch, T. Zasowski, J. Romme, "Noncoherent Ultra-wideband Systems," IEEE Signal Processing Magazine, vol.26, no.4,2009, pp.48-66.
    [33]G. Durisi, S. Benedetto. "Comparison Between Coherent and Non-coherent Receivers for UWB Communications." EURASIP journal on applied signal processing, vol.3, pp.1-9, March 2005.
    [34]V. Lottici, A. D'Andrea, U. Mengali, "Channel Estimation For Ultra-wideband Communications," IEEE Journal on Selected Areas in Communications, vol.20, no.9,2002, pp.1638-1645.
    [35]M. Lei, C. S. Choi, R. Funada, H. Harada, S. Kato, "Throughput Comparison of Multi-Gbps WPAN (IEEE 802.15.3c) PHY Layer Designs under Non-Linear 60-GHz Power Amplifier," in Proc of IEEE Symp. Per. Indoor Mobile Radio Commun. (PIMRC), Athens, Greece, Sept.2007, pp.1-5.
    [36]E. Perahia, et al. IEEE P802.11 Wireless LANs TGad Evaluation Methodology,2010.
    [37]A. Wiesel, J. Goldberg, Hagit Messer-Yaron, "SNR Estimation in Time-Varying Fading Channels," IEEE Transactions on Communications, vol.54, no.5. May,2006, pp.841-848.
    [38]H. S. Wang, P. Chang, "On Verifying the First Order Markovian Assumption for A Rayleigh Fading Channel Model," IEEE Transactions on Vehicular Technology, vol.45, no.2, May 1996, pp.353-357.
    [39]D. T. P. Huy, "Downlink B3G MIMO OFDMA Link and System Level Performance," in Proc. of IEEE Vehicular Technology Conference,2008, pp.1975-1979.
    [40]G. Y. Liu, Guangyi, J. H. Zhang, P. Zhang, Y. Wang, X. T. Liu, S. Li, "Evolution Map From TD-SCDMA to FuTURE B3G TDD," IEEE Communications Magazine, vol.44, no.3, Mar.2006, pp. 54-61.
    [41]Y. Hatakawa, N. Miyazaki, T. Suzuki, "Field Experiments on Open-Loop Precoding MIMO Using Testbed Targeted at IMT-Advanced System," in Proc. IEEE Wireless Communications and Network-ing Conference,2009, pp.1-5.
    [42]M. G. Peng, W. B. Wang,"Technologies and standards for TD-SCDMA evolutions to IMT-advanced," IEEE Communications Magazine, vol.47, no.12, Dec.2009, pp.50-58.
    [43]S. Parkvall, Stefan, E. Dahlman, A. Furuskar, et. al. "LTE-Advanced-Evolving LTE towards IMT-Advanced," in Proc. of IEEE 68th Vehicular Technology Conference (VTC 2008-Fall), Sept.2008, pp.1-5.
    [44]Q. H. Li, G. J. Li, W. B. Lee, et.al., "MIMO Techniques in WiMAX and LTE:A Feature Overview," IEEE Communications Magazine, vol.48, no.5, May 2010, pp.86-92.
    [45]J. F. Tian, X. Y. Zheng, H. L. Hu, X. H. You, "A Survey of Next Generation Mobile Communications Research In China," Chinese Science Bulletin, vol.56, no.27, Sep.2011, pp 2875-2888.
    [46]F. Wang, A. Ghosh, C. B. Sankaran, et.al., "Mobile WiMAX Systems:Performance and Evolution," IEEE Communications Magazine, vol.46, no.10, Oct.2008, pp.41-49.
    [47]R. Bancroft, "A commercial perspective on the development and integration of an 802.1 la/b/g hiper-lan/WLAN antenna into laptop computers," IEEE Antennas and Propagation Magazine, vol.48, no. 4, Aug.2006, pp.12-18.
    [48]A. Soomro, D. Cavalcanti, "Opportunities and challenges in using WPAN and WLAN technologies in medical environments," IEEE Communications Magazine, vol.45, no.2, Feb.2007, pp.114-122.
    [49]A. Doufexi, S. M. D. Armour, M. R. G.Butler, et.al., "A comparison of the HIPERLAN/2 and IEEE 802.11a wireless LAN standards," IEEE Communications Magazine, May 2002, vol.40, no.5, pp. 172-180.
    [50]S. Nanda, R. Walton, J. W. Ketchum, M. S. Wallace, S. J. Howard, "A high-performance MIMO OFDM wireless LAN," IEEE Communications Magazine, vol.43, no.2, Feb.2005, pp.101-109.
    [51]G. R. Hiertz, D. Denteneer, P. L. Stibor, et.al., "The IEEE 802.11 universe," IEEE Communications Magazine, vol.48, no.1, Jan.2010, pp.62-70.
    [52]E. H. Ong, J. Kneckt, O. Alanen, et. al., "IEEE 802.11ac:Enhancements for very high throughput WLANs," in Proc. of IEEE 22nd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC 2011),11-14 Sept.2011, pp.849-853.
    [53]P. Eldad, X. G. Michelle, "Gigabit wireless LANs:an overview of IEEE 802.11ac and 802.11ad," ACM SIGMOBILE Mobile Computing and Communications, vol.15, no.3, July 2011, pp.23-33.
    [54]S. Palm, "Home Networks:From Bits to Gigabits:Lessons Learned from the Evolution of Home Networking," IEEE Consumer Electronics Magazine, vol.1, no.3, July 2012, pp.29-35.
    [55]R. C. Daniels, J. N. Murdock, T. S. Rappaport, R. W. Heath, "60 GHz Wireless:Up Close and Personal," IEEE Microwave Magazine, vol.11, no.7, Dec.2010, pp.44-50.
    [56]J. Karaoguz, "High-rate wireless personal area networks," IEEE Communications Magazine, vol. 39, no.12, Dec 2001, pp.96-102.
    [57]M. J. Lee, R. Zhang, J. L. Zheng, et. al., "IEEE 802.15.5 WPAN mesh standard-low rate part: Meshing the wireless sensor networks," IEEE Journal on Selected Areas in Communications, vol. 28, no.7, Sep.2010, pp.973-983.
    [58]E. D. Karapistoli,E. N. Pavlidou, I. Gragopoulos, I. Tsetsinas, "An overview of the IEEE 802.15.4a Standard," IEEE Communications Magazine, vol.48, no.1, Jan.2010, pp.47-53.
    [59]R. C. Qiu, H. P. Liu, X. M. Shen, "Ultra-wideband for multiple access communications," IEEE Communications Magazine, vol.43, no.2,2005, pp.80-87.
    [60]W. P. Siriwongpairat, W. F. Su, M. Olfat, J. K. R. Liu, "Multiband-OFDM MIMO coding framework for UWB communication systems," IEEE Transactions on Signal Processing, vol.54, no.1, Jan. 2006, pp.214-224.
    [61]T. Baykas, C. S. S. Sum, Z. Lan, J. Y. Wang, M. Rahman, H. Harada, S. Kato, "IEEE 802.15.3c:the first IEEE wireless standard for data rates over 1 Gb/s," IEEE Communications Magazine, vol.49, no.7, July 2011, pp.114-221.
    [62]C. W. Pyo, H. Harada, "Throughput analysis and improvement of hybrid multiple access in IEEE 802.15.3c mm-wave WPAN," IEEE Journal on Selected Areas in Communications, vol.27, no.8, Oct.2009, pp.1414-1424.
    [63]Bin Li, Zheng Zhou, Weixia Zou, "On the Efficient Beam Pattern Training for 60GHz Wireless Personal Area Networks," IEEE Transactions on Wireless Communications, vol.12, no.2, Feb.2013, pp.504-515.
    [64]S. Haykin, "Cognitive Radio:Brain-Empowered Wireless Communications," IEEE Journal on Se-lected Areas in Communications, vol.23, no.2, Feb.2005, pp.201-220.
    [65]Y. C. Liang, K. C. Chen, G. Y. Li, and P. Mahonen, "Cognitive Radio Networking and Communi-cations:An Overview," IEEE Transactions on Vehicular Technology, vol.60, no.7, Sept.2011, pp. 3386-3407.
    [66]L. Zhang, L. Yang, T. Yang, "Cognitive Interference Management for LTE-A Femtocells with Distributed Carrier Selection," in Proc. of IEEE 72nd Vehicular Technology Conference Fall (VTC 2010-Fall),6-9 Sept.2010, pp.1-5.
    [67]M. Mueck, T. Haustein, "Demand driven evolution of the Cognitive Pilot Channel," in Proc. of the Fifth International Conference on Cognitive Radio Oriented Wireless Networks & Communication-s(CROWNCOM 2010),9-11 June 2010, pp.1-5.
    [68]P. Sofie Pollin, T. Michael Timmers, V. D. P. Liesbet, Emerging Standards for Smart Radios:En-abling Tomorrow's Operation:Software Defined Radios,2011, pp 11-35.
