光学超晶格的内腔光参量上转换技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学超晶格是近年来快速兴起的一种新型非线性频率转换材料,具有可利用晶体的最大非线性系数、无走离效应、结构设计灵活、可同时满足多种非线性过程的位相匹配等优点。光学超晶格与全固态激光技术相结合,可产生的激光频谱覆盖从紫外至中远红外这一很宽范围。在非线性频率转换中,光学超晶格可以置于激光腔内或者激光腔外。将非线性材料放入激光腔内,可以获得高的非线性转换效率,提高系统集成度,并可以实现如被动锁模等腔外无法实现的功能。研究光学超晶格材料在激光器腔内的频率转换特性,以及探索其应用,对于提高此类激光器的性能,拓展应用领域,具有重要的科学价值和应用意义。本论文首先研究激光腔的设计方法和激光晶体的热效应,对实验用的固态激光系统进行了优化;在此基础上首先实现了Nd:GdVO4这一新型激光晶体的瓦级连续腔内倍频绿光输出,并进一步从理论上对腔内三倍频的最优条件进行了探讨;此外,在上述腔内频率转换工作的基础上,我们研究了光学超晶格非线性锁模Nd:GdVO4激光的性能。本文主要包括以下几个方面的研究内容:
     1.第一章前言简要介绍了激光技术的发展历史和其意义,之后具体介绍了激光技术中频率转换激光器和被动锁模激光器的发展、实现原理和已取得的研究成果,介绍了准位相匹配技术和光学超晶格在这两个方向上的应用潜力和发展现状,阐述本工作的目的和意义。
     2.第二章从在理论和实验上对全固态激光器的设计方法进行了系统的研究,从高斯光束的传输特性出发,提出了一种在线测量固体激光中热透镜效应的方法,并对一个侧泵激光模块的热透镜焦距进行了测量,为设计激光腔提供了重要参数。在此基础上搭建了多台侧泵及端泵的激光器,对热透镜、光束质量等参数进行了优化,得到了较好的结果,为以后的实验打下基础。
     3,第三章从腔内倍频的基本理论出发,建立了腔内倍频过程的数值模拟方法,研究了各项参数对输出的影响;搭建了使用KTP、掺镁周期极化铌酸锂(MgO-Doped Periodically-Poled Lithium Niobate, MgO:PPLN)的腔内连续倍频绿光激光器;首次在Nd:GdVO4激光器的腔内使用光学超晶格实现连续倍频绿光的产生,获得了功率较高的输出;将实验测量数据与数值模拟结果进行了对比及讨论,分析了光学超晶格材料与传统非线性材料相比在腔内使用时的优缺点。
     4,第四章在理论上研究了腔内单共振三倍频激光系统的性质,获得了输出功率随增益、损耗和非线性参数的变化规律,给出了级联结构和准周期结构在腔内三倍频使用时的最优设计参数。数值实验的结果表明,准周期结构可以在更短的样品长度上达到最大三倍频输出。
     5,第五章从腔内二阶非线性效应锁模的原理出发,在实验上研究了光学超晶格材料在被动锁模超短脉冲激光器上的应用;利用非线性镜的方法,使用MgO:PPLN搭建了1063nm的被动锁模皮秒激光器,获得了重复频率96.7MHz下脉宽为30-45ps的锁模脉冲序列。通过测量激光系统的输出功率、光束模式、脉冲宽度等参数,计算了该实验系统对脉冲的压缩率,讨论了影响脉冲稳定性和脉宽的主要原因。同时还对级联二阶非线性锁模(casade second-order nonlinearity mode locking, CSM)技术进行了初步尝试。
     6,最后一章对论文的研究结果进行了总结。
Optical superlattice is a new nonlinear frequency conversion material which develops rapidly in recent years. It has many advantages such as utilizing the largest nonlinear coeffiecent of crystal, no walk-off effect, and a designable nature which can flexibly meet the requirements of many nonlinear processes, etc. Combined with the all-solid-state laser techniques, it can generate any laser light whose spectra is within a wide range from ultraviolet to mid-and far-infrared. As a nonlinear frequency convertor, optical superlattice can be positioned either outside or inside the laser cavity. The intra-cavity using of nonlinear frequency convertors can enhance the nonlinear conversion efficiency, reduce the system size, and realize functions which can not be realized in extra-cavity scheme such as passive mode locking. Studying the intra-cavity frequency-conversing properties of optical superlattice, exploring its intra-cavity usages, and improving the performance of lasers with intra-cavity optical superlattice are of significance in both science and applications. This article firstly studies the cavity-designing method and thermal lensing effect, and improves the performance of laser systems used in experiments. Based on these techniques, a watt-level, continues-wave (cw), intra-cavity second-harmonic generation green laser of the novel Nd:GdVO4laser crystal is realized in experiment. Further the optimization of an intra-cavity third-harmonic generation process is studied theoretically. Then, based on the results and techniques obtained from intra-cavity frequency conversion, we study the performance of a passively mode-locked, picoseconds'Nd:GdVO4laser with an intra-cavity optical superlattice as the frequency convertor. The content of this thesis is as following:
     1. Chapter1briefly introduces the history and significance of laser, and the developments and achievements of nonlinear frequency conversion techniques and passive mode-locking techniques. It shows the application potential of optical superlattice in these two areas and the state-of-art results. The end of this chapter introduces the motivation and significance of this work.
     2. In Chapter2, a systematic study of the designing of all-solid-state lasers'cavity is performed theoretically and experimentally. Using the propagation character of a Gaussian beam, a method for on-line measurement of the solid-laser'thermal lensing effect is introduced. The thermal focal length of a side-pumped laser module is measured by this method, providing important parameter for the designing of laser cavity. Based on above methods, several solid lasers, either side-pumped or end-pumped, are set up, and the thermal lensing effect and output beam quality are optimized. Good results are obtained, and these make a solid foundation for latter studies.
     3. In Chapter3, a numerical mode of intra-cavity SHG is set up from the basic principles, and the relations between the system parameters and output power are studied. CW intra-cavity SHG green lasers using KTP or MgO doped period-poled lithium niobate (MgO:PPLN) are built up. Intra-cavity SHG in a Nd:GdVO4laser with optical superlattice is realized experimentally for the first time, and high power green laser is obtained form all these lasers. Experimental results are compared with those given by theoretical calculations. The advantage and disadvantage of optical superlattice compared with former nonlinear materials in intra-cavity usage are concluded.
     4. In Chapter4a theoretical study of single-resonant third-harmonic generation laser is performed, and the relations between output power and gain coefficient, loss and nonlinear interaction length are obtained. From these relations the optimum parameters for optical superlattice with cascade periods or quasi-period structures are calculated. The numerical results show quasi-period-structure optical superlattice may have a better performance in reducing the length of the nonlinear device than that with a cascade-periods structure.
     5. Chaper5, starts form the basic principles of the intra-cavity second order nonlinearity mode-locking, and studies the application of optical superlattice in passive mode-locked ultra-short-pulse lasers experimently. A passive mode-locking laser with MgO:PPLN, which uses the technique called nonlinear mirror mode locking (NLM), is built up and the output pulse train is measured to be96.7MHz in repetition frequence and30-45ps in pulse width. The output power, beam profile, and pulse width are measured and using these results, the pulse squeezing ratio is calculated and discussed. The imperfect performance of this laser, which is unstable and has a relative large pulse width, is analyzed, and the main cause is attributed to the relatively large loss and unstable temperature in the optical superlattice. Another technique which is known as casade second-order nonlinearity mode locking (CSM) is also performed. Some suggestions for improvement are provided for further works in this system.