    [69]IEEE Std.802.15.3c, "Wireless Medium Access Control (MAC) and Physical Layer (PHY) Speci-fications for High Rate Wireless Personal Area Networks (WPANs):Amendment 2:Millimeter-wave based Alternative Physical Layer Extension," 2009.
    [70]IEEE Std.802.11ad, "IEEE 802.11 Very High Throughput Study Group," Available: http://www.ieee802.org/11/Reports/vhtupdate.html.
    [71]I. J. Oppermann, L. Stoica, A. Rabbachin, Z. Shelby, J. Haapola, "UWB wireless sensor networks: UWEN-a practical example," IEEE Communications Magazine, vol.42, no.2,2004, pp.27-32.
    [72]G. S. Rajan, S. S. Rajan, "Noncoherent Low-Decoding-Complexity Space-Time Codes for Wireless Relay Networks," in Proc. of IEEE International Symposium on Information Theory (ISIT 2007), 24th-29th June 2007, pp.1521-1525.
    [73]G. Farhadi, N. C. Beaulieu, "A Low Complexity Receiver for Noncoherent Amplify-and-Forward Cooperative Systems," IEEE Transactions on Communications, vol.58, no.9, September 2010, pp. 2499-2504.
    [1]C. F. Mecklenbrauker, A. F. Molisch, J. Karedal, F. Tufvesson, A. Paier, L. Bernado, T. emen, O. Klemp, N. Czink, "Vehicular Channel Characterization and Its Implications for Wireless System Design and Performance," Proc. of IEEE, vol.99, no.7, July 2011, pp.1189-1212.
    [2]A. Batra, J. Balakrishnan, G. R. Aiello, J. R. Foerster, and A. Dabak, "Design of a Multi-band OFDM System for Realistic UWB Channel Environments," IEEE Trans. Microwave Theory Tech., vol.52, no.9, Sept.2004, pp.2123-2138.
    [3]A. F. Molisch, ed.,Wireless Communications 2nd Edition. Chichester (UK):John Wiley & Sons, 2011.
    [4]A. F. Molisch, "Propagation and channel modeling principles", in G. de la Roche, A. A. Glazunov, and B. Allen, "LTE Advanced and Beyond Wireless Networks:Channel Modeling and Propagation", Wiley (2012).
    [5]M. G. diBenedetto, T. Kaiser, A. F. Molisch, I. Oppermann, C. Politano, and D. Porcino, Eds., UWB Communications Systems:A Comprehensive Overview. New York:Hindawi,2006.
    [6]IEEE 802.11n Draft 5.0, www.ieee802.org/11/.
    [7]IEEE 802. 11e Standard Amendment for Local and Metropolitan Area Networks,2005.
    [8]M. Z. Win, R. A. Scholtz; "Ultra-wide Bandwidth Time Hopping Spread Spectrum Impulse Radio for Wireless Multiple-access Communications," IEEE Trans, on Commun., vol.48, no.4,2000, pp.679-689.
    [9]M. Z. Win and R. A. Scholtz, "Impulse radio:How it works," IEEE Commun. Lett., vol.2, Feb. 1998, pp.36-38.
    [10]R. C. Qiu, H. Liu, and X. Shen, "Ultra-wideband for multiple access communications," IEEE Commun. Mag., vol.43, Feb.2005, pp.80-87.
    [11]L. Q. Yang, G. B. Giannakis, "Ultra-wideband communications:an idea whose time has come," IEEE Signal Proc. Mag., vol.21, no.6,2004, pp.26-54.
    [12]A. F. Molisch, "Ultrawideband Propagation Channels-Theory, Measurement, and Modeling," IEEE Trans. Veh. Technol., vol.54, no.5,2005, pp.1528-1545.
    [13]A. F. Molisch, "Ultra-Wideband Propagation Channels," Proc. of IEEE, vol.97, no.2, Feb.2009, pp.353-371.
    [14]A. F. Molisch, K. Balakrishnan, C. C. Chong, D. Cassioli, S. Emami, A. Fort, J. Karedal, J. Kunisch, H.Schantz, K. Siwiak, and M. Z. Win, " A Comprehensive Standardized Model for Ultra-wideband Propagation Channels," IEEE Trans. Antennas Prop., vol.54, no.11, Nov.2006, pp.3151-3166.
    [15]A. Saleh and R. Valenzuela, "A Statistical Model for Indoor Multipath Propagation," IEEE J. Select. Areas Commun., vol.5, no.2,1987, pp.128-137.
    [16]J. Foerster, Ed., "IEEE 802.15.SG3a Channel modeling sub-committee Report Final," IEEE p802.15-02/490r1-SG3a, Feb.2003.
    [17]A. F. Molisch et al., "IEEE 802.15.4a channel model -final report," IEEE 802.15-04-0662-00-004a, Nov.2004.
    [18]Stefanski Adam, Characterization of Radio-wave Propagation in Indoor Industrial Environments, Degree Thesis, Simon Fraser University,2010.
    [19]I. Schmidt, A. Enders, M. Schwark, J. Schuur, R. Geise, M. Schirrmacher, H. Stoefen,, "UWB aircraft transfer function measurements in the frequency range from 2 to 8 GHz," in Proc. of Inter-national Symposium on Electromagnetic Compatibility (EMC Europe), Sept.2008, pp.1-4.
    [20]B. Li, Z. Zheng, D. J. Li, S.J. Zhai, " Efficient Cluster Identification for Measured Ultra-Wideband Channel Impulse Response in Vehicle Cabin," Progress In Electromagnetics Research, vol.117, 2011,pp.121-147.
    [21]B. Li, Z. Zhou, Weixia Zou, "Characterization on Clustered Propagations of UWB in Vehicle Passenger Cabin:Measurement, Cluster Identification and Modeling Evaluation," IEEE Sensors Journal, vol.13, no.4, April 2013, pp.1288-1300.
    [22]李德建,周正,李斌.大型客车车厢环境下的超宽带信道模型.北京邮电大学学报,vol.35,no.1,2012,pp.5-9.
    [23]刘蕾蕾,张念祖,洪伟,超宽带信道的频域测量及校准,电波科学学报,vol.27,no.5,2012,pp.881-912.
    [24]S. J. Zhai, T. Jiang, D. J. Li, B. Li, "Statistical characterization of UWB propagation channel in ship cabin environment," in Proc. of IEEE International Conference on Communications (ICC), 2012, Page(s):6386-6390.
    [25]扈罗全,朱洪波,超宽带室内多径信道随机分析模型,电波科学学报,vol.21,no.4,2006,pp.482-487.
    [26]Katsuyuki Haneda, Jun-ichi Takada, and Takehiko Kobayashi, "Cluster Properties Investigated From a Series of Ultra-wideband Double Directional Propagation Measurements in Home Environ-ments," IEEE Trans. Antennas Propag., vol.54, no.12,2006, pp.3778-3788.
    [27]C. C. Chong, "S-V Parameter Extraction:General Guidelines," IEEE 15-04-0283-00-004a.
    [28]C. Carbonelli, U. Mitra, "Clustered ML Channel Estimation for Ultra-Wideband Signals," IEEE Trans. Wirel. Commun., vol.6, no.7,2007, pp.2412-2416.
    [29]K. Witrisal, G. Leus, G. Janssen, M. Pausini, F. Troesch, T. Zasowski, J. Romme. "Noncoherent ultra-wideband systems," IEEE Signal Proc. Mag., vol 26, no.4,2009, pp.48-66.
    [30]O. H. Woon, S. Krishnan., "Identification of Clusters in UWB Channel Modeling," in Proc. of IEEE Vehicular Technology Conference (VTC-Fall),2006, pp.1-5.
    [31]J. Chuang, S. Bashir, D. G Michelson. "Automated Identification of Clusters in UWB Channel Impulse Responses," in Proc. of Canadian Conference on Electrical and Computer Engineering (CCECE),2007, pp.761-764.
    [32]A. Massouri, L. Clavier, P. Combeau, Y. Pousset, "Automated identification of clusters and uwb channel parameters dependency on Tx-Rx distance," in Proc. of the 3rd European Conference on Antennas and Propagation (EuCAP),2009, pp.376-379.
    [33]A. Richard, B. Brian, T. Clifford, Parameter estimation and inverse problems, Academic Press, 2005.
    [34]H. Nikookar, R. Prasad. Introduction to Ultra Wideband for Wireless Communications, Signals and Communication Technology, Berlin:Springer Science & Business Media B.V.,2009, pp.164-171.
    [35]R. Bose, B. D. Steinberg and A. Freedman, "Sequence CLEAN:A Deconvolution Technique for Reducing Side-lobe Artifacts in Microwave Images of Continuous Targets," in Proc. of the Thirteenth Annual Benjamin Franklin Symposium on Antenna and Microwave Technology in the 1990s, May,1995.
    [36]D. Shutin and G. Kubin. "Cluster Analysis of Wireless Channel Impulse Responses with Hidden Markov Models," in Proc. of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), May,2004, pp.949-952.
    [37]V. Erceg et al., TGn Channel Models, IEEE 802.11-03/940r4, May 2004.
    [38]John G. Proakis. Digital Communications, Fourth Edition, McGraw-Hill Companies, Inc., New York, USA,2001.