     6. In the last chapter, a conclusion of the work in the thesis is made.
引文
1.1 A. Einstein, Mitt, Phys. Ges., Zurich 16,46 (1916).
    1.2 A. Einstein, Z. Phys.18,121 (1917).
    1.3 J. P. Gordon, H. J. Zieger and C. H. Townes, Phys. Rev.99,1264-1274 (1955).
    1.4 A. L. Schawlow, C. H. Townes, Phys. Rev.112,1940-1949 (1958).
    1.5 T. H. Mainman, Nature 187,493-494 (1960).
    1.6 W. Liu, Y. Q. Qin, Y. Y. Zhu, Ferroelectrics 253,819 (2001); Kitano H et al., Opt. Lett.28,263 (2003).
    1.7 E. Takahashi, Y. Nabekawa, K. Midorikawa, Opt. Lett.27 1920 (2002).
    1.8 J. G. Eden, Prog. Quantum Electron.28,197 (2004).
    1.9 S. Y. Zhao, J. Q. Yao, D. G. Xu, et al, Proc. SPIE 5627,461 (2005).
    1.10 A. R. Geiger, H. Hemmati, W. H. Farr, et al, Opt. Lett.21,201 (1996).
    1.11 A. Fix and R. J. Wallenstein, Opt. Soc. Am. B 13 2484 (1996).
    1.12 J. A. Armstreng, N. Bloembergen, J. Ducuing, et al, Phys. Rev.127,1918 (1962).
    1.13 P. A. Franken and J. F. Ward, Rev. Mod. Phys.35,23 (1963).
    1.14 W. Jonas, Electronics Letters,30,894 (1994).
    1.15 S. N. Zhu, Ferroelectrics,197,51 (1997).
    1.16 G. B. Robert,Appl. Phys. Lett.75,1673(1999).
    1.17 A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, Opt.Comm.142,265(1997).
    1.18 G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, Opt. Lett.22,1834 (1997).
    1.19 S. Wang, V. Pasiskevicius, F. Laurell, and H. Karlsson, Opt. Lett.23, 1834(1998).
    1.20 S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Science,278,843(1997).
    1.21 Y. Y Zhu, R. F. Xiao, J. S. Fu, and G. K. L. Wong, Appl. Phys. Lett.73,432 (1998).
    1.22 C. Zhang, Y. Y. Zhu, S. X. Yang, Y. Q. Qin, S. N. Zhu, Y. B. Chen. H. Liu, and N. B. Ming, Opt. Lett.25,436 (2000).
    1.23 V. Petrov and F. Noack, Opt. Lett.20,2171 (1998).
    1.24 C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, M. Kawahara, Appl. Phys. Lett. 63,1170(1993).
    1.25 L. E. Myers and W. R. Bosenberg, IEEE, J. QE,33,1663(1997).
    1.26 G. K. Samanta,1, S. C. Kumar,1 and M. Ebrahim-Zadeh, Opt. Lett.34,1561 (2009)
    1.27 H. Furuya, A. Morikawa, K. Mizuuchi and K. Yamamoto, Japanese Journal of Applied Physics,45,6704 (2006).
    1.28 X. P. Hu, X. Wang, J. L. He, Y. X. Fan, S. N. Zhu, H. T. Wang, Y. Y. Zhu, and N. B. Ming, Appl. Phys. Lett.85,188 (2004)
    1.29 X. P. Hu, G. Zhao, C. Zhang, Z. D. Xie, J. L. He, S. N. Zhu, Appl. Phys. B 87,91 (2007)
    1.30 J. L. He, X. P. Hu, S. N. Zhu, Y. Y. Zhu, N. B. Min, Chin. Phys. Lett.20,2175 (2003)
    1.31 Z. D. Gao, S. N. Zhu, S. Y. Tu and A. H. Kung, Applied Physics Letters,89, 181101(2006)
    1.32 V. Pruneri, J. Webjorn, P. St.J. Russell, et al, Opt. Comm.116,159 (1995)
    1.33 Y. Kitaoka, K. Mizuuchi, K. Yamamoto, et al, Opt. Lett.21,1972 (1996)
    1.34 S. Zelt, H. Fuchs, J. P. Meyn,2003 OSA/CLEO
    1.35 M. Pierrou, F. Laurell, H. Karlsson, et al, Opt. Lett.24,205 (1999)
    1.36 T. Yokoyama, K. Nakayama, A. Kurozuka, et al, The Review of Laser Engineering, supplimental volume 2008,1046 (2008).
    1.37 S. W. Chu, Y. Zhang, B. Wang, Advance in OptoElectronics, volume 2008, Article ID 151487 (2008).
    1.38 B. X. Yan, D. D. Wang, Y. Y. Liu, et al, IEEE CLEO/Pacific Rim 2009 (2009).
    1.39颜博霞,毕勇,王栋栋等:紧凑高效的Nd:YVO4/PPMgLN腔内倍频3.8W连续绿光激光器,中国激光,38,030200(2011).
    1.40 J. I. Masters, J. Ward, and E. Hartouni, Rev. Sci. Instrum.34,365 (1963).
    1.41 A. J. DeMaria, D. A. Stetser, and H. Heynau, Appl. Phys. Lett.8,174 (1966).
    1.42 U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, Opt. Lett.17,505 (1992).
    1.43 U. Keller, Nature 424,831 (2003).
    1.44 U. Keller, K. J. Weingarten, F. X. K'artner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. H "onninger, N. Matuschek, and J. Aus der Au, IEEE J. Sel. Top. Quantum Electron.2,435-453 (1996).
    1.45 D. E. Spence, P. N. Kean, and W. Sibbett, Opt. Lett.16,42 (1991).
    1.46 A. Stingl, M. Lenzner, Ch. Spielmann, F. Krausz and R. Szip "ocs, Opt. Lett.20, 602(1995).
    1.47 Q. Fu, F. Seier, S. K. Gayen and R. R. Alfano, Opt. Lett.22,712 (1997).
    1.48 K. A. Stankov, Appl. Phys. B 45,191 (1988).
    1.49 K. A. Stankov, Opt. Lett.14,359 (1989).
    1.50 K. A. Stankov, Appl. Phys.28,942 (1989).
    1.51 K. A. Stankov, V. P. Tzolov, and M. G. Mirkov, Opt. Lett.16,639 (1991).
    1.52 R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W Van Stryland and H. Vanherzeele, Opt. Lett.17,28 (1992).
    1.53 G. Cerullo, S. De Silvestri, A. Monguzzi, D. Segala, and V. Magni, Opt. Lett.20, 746(1995).
    1.54 H. Iliev, I. Buchvarov, S. Kurimura, and V. Petrov, Opt. Lett.35,1016 (2010).
    1.55 S. J. Holmgren, V. Pasiskevicius, and F. Laurell, Opt. Express 13,5270 (2005).
    1.56 H. Iliev 1, D. Chuchumishev, I. Buchvarov, and V. Petrov, Opt. Express 18,5754 (2010).
    2.1 A. G Fox, T. Li, Bell Syst. Tech. J.40,453,1961
    2.2 G. D. Boyd, G. P. Gorden, Bell Syst. Tech. J.40,489,1961
    2.3 G D. Boyd, H. Kogelnik, Bell Syst. Tech. J.41,1347,1962
    2.4俞宽新,江铁良,赵启大编著,激光原理与激光技术, 第一版, 北京工业大学出版社,1998年
    2.5 W. Koechner:Solid State Laser Engineering (the 5th edition), Springer
    2.6 S. Timoshenko, J. N. Goodier:Theory of Elasticity, McGraw-Hill, Singapore, 1982
    2.7 J. F. Nye:Physical Properties of Crystals, Clarendon, Oxford UK,1985.
    2.8 J.D.Foster, L.M.Osterink, J.Appl.Phys.41,3656(1970)
    2.9 W. Koechner, D. K. Rice, IEEE J.QE-6,557 (1970)
    2.10 M. Born,E. Wolf:Principles of Optics, Pergamon, London 1965