    [39]J. Canny. "A Computational Approach to Edge Detection," IEEE Trans. Pattern Anal. Mach. Intell, vol.8,1986, pp.679-698.
    [40]D. Heric, D. Zazula, " Combined Edge Detection Using Wavelet Transform and Signal Registra-tion," Image Vision Comput, vol.25, no.5, May 2007, pp.652-662.
    [41]I. Gijbels, A. Lambert and P. Qiu, "Edge-preserving Image Denoising and Estimation of Discon-tinuous Surfaces," IEEE Trans. Pattern Anal. Mach. Intell., vol.28, no.7, Jul.2006, pp.1075-1087.
    [42]I. Daubechies, Ten Lectures on Wavelets, SIAM,1992.
    [43]E. Hernandez and G. Weiss, A first Course on Wavelets, CRC Press,1996.
    [44]R. Coifman and M. V. Wickerhauser,Wavelets and Adapted Waveform Analysis, Wavelets:Mathe-matics and Applications (J. Benedetto and M. Frazier Eds.), CRC Press,1994.
    [45]S. G. Mallat. "A Theory of Multi-resolution Signal Decomposition:The Wavelet Representation," IEEE Trans Pattern Anal. Mach. Intell., vol.11,1989, pp.674-693.
    [46]James S. Walker. "Fourier Analysis and Wavelet Analysis," Notices of the American Mathematical Society, vol.44, no.6,1997, pp.658-670.
    [47]H. Jeong, C. I. Kim. "Adaptive determination of filter scales for edge detection," IEEE Trans. Pattern Anal. Mach. Intell, vol.14,1992, pp.579-585.
    [48]L. Zhang, P. Bao. "Edge Detection by Scale Multiplication in Wavelet Domain," Pattern Recogn. Lett., vol 23, no.14,2002, pp.771-1784.
    [49]S. Mallat, W. L. Hwang, "Singularity detection and processing with wavelets," IEEE Trans. In-formation Theory, vol.32,1992, pp.617-643.
    [50]M. Dorigo, V. Maniezzo, and A. Colorni. "The ant system:Optimization by a colony of cooper-ating agents," IEEE Transactions on Systems, Man, and Cybernetics-Part B, vol.26, no.1,1996, pp.29-12.
    [51]M. Dorigo, V. Maniezzo, and A. Colorni.Positive feedback as a search strategy. Technical report 91-016, Politecnico di milano,1991, Dip. Elettronica.
    [52]E. D. Lumer and B. Faieta. "Diversity and adaptation in populations of clustering ants". In Cli D., Husbands P., Meyer J., and Wilson S., editors, in Proc. of the Third International Conference on Simulation of Adaptive Behavior:From Animals to Animates, pages 501-508, Cambridge, MA, 1994, MIT Press.
    [53]B. Li, Z. Zheng, W. Z. Zou, "Ant Intelligence Inspired Blind Data Detection for Ultra-wideband Radar Sensors," Information Sciences, Accepted for publication, (2013), http://dx.doi.org/10.1016/j.ins.2013.03.059.
    [54]L. Zhang, Q. X. Cao. "A novel ant-based clustering algorithm using the kernel method," Information Science, vol.181, no.20, Oct.2011, pp.4658-4672.
    [55]J. Handl, J. Knowles, and M. Dorigo. " On the performance of ant-based clustering," Frontiers in Artificial Intelligence and Applications, vol.104,2003, pp.204-213.
    [56]X. H. Xu, L. Chen, Y. X. Chen, " A4C:an adaptive artificial ants clustering algorithm," in Proc. of the IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, 2004, pp.268-274.
    [57]L. C. Kin, J. Martin, K. Thomas, "A systematic Approach for UWB Channel Modeling in Aircraft Cabin," in Proc. of IEEE Vehicular Technology Conference (VTC-Fall), Anchorage, USA,2009, pp.1-5.
    [58]S. Chiu, J. Chuang, D. G. Michelson, "Characterization of UWB Channel Impulse Responses within Passenger Cabin of a Boeing 737-200 Aircraft," IEEE Trans. Antennas Propag., vol.58, no. 3,2005, pp.935-945.
    [59]Y. B. Band, Light and Matter:Electromagnetism, Optics, Spectroscopy and Lasers, John Wiley& Sons,2010.
    [60]J. Hansen, "An analytical calculation of power delay profile and delay spread with experimental verification," IEEE Communications Letters, Vol.7, no.6,2003, pp.257-259.
    [61]T. Huschka, "Ray tracing models for indoor environments and their computational complexity," in Proc. of the IEEE International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), Hague, Netherlands, Sept.1994, pp.486-490.
    [62]H. F. Harmuth, Antennas and Waveguides for Nonsinusoidal Waves, Academic Press,1984.
    [63]Karumudi Rambabu, Adrian Eng-Choon Tan, Kevin Khee-Meng Chan and Michael Yan-Wah Chia. " Study of Antenna Effect on UWB Pulse Shape in Transmission and Reception," in Proc. of IEEE Antennas and Propagation Symp. (IAPS), Singapore, Nov.2006, pp.1-4.
    [64]B. Li, Z. Zheng, W. X. Zou, W. X. Gao. "Particle Swarm Optimization Based Noncoherent De-tector for Ultra-wideband Radio in Intensive Multipath Environments," EURASIP Journal on Ad-vances in Signal Processing, vol.2011,2011, pp.1-15, Article number:341836.
    [65]S. Dubouloz, B. Denis, S. de Rivaz, and L. Ouvry, "Performance Analysis of LDR UWB Non-coherent Receivers in Multipath Environments," in Proc. IEEE Intern. Conf. Ultra-Wideband (ICUWB), Sept.2005, pp.491-196.
    [66]李德建,周正,李斌,翟世俊,蒋挺,“办公室环境下的超宽带信道测量与建模,”电波科学学报,vol 27,no.3,2012,pp.432-439.
    [67]李德建,压缩感知与超宽带信道建模的研究,北京邮电大学博士学位论文,2012.
    [1]P. Cheolhee, T. S. Rappaport, "Short-Range Wireless Communications for Next-Generation Net-works:UWB,60 GHz Millimeter-Wave WPAN, and ZigBee," IEEE Wireless Communications, vol.14, no.4,2007, pp.70-78.
    [2]P. Xia, X. Qin, H. Niu, H. Singh, H. Shao, J. Oh, C. Kweon, S. Kim, S. Yong, C. Ngo, "Short Range Gigabit Wireless Communications Systems:Potentials, Challenges and Techniques," in Proc. of the International Conference on Ultra-wideband (ICUWB 2007),24th -26th Sept.2007, pp.123-128.
    [3]O. Oyman, J. Foerster, Y. Tcha, and S.Lee, " Toward Enhanced Mobile Video Services over WiMax and LTE," IEEE Commun. Mag., vol.48, no.6,2010, pp.68-76.
    [4]Y. Akimoto, Y. Shirato, K. Wantanabe, "A high-precision AFC circuit applied to 64QAM point-to-multipoint burst communications," in Proc of IEEE Wireless Communications and Networking Conference (WCNC), vol.1,2005, pp:562-567.
    [5]S. Roy, J. R. Foerster, V. S. Somayazulu, D. G. Leeper. "Ultra-wideband radio design:the promise of high-speed, short-range wireless connectivity," Proceedings of the IEEE, vol.92, no.2,2004, pp.295-311.
    [6]R. Kraemer, M. D. Katz, Short-Range Wireless Communications:Emerging Technologies and Ap-plications. London, U.K.:Wiley,2009.
    [7]IEEE Std 802.15.1-2005 -Part 15.1:Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Wireless Personal Area Networks (WPANs), IEEE Standards Association. doi:10.1109/IEEESTD.2005.96290.
    [8]Multi-band OFDM physical layer proposal for IEEE 802.15 task group 3a. www.ieee802.org/.../03268r2P802-15_TG3a-Multi-band-CFP-Document.pdf.
    [9]J. Walko, "Mobile Operators Under Pressure in Barcelona-3GSM report," Picochip, EETimes Europe,2007.
    [10]Z. Q. Yu, J. Y. Zhou, J. N. Zhao, W. Hong, "Design of a wideband RF receiver for the next-generation wireless communication system," in Proc. of Asia Pacific Microwave Conference (APM-C 2009),2009, pp.465-468.
    [11]Bin Li, Zheng Zhou, Weixia Zou, "Ultra-Spectra Communication System (USCS):A Promising Way to Energy Efficient Green Communication Networks," EURASIP Journal on Wireless Com-munications and Networking (in special issue on Green Radio), doi:10.1186/1687-1499-2012-47, 2012,2012.47.
    [12]T. Zasowski, A. Wittneben, "Performance of UWB Receivers with Partial CSI Using a Simple Body Area Network Channel Model," IEEE Journal on Selected Areas in Communications, vol 27, no.1,2009, pp.17-26.
    [13]L. Q. Yang, G. B. Giannakis, "Ultra-wideband communications:an idea whose time has come," IEEE Signal Processing Magazine, vol.21, no.6,2004, pp.26-54.
    [14]A. F. Molisch, "Ultra-Wideband Propagation Channels," Proc. of IEEE, vol.97, no.2, Feb.2009, pp.353-371.
    [15]J. Foerster, Ed., "IEEE 802.15.SG3a Channel modeling sub-committee Report Final," IEEE p802.15-02/490r1-SG3a, Feb.2003.
    [16]A. F. Molisch et al., "IEEE 802.15.4a channel model -final report," IEEE 802.15-04-0662-00-004a, Nov.2004.
    [17]D. Cassioli, M. Z. Win, F. Vatalaro, A. F. Molisch. "Low Complexity Rake Receivers in Ultra-Wideband Channels," IEEE Transaction on Wireless Communication, vol 4, no.6, April 2007, pp. 1265-1275.
    [18]K. Witrisal, G. Leus, G. Janssen, M. Pausini, F. Troesch, T. Zasowski, J. Romme, "Noncoherent ultra-wideband systems," IEEE Signal Processing Magazine, vol.26, no.4,2009, pp.48-66.
    [19]G. Durisi, S. Benedetto. "Comparison between coherent and non-coherent receivers for UWB communications." EURASIP journal on applied signal processing, vol.3, March 2005, pp.1-9.
    [20]V. Lottici, A. D'Andrea, U. Mengali, "Channel estimation for ultra-wideband communications," IEEE Journal on Selected Areas in Communications, vol.20, no.9,2002, pp.1638-1645
    [21]A. Rajeswaran, V. S. Somayazulu, and J. Foerster, "Rake performance for a pulse based UWB system in a realistic UWB indoor channel," in Proc. of IEEE International Conference on Commu-nications (ICC), vol.4, May 2003, pp.2879-2883.
    [22]Z. Tian, G.B. Giannakis, "Data-aided ML timing acquisition in ultra-wideband radios," in Proc. of IEEE Conference on Ultra Wideband Systems and Technologies (ICUWBST),16-19th, Nov.2003, pp.142-146.
    [23]R. Hoctor and H. Tomlinson, "Delay-hopped transmitted-reference RF communications," in Proc. IEEE Conf. Ultra Wideband Systems and Technologies (UWBST), Baltimore, MD, May 2002, pp. 265-270
    [24]S. Franz and U. Mitra, "Generalized UWB transmitted reference systems," IEEE J. Select. Areas Commun., vol.24, no.4, April 2006, pp.780-786.
    [25]A. D'Amico, U. Mengali, E. Arias-de Reyna, "Energy-detection UWB receivers with multiple energy measurements," IEEE Trans. Wireless Commun., vol.6, no.7, July 2007, pp.2652-2659.
    [26]T. Zasowski, F. Troesch, and A. Wittneben, "Partial channel state information and intersymbol interference in low complexity UWB PPM detection," in Proc. IEEE Int. Conf. Ultra-Wideband (ICUWB), Sept.2006, pp.369-374.
    [27]H. Luecken, T. Zasowski, C. Steiner, F. Troesch, and A. Wittneben, "Location-aware adaptation and precoding for low complexity IR-UWB receivers, in Proc. IEEE Int. Conf. Ultra-Wideband (ICUWB), Sept.2008, pp.31-34.
    [28]Bin Li, Zheng Zhou, Weixia Zou, "Fuzzy C-Means Clustering Based Robust and Blind Nonco-herent Receivers for Underwater Sensor Networks," Springer Lecture Notes in Computer Science (LNCS) on the First Workshop on Radar and Sonar Sensor Networks,2010, vol.6221/2010, pp. 314-321.
    [29]Bin Li, Zheng Zhou, Weixia Zou, "Ant Intelligence Inspired Blind Data Detection for Ultra-wideband Radar Sensors," Elsevier Information Science, accepted for publication, (2013), http://dx.doi.org/10.1016/j.ins.2013.03.059.
    [30]Bin Li, Zheng Zhou, Dejian Li, Weixia Zou. "A Novel Parzen Probabilistic Neural Network Based Noncoherent Detection Algorithm for Distributed Ultra-wideband Sensors", Elsevier Journal of Network and Computer Applications,(JNCA) vol.34, no.6, Nov.2011, pp.1894-1902.
    [31]Bin Li, Zheng Zhou, Weixia Zou, Wanxin Gao. "Particle Swarm Optimization Based Noncoherent Detector for Ultra-wideband Radio in Intensive Multipath Environments," EURASIP Journal on Advances in Signal Processing, vol.2011,2011,1-15, Article number:341836.
    [32]Bin Li, Zheng Zhou, Weixia Zou, "Quantum Memetic Evolutionary Algorithm Based Low-complexity Signal Detection for Underwater Acoustic Sensor Networks," IEEE Transactions on Systems, Man and Cybernetics, vol.42, no.5. Sep.2012, pp.626-640.
    [33]Bin Li, Zheng Zhou, Weixia Zou, "Simulated Annealing Based Noncoherent Signal De-tection for Ultra-wideband Radar Sensor Networks," Wireless Personal Communications, doi: 10.1007/s11277-012-0927-5,2013, in press.
    [34]M. Z. Win, R.A. Scholtz, "Ultra-wide bandwidth time hopping spread spectrum impulse radio for wireless multiple-access communications," IEEE Transactions on Communications, vol.48, no.4, 2000, pp.679-689.
    [35]Bin Li, Zheng Zhou, Dejian Li, Shijun Zhai. " Efficient Cluster Identification for Measured Ultra-wideband Channel Impulse Response in Vehicle Cabin," Progress In Electromagnetics Research, vol.117,2011, pp.121-147.
    [36]Bin Li, Zheng Zhou, Weixia Zou, " Characterization on Clustered Propagations of UWB in Vehicle Passenger Cabin:Measurement, Cluster Identification and Modeling Evaluation," IEEE Sensors Journal, vol.13, no.4, April 2013, pp.1288-1300.
    [37]A. Saleh and R. Valenzuela, "A Statistical Model for Indoor Multipath Propagation," IEEE J. Select. Areas Commun., vol. SAC-5, No.2, Feb.1987, pp.128-137.
    [38]Q. L. Liang, X. Z. Cheng, "Underwater Acoustic Sensor Networks:Target Size Detection and Performance Analysis," Ad Hoc Networks, vol.7, no.4,2009, pp.803-808.
    [39]X. Geng, A. Zielinski, "An Eigenpath Underwater Acoustic Communication Channel Model," in Proc. of MTS/IEEE challenges of our changing global environment (OCEANS'95), vol.2,1995, pp.1189-1196.
    [40]M. Z. Win, R. A. Scholtz, "On the robustness of ultra-wide bandwidth signals in dense multipath environments," IEEE Communications Letters, vol.2, no.2,1998, pp.51-53.
    [41]L. Q. Yang, G. B. Giannakis, "Optimal pilot waveform assisted modulation for ultrawideband communications," IEEE Trans. Wireless Commun., vol.3, no.4, July 2004, pp.1236-1249.
    [42]S. Dubouloz, B. Denis, S. de Rivaz, and L. Ouvry, "Performance analysis of LDR UWB non-coherent receivers in multipath environments," in Proc. IEEE Intern. Conf. Ultra-Wideband (ICUWB 2005), Sept.2005, pp.491-496.
    [43]John G. Proakis. Digital Communications, Fourth Edition, McGraw-Hill Companies, Inc., New York, USA,2001.
    [44]J.P. Foley, J. G. Dorsey, "A Review of the Exponentially Modified Gaussian (EMG) Function: Evaluation and Subsequent Calculation of Universal Data," Journal of Chromatographic Science, vol.22, no.1,1984, pp.40-46.
    [45]O. D. Richard, E. H. Peter, G. S. David. Pattern Classification, Second Edition. John Wiley & Sons, Inc,2001.
    [46]S. Jonathon, "A Tutorial on Principal Component Analysis," available on line:http://www.es. cmu.edu/elaw/papers/pca.pdf.
    [47]S. M. Yamany, A. A. Farag, S. Hsu, "A fuzzy hyperspectral classifier for automatic target recogni-tion (ATR) systems," Pattern Recognit. Lett., vol.20,1999, pp.1431-1438.
    [48]S. Haykin. Neural Networks:A Comprehensive Foundation, Second Edition, Prentice Hal,1999.
    [49]J.C.Christopher. "A Tutorial on Support Vector Machines for Pattern Recognition," Data Min. and Knowl. Disc., vol.2, no.2,1998, pp.121-167.
    [50]V. Vapnik, Statistical Learning Theory. New York:Wiley,1998.
    [51]P. G. Espejo, F. Herrera, " A Survey on the Application of Genetic Programming to Classification," IEEE Transactions on Systems, Man, and Cybernetics-Part C:Applications and Reviews, vol.40, no.2,2010, pp.121-144.
    [52]X. Z. Wang, Y. L. He, L. C. Dong, H. Y. Zhao, "Particle swarm optimization for determining fuzzy measures from data," Information Sciences, vol.181, no.19,2011, pp.4230-4252.