    2.11 W. Koechner, Appl. Opt.9,2548-2553, (1970)
    2.12 D. S. Sumida, D. A. Rockwell, M. S. Mangir, IEEE J. QE-24,985-993 (1988)
    2.13 D. G. Lancaster, J. M.Dawes, Optics and Laser Technology,30,103-108,1998
    2.14 Feng Song, Chaobo Zhang, Xin Ding, et al, Appl. Phys. Lett.81,2145-2147, 2002.
    2.15 S. C. Tidwell, J. F. Seamans, M. S. Browers, et al, IEEE J. QE-28,997-1009, 1992
    2.16 C. Pfistner, R Weber, H. P. Weber, IEEE J. QE-30,1605-1616,1994
    2.17 B. Ozygus, J. Erhard, Appl. Phys. Lett.67,1361-1362,1995
    2.18 B. Ozygus, Qincheng Zhang, Appl. Phys. Lett.71,2590-2592,1997
    2.19杨永明,文建国,王石语,蔡德芳,过振,光子学报,Vol.34,1769-1772,2005
    2.20 D. C. Hanna, S. G. Sawyers, M. A. Yuratich:Opt. Commum.37,358 (1981)
    2.21 A. E. Siegman:Proc. IEEE 53,227 (1965)
    2.22 A. E. Siegman, E. Arrathon:IEEE J. QE-3,156. (1967)
    3.1 J. K. Wright, Proc. IEEE (Correspondence) 51,1663 (1963).
    3.2 R. G. Smith, K. Nassau, and M. F. Galvin, Appl. Phys. Lett.7,256 (1965).
    3.3 W. Koechner, Solid-State Laser Engineering,5th edition, Springer.
    3.4 Data sheet of Nd:YVO4 and KTP crystal in CastechTM website, www.castech.com
    3.5 D. Findlay, R. A. Clay, Phys. Lett.20,277 (1966).
    3.6 X.P.Hu, X.Wang, J.L.He, et al, Appl. Phys. Lett.85,188 (2004).
    3.7. X. P. Hu, X. Wang, Z. Yan, et al, Appl. Phys. B 86,265 (2007).
    3.8 X. P. Hu, G Zhao, C. Zhang, et al, Appl. Phys. B 87,91 (2007).
    3.9 J. L. HE, X. P. HU, S. N. ZHU, et al, Chin. Phys. Lett.20,2175 (2003).
    3.10 Z. D. Gao, S. N. Zhu, S. Y. Tu, et al, Appl. Phys. Lett.89,181101 (2006).
    3.11 V. Pruneri, J. Webjorn, P. St.J. Russell, et al, Opt. Comm.116,159 (1995).
    3.12 Y Kitaoka, K. Mizuuchi, K. Yamamoto, et al, Opt. Lett.21,1972 (1996).
    3.13 S. Zelt, H. Fuchs, J. P. Meyn, OSA/CLEO,2003
    3.14 M. Pierrou, F. Laurell, H. Karlsson, et al, Opt. Lett.24,205 (1999).
    3.15 T. Yokoyama, K. Nakayama, A. Kurozuka, et al, The Review of Laser Engineering, supplemental volume 2008,1046-1048.
    3.16 S. W. Chu, Y. Zhang, B. Wang, Advance in OptoElectronics, volume 2008, Article ID 151487.
    3.17 B. X. Yan, D. D. Wang, Y. Y Liu, et al, IEEE CLEO/Pacific Rim 2009
    3.18颜博霞,毕勇,王栋栋等,中国激光,38,0302007(2011).
    3.19 A. I. Zagumennyi, V. G. Ostroumov,I. A. Shcherbakov,T. Jensen, J. P. Meyn, and G Huber, Sov. J. Quantum Electron.22,1071 (1992).