    [53]D. D. Yang, L. C. Jiao, M. G. Gong, F. Liu. "Artificial immune multi-objective SAR image seg-mentation with fused complementary features," Information Sciences, vol.181, no.13, July 2011, pp.2797-2812.
    [54]M. Dorigo, V. Maniezzo, and A. Colony. Positive feedback as a search strategy. Technical report 91-016, Politecnico di milano,1991. Dip. Elettronica.
    [55]M. Dorigo, V. Maniezzo, and A. Colorni. "The ant system:Optimization by a colony of cooperat-ing agents," IEEE Transactions on Systems, Man, and Cybernetics-Part B, vol.26, no.1,1996, pp. 29-42.
    [56]M. Dorigo, E. Bonabeau, and G. Theraulaz. "Ant algorithms and stigmery". Future Generation Computer Systems, vol.16, no.8,2000, pp.851-871.
    [57]S. C. Chu, J. F. Roddick, C. J. Su, J. S. Pan, "Constrained ant colony optimization for data cluster-ing," in Proc. of 8th Pacific Rim International Conference on Artificial Intelligence, Lecture Notes in Artificial Intelligence, vol.3157, Springer, Berlin/Heidelberg,2004, pp.534-543.
    [58]P. Berkhin. Survey of clustering data mining techniques. Technical report, Accrue Software, San Jose, California,2002. http://citeseer.nj.nec.com/berkhin02survey.html.
    [59]E. D. Lumer and B.Faieta. "Diversity and adaptation in populations of clustering ants".In Cli D., Husbands P., Meyer J., and Wilson S., editors, Proceedings of the Third International Conference on Simulation of Adaptive Behaviour:From Animals to Animats, pages 501-508, Cambridge, MA, 1994. MIT Press.
    [60]N. Monmarche. On data clustering with artificial ants. In Alex Alves Freitas, editor, Data Mining with Evolutionary Algorithms:Research Directions, Orlando, Florida,1999, pp.23-26.
    [61]J. Handl, J. Knowles, and M. Dorigo. "On the performance of ant-based clustering".Frontiers in Artificial Intelligence and Applications, vol.104,2003, pp.204-213.
    [62]J. Handl, J. Knowles, M. Dorigo, " Strategies for the increased robustness of ant-based clustering," Lecture Notes in Artificial Intelligence, vol.2977, Springer-Verlag, Berlin/Heidelberg,2004. pp. 90-104.
    [63]X. H. Xu, L. Chen, Y. X. Chen, "A4C:an adaptive artificial ants clustering algorithm," in Proc. of the IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, 2004, pp.268-274.
    [64]L. Zhang, Q. X. Cao. "A novel ant-based clustering algorithm using the kernel method," Information Science, vol.181, no.20, Oct.2011, pp.4658-4672.
    [65]Louis L. Scharf and Cedric Demeure, Statistical Signal Processing:Detection, Estimation, and Time Series Analysis. Addison-Wesley,1991.
    [66]E. Parzen. "On the estimation of a probability density function and the mode," Annals of Math. Stats., vol.33,1962, pp:1065-1076.
    [67]S. M. Kay, Fundamentals of statistical signal processing:estimation theory, Prentice-Hall,1993.
    [68]Nonparametric Density Estimation. Available online:http://www.cs.utah.edu/suyash/Dissertation J itml/node10.html
    [69]P. Viola and W. Wells. "Alignment by maximization of mutual information," In Proc. of Int. Conf. Comp. Vision, pages 16-23,1995.
    [70]P. Burrascano, "Learning vector quantization for the probabilistic neural network," IEEE Trans. Neural Networks, Mar.1991, pp.458-461.
    [71]D. F. Specht, Probabilistic neural networks, Neural Network, vol.3,1990, pp.109-118.
    [72]D. F. Specht, "Enhancements to the probabilistic neural networks," in Proc. IEEE Int. Joint Conf. Neural Networks, Baltimore, MD,1992, pp.761-768.
    [73]J. H. Holland, "Genetic Algorithms," Scientific American. July 1992, pp.66-72.
    [74]Y. S. Ong, M. H. Lim and X. S. Chen, "Memetic Computation-Past, Present & Future," IEEE Comput. Intell. Mag., vol 5, no.2,2010, pp.24-31.
    [75]N. Krasnogor and J. Smith, "A Tutorial for Competent Memetic Algorithms:Model, Taxonomy, and Design Issues," IEEE Trans. Evol. Comput, vol.9,2005, pp.474-488.
    [76]Y. S. Ong, M. H. Lim, N. Zhu, and K. W. Wong, "Classification of adaptive memetic algorithms: A comparative study," IEEE Trans. Syst.,Man Cybern., Part B:Cybern., vol.36, no.1, Feb.2006, pp.141-152.
    [77]P. Moscato, " A Memetic Approach for the Traveling Salesman Problem-Implementation of a Com-putational Ecology for Combinational Optimization on Message-Passing Systems," in Proc. of In-ternational Conference on Parallel Computing and Transport Application,1992, pp.187-194.
    [78]L. He and N. Mort, "Hybrid Genetic Algorithms for Telecommunications Network Back-up Rout-ing," BT Technology Journal, vol.18, no.4,2000, pp.42-56.
    [79]G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew, and A. J. Ol-son, "Automated Docking Using a Lamarkian Genetic Algorithm and An Empirical Binding Free Energy Function," J Comp. Chem., vol.14,1998, pp.1639-1662.
    [80]K. Ku and M. Mak, "Empirical Analysis of the Factors that Affect the Baldwin Effect," in Proc. of Parallel Problem Solving from Nature (PPSN-V 1998), Lecture Notes in Computer Science,1998, pp.481-490.
    [81]J. Tang, M. H. Lim, and Y. S. Ong, "Diversity-adaptive Parallel Memetic Algorithm for Solving Large Scale Combinatorial Optimization Problems," Soft Comput. J., vol.11,2007, pp.873-888.
    [82]Y. S. Ong and A. J. Keane, "Meta-lamarckian Learning in Memetic Algorithms," IEEE Trans. Evol. Comput, vol.8, no.2,2004, pp.99-110.
    [83]Q. H. Nguyen, Y. S. Ong, and M. H. Lim, "A Probabilistic Memetic Framework," IEEE Trans. Evol. Comput., vol.13, no.3,2009, pp.604-623.
    [84]B. H. Gwee and M. H. Lim, "A GA with Heuristic Based Decoder for IC Floor Planning," Integr. VLSIJ., vol.28,1999, pp.157-172.
    [85]H. A. Abbass, "An Evolutionary Artificial Neural Networks Approach for Breast Cancer Diagno-sis," Artif. Intell. Med., vol.25, no.3,2002, pp.265-281.
    [86]Y. S. Ong, P. B. Nair, and K. Y. Lum, "Max-min Surrogate-assisted Evolutionary Algorithm for Robust Design," IEEE Trans. Evol. Comput., vol.10,2006, pp.392-404.
    [87]Z. Zhu, Y. S. Ong, and M. Dash, "Markov Blanket-embedded Genetic Algorithm for Gene Selec-tion," Pattern Recognit., vol.40, no.11,2007, pp.3236-3248.
    [88]F. Neri, E. Mininno, "Memetic Compact Differential Evolution for Cartesian Robot Control," IEEE Comput. Intell. Mag., vol.5, no.2,2010, pp.54-65.
    [89]L. C. Jiao, M. G Gong, S. Wang, et al. "Natural and Remote Sensing Image Segmentation Using Memetic Computing," IEEE Comput. Intell. Mag., vol.5, no.2,2010, p.78-91.
    [90]E. Yu and K.S. Sung. "A Genetic Algorithm for A University Weekly Courses Timetabling Prob-lem," International Transactions in Operational Research, vol.9,2002, pp.703-717.
    [91]D. Deutsch, "Quantum Theory, the Church-Turing Principle and the Universal Quantum Comput-er, " in Proc. of the Royal Society of London Series A, vol.400,1985, pp.97-117.
    [92]P. W. Shor, "Algorithms for Quantum Computation:Discrete Logarithms and Factoring," in Proc. of Annual Symposium on Foundations of Computer Science,1994, pp.124-134.
    [93]L. K. Grover, "Quantum Mechanical Searching," in Proc. of the Congress on Evolutionary Com-putation (CEC)1, July 1999, pp.2255-226.
    [94]K. H. Han, J. H. Kim, "Quantum Inspired Evolutionary Algorithm for A Class of Combinatorial Optimization,"IEEE Trans. Evol. Comput, vol.6, no.6,2002, pp.580-593
    [95]P. C. Li, S. Y. Li. " Quantum Inspired Evolutionary Algorithm for Continuous Spaces Optimization Based on Bloch Coordinates of qubits," Neurocompu., vol.72,2008, pp.581-591.
    [96]P. C. Li, S. Y. Li. " Quantum Inspired Evolutionary Algorithm for Continuous Spaces Optimiza-tion," Chinese J Electron., vol.17, no.1,2008, pp.80-84.
    [97]R. Eberhart and J. Kennedy, "A New Optimizer Using Particles Swarm Theory," in Proc. of the Sixth International Symposium on Micro Machine and Human Science (ISMMHS),1995, pp. 39-43.
    [1]P. Smulders, "Exploiting the 60 GHz band for local wireless multimedia access:prospects and future directions," IEEE Communications Magazine, vol.40, no.1,2002, pp.140-147.
    [2]P. Cheolhee, T.S. Rappaport, " Short-Range Wireless Communications for Next-Generation Net-works:UWB,60 GHz Millimeter-Wave WPAN, and ZigBee," IEEE Wireless Communications, vol.14, no.4,2007, pp.70-78.
    [3]S. K. Yong, P. Xia, and A. Valdes-Garcia,60GHz Technology for Gbps WLAN and WPAN, Chich-ester, United Kingdom:John Wiley Sons Ltd.,2011.
    [4]P. Xia, X. Qin, H. Niu, H. Singh, H. Shao, J. Oh, C. Kweon, S. Kim, S. Yong, C. Ngo, "Short Range Gigabit Wireless Communications Systems:Potentials, Challenges and Techniques," in Proc. of the International Conference on Ultra-wideband (ICUWB 2007),24th-26th Sept.2007, pp.123-128.
    [5]Nan Guo, Robert C. Qiu, Shaomin S.Mo, and Kazuaki Takahashi, " 60-GHzMillimeter-Wave Ra-dio:Principle Technology, and New Results," EURASIP Journal on Wireless Communications and Networking, vol.2007, Article ID 68253.
    [6]IEEE Std.802.15.3c, "Wireless Medium Access Control (MAC) and Physical Layer (PHY) Spec-ifications for High Rate Wireless Personal Area Networks (WPANs):Amendment 2:Millimeter-wave based Alternative Physical Layer Extension," 2009.
    [7]IEEE Std.802.11ad, "IEEE 802.11 Very High Throughput Study Group," Available: http://www.ieee802.org/11/Reports/vhtupdate.html.
    [8]H. Singh, J. Oh, C. Y. Kweon, X. P. Qin, H. R. Shao, and C. Ngo, "A 60 GHz Wireless Network for Enabling Uncompressed Video Communication," IEEE Commun. Mag., vol.46, no.12, pp.71-78, Dec.2008.
    [9]K. Ohata, K. Maruhashi, M. Ito, et.al., "1.25Gbps Wireless Gigabit Ethernet Link at 60GHz-band," in Proc of IEEE MTT-S International Microwave Symposium Digest (MTT), Philadelphia, PA, USA, vol.1,2003, pp.373-376.
    [10]S. Kato, H. Harada, R. Funada, T. Baykas, C. S. Sum, J. Wang, M. A. Rahman, "Single Carri-er Transmission for Multi-Gigabit 60-GHz WPAN System," IEEE Journal on Selected Areas In Communications, vol.27, no.8, Oct.2009, pp.1466-1478.
    [11]X. Zhang, L. R, Lu, R. Funada, C. S. Sum, Harada, H., "Physical Layer Design and Performance Analysis on Multi-Gbps Millimeter-wave WLAN System," in Proc of IEEE International Confer-ence on Communication Systems (ICCS), Singapore, Nov.2010, pp:92-96.
    [12]C. R. Anderson, T. S. Rappaport, "In-building Wideband Partition Loss Measurements at 2.5 and 60 GHz," IEEE Transactions on Wireless Communications, vol.3, no.3,2004, pp.922-928.
    [13]M. Lei, C. S. Choi, R. Funada, H. Harada, S. Kato, "Throughput Comparison of Multi-Gbps WPAN (IEEE 802.15.3c) PHY Layer Designs under Non-Linear 60-GHz Power Amplifier," in Proc of IEEE Symp. Per. Indoor Mobile Radio Commun. (PIMRC), Athens, Greece, Sept.2007, pp.1-5.
    [14]E. Perahia, et al. IEEE P802.11 Wireless LANs TGad Evaluation Methodology,2010.
    [15]张昌明,肖振宇,曾烈光,高波,苏厉,金德鹏,“基于IEEE 802.11 ad标准的单载波60GHz通信系统性能分析,”电子与信息学报,vol.34,no.1,2012,pp:218-222.
    [16]Wei Hong, " Millimeter wave and THz communications in China," in Proc. of 2011 IEEE MTT-S International Microwave Symposium Digest (MTT),2011, pp:1-4.
    [17]洪伟,陈继新,'CMOS毫米波亚毫米波集成电路研究进展,”微波学报,vol.26,no.4,2010,pp.1-6.
    [18]W. Gerhard and R. Knoechel, "Improvement of Power Amplifier Efficiency by Reactive Chireix Combining, Power Backoff and Differential Phase Adjustment," in Proc of IEEE MTT-S Interna-tional Microwave Symposium (MTT-IMS), San Francisco, USA, Jun.2006, pp.1887-1890.
    [19]N. Safari, J. P. Tanem, and T. Roste, "A Block-based Predistortion for High Power-amplifier Lin-earization," IEEE Transactions on Microwave Theory and Techniques, vol.54, no.6, Jun.2006, pp.2813-2820.
    [20]A. Zhu, P. J. Draxler, J.J. Yan, T. J. Brazil, D. F. Kimball, and P. M. Asbeck, "Open-Loop Digital Predistorter for RF Power Amplifiers Using Dynamic Deviation Reduction-Based Volterra Series," IEEE Transactions on Microwave Theory and Techniques, vol.56, no.7, Jul.2008, pp.1524-1534.
    [21]M. Rawat, K. Rawat, and F.M. Ghannouchi, "Adaptive Digital Predistortion of Wireless Power Amplifiers/Transmitters Using Dynamic Real-Valued Focused Time-Delay Line Neural Networks," IEEE Transactions on Microwave Theory and Techniques, vol.58, no.1, Jan.2010, pp.95-104.
    [22]G. Montoro, P. L.Gilabert, E. Bertran, A. Cesari, J. A. Garcla, "An LMS-based Adaptive Predis-torter for Cancelling Nonlinear Memory Effects in RF Power Amplifiers," in Proc of Asia-Pacific Microwave Conference (APMC), Bangkok, Thailand, Dec.2007, pp.1-4.
    [23]A. Doucet, N. de Freitas, and N. Gordon, Eds., Sequential Monte Carlo Methods in Practice. New York:Springer,2001.
    [24]J. Miguez and P. M. Djuric, "Blind Equalization of Frequency-Selective Channels by Sequential Importance Sampling," IEEE Transactions on Signal Processing, vol.52, no.10, October 2004, pp.2738-2748.
    [25]J. C. Pedro, N. B. Carvalho, and P. M. Lavrador, "Modeling Nonlinear Behavior of Band-pass Memoryless and Dynamic Systems," in Proc of IEEE MTTS International Microwave Symposium Digest (MTT-IMS), Philadelphia, USA, Jun.2003, pp.2133-2136.
    [26]S. K. Yong, "TG3c Channel Modeling Sub-Committee Final Report," IEEE 802.15-07-0584-01-003c, May 2007.
    [27]K. Sato, H. Sawada, Y. Shoji, S. Kato, "Channel Model for Millimeter-wave WPAN," in Proc. of the IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Athens, Sept.2007, pp.1-5.
    [28]A. R Molisch, "Ultra-Wideband Propagation Channels," Proc. of IEEE, vol.97, no.2, Feb.2009, pp.353-371.
    [29]P. M. Djuric, J. H. Kotecha, J. Q. Zhang, Y. F. Huang, T. Ghirmai, M. F. Bugallo, J. Miguez, " Particle filtering," IEEE Signal Processing Magazine, vol.20, no.5,2003, pp.19-38.
    [30]John G. Proakis. Digital Communications, Fourth Edition, McGraw-Hill Companies, Inc., New York, USA,2001.
    [31]A. F. Molisch, ed., Wireless Communications. Chichester (UK):Wiley,2005.
    [32]陆大金,随机过程及其应用。
    [33]D. Crisan, "Particle filters-A theoretical perspective," Sequential Monte Carlo Methods in Prac-tice, A. Doucet, J. F. G. de Freitas, and N. J. Gordon, Eds. New York:Springer-Verlag,2001, pp. 17-38.
    [34]A. Doucet, "On Sequential Simulation-based Methods for Bayesian Filtering," Statist. Comput., vol.10, no.3, July 2000, pp.197-208.
    [35]J. Liu and R. Chen, "Blind deconvolution via sequential imputations," J. Amer. Statist. Assoc., vol.90, no.430, June 1995, pp.567-576.
    [36]Z. G. Yang, X. D. Wang, "A Sequential Monte Carlo Blind Receiver for OFDM Systems in Frequency-selective Fading Channels," IEEE Transactions on Signal Processing, vol.50, no.2, 2002, pp.271-280.
    [37]C. Andrieu, A. Doucet, R. Holenstei, "Particle Markov chain Monte Carlo methods," J. R. Statist. Soc. B, vol.72, part 3,2010, pp.269-342.
    [38]S. J. Julier, and K. U. Jeffery, "A New Extension of the Kalman Filter to Nonlinear Systems," In Proc of the 11th International Symposium on Aerospace Defense Sensing, Simulation and Controls, Multi Sensor Fusion, Tracking and Resource Management Ⅱ, SPIE,1997.
    [39]S.M.Kay,统计信号处理基础-估计与检测理论,电子工业出版社,2011.
    [40]张贤达,矩阵分析与应用,清华大学出版社,2004.
    [1]H. Singh, J. Oh, C. Y. Kweon, X. P. Qin, H. R. Shao, and C. Ngo, "A 60 GHz Wireless Network for Enabling Uncompressed Video Communication," IEEE Commun. Mag., vol.46, no.12, pp.71-78, Dec.2008.
    [2]P. Smulders, "Exploiting the 60 GHz band for local wireless multimedia access:prospects and future directions," IEEE Communications Magazine, vol.40, no.1,2002, pp.140-147.
    [3]R. C. Daniels, J. N. Murdock, T. S. Rappaport, R. W. Heath, "60 GHz Wireless:Up Close and Personal," IEEE Microwave Magazine, vol.11, no.7, Dec.2010, pp:44-50.
    [4]P. Xia, X. Qin, H. Niu, H. Singh, H. Shao, J. Oh, C. Kweon, S. Kim, S. Yong, C. Ngo, "Short Range Gigabit Wireless Communications Systems:Potentials, Challenges and Techniques," in Proc. of the International Conference on Ultra-wideband (ICUWB 2007),24th -26th Sept.2007, pp.123-128.
    [5]IEEE Std.802.15.3c, "Wireless Medium Access Control (MAC) and Physical Layer (PHY) Spec-ifications for High Rate Wireless Personal Area Networks (WPANs):Amendment 2:Millimeter-wave based Alternative Physical Layer Extension," 2009.
    [6]IEEE Std.802.11ad, "IEEE 802.11 Very High Throughput Study Group," Available: http://www.ieee802.org/11/Reports/vhtupdate.html.
    [7]C. R. Anderson, T. S. Rappaport, "In-building Wideband Partition Loss Measurements at 2.5 and 60 GHz," IEEE Transactions on Wireless Communications, vol.3, no.3,2004, pp.922-928.
    [8]Seokhyun Yoon, Taehyun Jeon, Wooyong Lee, "Hybrid beam-forming and beam-switching for OFDM based wireless personal area networks," IEEE J. Select. Areas Commun., vol.27, no.8, 2009, pp.1425-1432.
    [9]J. H. Winters, "Smart Antennas for Wireless Systems," IEEE Personal Commun., vol.5, no.1, Feb.1998,pp.23-27.
    [10]S. Zhou and G.B. Giannakis, "Optimal Transmitter Eigen-Beamforming and Space Time Block Coding Based on Channel Mean Feedback," IEEE Trans. Signal Processing, vol.50, no.10, Oct. 2002,pp.2599-2613.
    [11]Bin Li, Zheng Zhou, Weixia Zou, "On the Efficient Beam Pattern Training for 60GHz Wireless Personal Area Networks," IEEE Transactions on Wireless Communications, doi: 10.1109/TWC.2012.11-0419, vol.12, no.2, Feb.2013, pp.504-515.
    [12]Bin Li, Zheng Zhou, Weixia Zou, et.al., "Efficient Beam-forming Training For 60GHz Millimeter-wave Communications:A Novel Numerical Optimization Framework," IEEE Transactions on Ve-hicular Technology, MS ID:TVT-2012-01208, review after revision.
    [13]J. Park, Y. Wang, and T. Itoh, "A 60 GHz integrated antenna array for high-speed digital beam-forming applications," available on lines:http://www.mwlab.ee.ucla.edu/.
    [14]G. Grosskopf, R. Eggemann, H. Ehlers, et.al. "Maximum directivity beam-former at 60 GHz with optical feeder," IEEE Transactions on Antenn. Propaga., vol.51, no.11, Nov.2003, pp.3040-3046.
    [15]J. Wang, Z. Lan, C. Pyo, C. Sum, T. Baykas, J. Gao, A. Rahman, R. Funada, F. Kojima, H. Harada, S. Kato, "Beamforming Codebook Design and Performance Evaluation for Millimeter-wave W-PAN," in Proc. of the IEEE Vehicular Technology Conference (VTC 2009 Fall), Anchorage, USA, Sep.20-23,2009.
    [16]V. J. Torczon, "On the convergence of pattern search algorithms," SIAM Journal on Optimization, vol.7, no.1,1997, pp.1-25.
    [17]邹卫霞,崔志芳,李斌,赵心言,“60GHz毫米波通信中上行链路混合波束赋形技术,”北京邮电大学学报,vol.35,no.3,2012,pp.42-46.
    [18]张伟,李斌,赵成林等,“60GHz毫米波通信中上行链路混合波束赋形技术,”电子与信息学报,vol.34,no.11,2012,pp.2728-2733.
    [19]S. K. Yong, "TG3c Channel Modeling Sub-Committee Final Report," IEEE 802.15-07-0584-01-003c, May 2007.
    [20]H. Sawada, H. Nakase, S. Kato, M. Umehira, K. Sato, and H. Harada, "Impulse Response Model and Parameters for Indoor Channel Modeling at 60GHz," in Proc. of IEEE Vehicular Technology Conference (2010-Spring),2010, pp.1-5.
    [21]A. F. Molisch, "Ultra-Wideband Propagation Channels," Proc. of IEEE, vol.97, no.2, Feb.2009, pp.353-371.
    [22]N. Benvenuto, R. Dinis, D. Falconer, S. Tomasin, "Single Carrier Modulation With Nonlinear Frequency Domain Equalization:An Idea Whose Time Has Come-Again," Proceedings of the IEEE, vol.98, no.1,2010, pp.69-96.
    [23]H. H. Rosenbrock, "An automatic method for finding the greatest or least value of a function," Comput. J., vol.3,1960, pp.175.
    [24]H. H. Rosenbrock, An Automatic Method for Unconstrained Optimization Problems, American El-sevier Publishing Co., Inc., NY,1968.
    [25]R. Hooke and T. A. Jeeves, "Direct search solution of numerical and statistical problems," ACM Journal of the Association for Computing Machinery, vol.8, no.2,1961, pp.212-229.
    [26]P. M. Pardalos, G. C. Mauricio Resende, Handbook of applied optimization. Oxford:Oxford Uni-versity Press,2001.
    [27]M. Bengtsson and B. Ottersten, " Optimal and suboptimal transmit beamforming," in Handbook of Antennas in Wireless Communications, L. C. Godara, Ed. Boca Raton, FL:CRC Press, Aug.2001.
    [28]J. Bang-Jensen, G. Gutin and A. Yeo, "When the Greedy Algorithm Fails," Discrete Optim., vol. 1,2004, pp.121-127.
    [29]S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, "Optimization by Simulated Annealing," Science, vol.220,1983, pp.671-680.
    [30]E. H. L. Aarts and P. J. M. Laarhoven, " Statistical Cooling:A General Approach to Combinatorial Optimization Problems," Philips J. Res., vol.40, no.4,1985, pp.193-226.
    [31]P. J. M. van Laarhoven and E. H. L. Aarts, Simulated Annealing:Theory and Applications, Dor-drecht:Reidel, The Netherlands,1987.
    [32]L. Ingber, "Adaptive Simulated Annealing (ASA):Lessons Learned," Control and Cybern.,vol. 25, no.1,1996, pp.33-54.
    [33]C. J. Chang and C. H. Wu, "Optimal Frame Pattern Design for a TDMA Mobile Communication System Using a Simulated Anneal-ung Algorithm," IEEE Trans. Vehicular Technol., vol.42, no.2, 1993, pp.205-211.
    [34]V. J. Orczon, " On the Convergence of Pattern Search Algorithms," SIAM J. Optimiz., vol 7, no.1, 1997, pp.1-25.
    [1]B. Sklar, " Rayleigh fading channels in mobile digital communication systems part Ⅱ:Mitigation," IEEE Commun. Mag., vol.35, no.7, July.1997, pp.102-109.
    [2]G. B. Giannakis and C. Tepedelenlioglu, "Basis expansion models and diversity techniques for blind identification and equalization of time-varying channels," Proc. IEEE,vol.86, no.10, Oct. 1998, pp.1969-1986.
    [3]X. Zhao, J. Kivinen, P. Vainikainen, and K. Skog, "Characterization of Doppler spectra for mobile communications at 5.3 GHz," IEEE Trans. Veh. Technol., vol.52, no.1, pp.14-23, Jan.2003.
    [4]A. F. Molisch, ed., Wireless Communications. Chichester (UK):Wiley,2005.
    [5]J.-P. Javaudin, D. Lacroix, and A. Rouxel, "Pilot-aided channel estimation for OFDM/OQAM," in Proc. of IEEE Vehicular Technology Conference VTC 2003-Spring, vol.3, Apr.2003, pp. 1581-1585.
    [6]Marc-Antoine R. Baissas and Akbar M. Sayeed, "Pilot-Based Estimation of Time-Varying Multi-path Channels for Coherent CDMA Receivers," IEEE Transactions on Signal Processing, vol.50, no.8, August 2002, pp.2037-2049.
    [7]J. Choi, A. C. C. Lima, S. Haykin, "Kalman filter trained recurrent neural equalizers for time varying channels," IEEE Transactions on Communications, vol.53, no.3, Aug.2005, pp.472-480.
    [8]J. K. Tugnait, " Linear prediction error method for blind identification of time varying channels: theoretical results," in Proc. of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'01), vol.4,2001, pp.2125-2128.
    [9]J. Mitola, G. Q. Maguire, "Cognitive Radio:Making Software Radios More Personal," IEEE Personal Communications, vol.6, no.4, Aug.1999, pp.13-18.
    [10]S. Haykin, "Cognitive Radio:Brain-Empowered Wireless Communications," IEEE Journal on Selected Areas in Communications, vol.23, no.2, Feb.2005, pp.201-220.
    [11]Y. C. Liang, K. C. Chen, G. Y. Li, and P. Mahonen, "Cognitive Radio Networking and Commu-nications:An Overview," IEEE Transactions on Vehicular Technology, vol.60, no.7, Sept.2011, pp.3386-3407.
    [12]L. Lu, X. W. Zhou, U. Onunkwo and G. Y. Li, "Ten Years of Cognitive Radio Technology," EURASIP Journal on Wireless Communications and Networking, vol.28,2012, pp.1-16.
    [13]J. Ma, G. Y. Li and B. H. Juang, "Signal Processing in Cognitive Radio," The Proceedings of IEEE, vol.97, no.5, May 2009, pp.805-823.
    [14]E. Axell, G. Leus, E. G. Larsson, and H. V. Poor, "Spectrum Sensing for Cognitive Radio:State-of-the-art and Recent Advances," IEEE Signal Processing Magazine, vol.29, no.3, May 2012, pp. 101-116.
    [15]F. F. Digham, M. S. Alouini and M. K. Simon, "On the Energy Detection of Unknown Signals Over Fading Channels," in Proc. of IEEE International Conference on Communications (ICC), Anchorage, AK, May 2003, vol.5, pp.3575-3579.
    [16]H. S. Chen, W. Gao, and D. G. Daut, "Signature Based Spectrum Sensing Algorithms for IEEE 802.22 WRAN," in Proc. of IEEE International Conference on Communications (ICC), Glasgow, Scotland, Jun.2007, pp.6487-6492.
    [17]R. Tandra and A. Sahai, " Fundamental Limits on Detection in Low SNR under Noise Uncertainty," in Proc. of Wireless Commun. Symp. Signal Process. (WCSSP), Jun.2005.
    [18]S. Haykin, D. J. Thomson, J. H. Reed, " Spectrum Sensing for Cognitive Radio," The Proceedings of IEEE, vol.97, no.5,2010, pp.849-877.
    [19]P. D. Sutton, K. E. Nolan, L. E. Doyle, "Cyclostationary Signature in Practical Cognitive Radio Applications," IEEE Journal on Selected Areas in Communications, vol.2008, pp.13-24.
    [20]A. Sahai, N. Hoven, and R. Tandra, "Some Fundamental Limits on Cognitive Radio," in Proc. of The 42nd Allerton Conference on Communication Control and Computing, Monticello, IL, Oct. 2004.
    [21]Z. Tian and G. B. Giannakis, "A Wavelet Approach to Wideband Spectrum Sensing for Cogni-tive Radios," in Proc. of IEEE Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), Mykonos Island, Greece, Jun.2006.
    [22]Z. Tian and G. B. Giannakis, "Compressed Sensing for Wideband Cognitive Radios," in Proc. of IEEE Int. Conf. Acoustics.Speech, and Signal Processing (ICASSP), Honolulu, HI, Apr.2007, pp. 1357-1360.
    [23]Y. H. Zeng, Y. C. Liang, "Eigenvalue-based Spectrum Sensing Algorithms for Cognitive Radio," IEEE Transactions on Communications, vol.57, no.6,2009, pp.1784-1793.
    [24]Y. H. Zeng and Y. C. Liang, "Spectrum-sensing Algorithms for Cognitive Radio Based on Sta-tistical Covariances," IEEE Transactions on Vehicular Technology, vol.58, no.4, May 2009, pp. 1804-1815.
    [25]X. W. Zhou, Y. Li, Y. H. Kwon, S. A. "Detection Timing and Channel Selection for Periodic Spectrum Sensing in Cognitive Radio," in Proc. of IEEE Global Telecommunications Conference (GLOBECOM 2008), New Orleans, LA, Nov.30th-Dec.4th,2008, Page(s):1-5.
    [26]J. Ma and Y. Li, "A probability-based Spectrum Sensing Scheme for Cognitive Radio," in Proc. IEEE International Conference on Communications (ICC), Beijing, China, May 2008.
    [27]B. Sklar, "Rayleigh Fading Channels in Mobile Digital Communication Systems Part Ⅰ:Charac-terization," IEEE Communications Magazine, vol.35, no.7,1997, pp:90-100.
    [28]John G. Proakis. Digital Communications 3rd ed.. Singapore:McGraw-Hill Book Co.,1995.
    [29]A. Wiesel, J. Goldberg, Hagit Messer-Yaron, " SNR Estimation in Time-Varying Fading Channel-s," IEEE Transactions on Communications, vol.54, no.5. May,2006,841-848.
    [30]A. Ghasemi and E. S. Sousa, "Collaborative spectrum sensing for opportunistic access in fad-ing environments," in Proc. of IEEE Symp. New Frontiers in Dynamic Spectrum Access Networks (DySPAN05), Baltimore, USA, Nov.8C11,2005, pp.131-136.
    [31]W. Zhang, R. K. Mallik, and K. B. Letaief, " Cooperative Spectrum Sensing Optimization in Cogni-tive Radio Networks," in Proc. of IEEE International Conference on Communications (ICC 2008), Beijing, China, May 19-23,2008, pp.3411-3415.
    [32]K. B. Letaief and W. Zhang, "Cooperative Communications for Cognitive Radio Networks," The Proceedings of IEEE, vol.97, no.5, May 2009, pp.878-893.
    [33]P. M. Djuric, J. H. Kotecha, J. Q Zhang, Y. F. Huang, T. Ghirmai, M. F. Bugallo, J. Miguez, "Particle Filtering," IEEE Signal Processing Magazine, vol.20, no.5,2003, pp.19-38.
    [34]Z. G. Yang, X. D. Wang, "A Sequential Monte Carlo Blind Receiver for OFDM Systems in Frequency-selective FadingChannels," IEEE Transactions on Signal Processing, vol.50, no.2, 2002, pp.271-280.
    [35]B. Vujitic, N Cackov, S. Vujitic. "Modeling and Characterization of Traffic in Public Safety Wire-less Network," in Proc. of Int.Symp. Performance Evaluation of Computer and Telecommunication Systems, Edinburgh, UK, July 2005, pp.213-223.
    [36]B. Li, Z. Zhou, W. X. Zou, " Interference Mitigation between Ultra-Wideband Sensor Network and Other Legal Systems," EURASIP Journal on Wireless Communications and Networking, Article number:290306,2010.
    [37]P. Sadeghi, R. Kennedy, P. Rapajic, R. Shams, " Finite-state Markov Modeling of Fading Channels: A Survey of Principles and Applications," IEEE Signal Processing Magazine, vol.25, n0.5,2008, pp.57-80.
    [38]K. E. Baddour and N. C. Beaulieu, "Autoregressive Models for Fading Channel Simulation," in Proc. of IEEE Global Communication Conf. (GLOBECOM), San Antonio, TX, Nov.2001, pp. 1187-1192.
    [39]R. H. Clarke, "A Statistical Theory of Mobile-radio Reception," Bell Syst. Tech. J., vol.47, no.6, 1968, pp.957-1000.
    [40]H. S. Wang, N. Moayeri, "Finite-state Markov Channel:A Useful Model for Radio Commu-nication Channels," IEEE Transactions on Vehicular Technology, vol.44, no.1, Feb.1995, pp. 163-171.
    [41]H. S. Wang, P. Chang, "On Verifying the First Order Markovian Assumption for A Rayleigh Fading Channel Model," IEEE Transactions on Vehicular Technology, vol.45, no.2, May 1996, pp.353-357.
    [42]A. Doucet, "On Sequential Simulation-based Methods for Bayesian Filtering," Statist. Comput., vol.10, no.3, July 2000, pp.197-208.
    [43]F. F. Digham, M. S. Alouini, M. K. Simon, "On the Energy Detection of Unknown Signals Over Fading Channels," IEEE Transactions on Communications, vol.55, no.1, Jan.2007, pp.21-24.
    [44]Y. C. Liang, Y. H. Zeng, E. C. Y. Peh, T. H. Anh, " Sensing-Throughput Tradeoff for Cognitive Radio Networks," IEEE Transactions on Wireless Communications, vol.7, no.4, April 2008, pp. 1326-1337.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700