    3.20 A. I. Zagumennyi, V. A. Mikhailov, V. I. Vlasov, A. A. Sirotkin, V. I. Podreshetnikov, Yu. L. Kalachev, Yu. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, Laser Phys.13,311 (2003).
    4.1 F. Falcoz, F. Balembois, P. Georges, et al, Advanced Solid-State Lasers,24,68 (1995).
    4.2 F. Q. Jia, Q. Zheng, Q. H. Xue, et al, Appl. Opt.46 2975 (2007).
    4.3 G. Wang, J. Liu,S. Liu, M. Liu, et al, Laser Phys. Lett.5,506 (2008).
    4.4 Y. Bai, Y.H. Li, Z.G. Shen, et al, Laser Phys. Lett.6,791 (2009).
    4.5 J. Hirohashi, K. Imai, H. Motegi, et al:OSA, CLEO 2010 conference report: Sub-watts 355nm generation with 2nd-and 3rd-order-QPM PPSLT
    4.6 M. Oka, L. Y. Liu, W. Wiechmann, et al, Advanced Solid-State Lasers,20, US1 (1994).
    4.7 Y. K. Yap, M. Inagaki, S. Nakajima, Y. Mori, et al, Opt. Lett.21,1348 (1996).
    4.8 T. Kojima, S. Konno, S. Fujikawa, et al, Opt. Lett.25,58 (2000).
    4.9 Q. Liu, X.P. Yan, X. Fu, et al, Laser Phys. Lett.6,203 (2009).
    4.10 Y. Kaneda, J. M. Yarborough, Li Li, et al, Opt. Lett.33,1705 (2008).
    4.11 J. Sakuma, Y. Asakawa, T. Imahoko, et al, Opt. Lett.29,1096 (2004).
    4.12 Y. Kaneda and S. Kubota, Opt. Lett.20,2204 (1995).
    4.13 C. L. Du, Z. P. Wang, G. B. Xu, et al, Optics & Laser Technology 34,695 (2002).
    4.14 A. R. Clobes, M. J. Brienza, Appl. Phys. Lett.21,265(1972)
    4.15 R. G. Smith, IEEE J. QE-6,215 (1970).
    4.16 C. Zhang, H. Wei, Y. Y. Zhu, et al, Opt. Lett.26,899(2001).
    4.17 S. N. Zhu, Y. Y. Zhu and N. B. Ming, SCIENCE 278,843 (1997).
    4.18 J. Liao, J. L. He, H. Liu, et al, Appl. Phys. B 78,265 (2004).
    5.1 S. J. Holmgren, V. Pasiskevicius, and F. Laurell, Opt. Express 13,5270 (2005).
    5.2 H. Iliev, I. Buchvarov, S. Kurimura, and V. Petrov, Opt. Lett.35,1016 (2010).
    5.3 H. Ilievl, D. Chuchumishev, I. Buchvarov, and V. Petrov, Opt. Express 18,5754 (2010).
    5.4 K. A. Stankov, Appl. Phys. B 45,191 (1988).
    5.5 K. A. Stankov, Appl. Opt.28,942 (1989).
    5.6 K. A. Stankov, Opt. Lett.14,359 (1989).
    5.7 K. A. Stankov, Appl. Phys. Lett.58,2203 (1991).
    5.8 G. Cerullo, S. De Silvestri, A. Monguzzi, D. Segala, and V. Magni, Opt. Lett.20, 746(1995).
    5.9 J. A. Armstreng, N. Bloembergen, J. Ducuing, et al, Phys. Rev.127,1918 (1962).
    5.10 K. A. Stankov, V. P. Tzolov, and M. G. Mirkov, Opt. Lett.16,639 (1991)
    5.11 R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W Van Stryland, and H. Vanherzeele, Opt. Lett.17,28 (1992).
    5.12 S. L. Shapiro (ed.):Ultrashort Laser Pulses, Topics Appl. Phys.18 (1977).
    5.13 H. A. Haus, J. G. Fujimoto, E. P. Ippen:IEEE J. QE-28,2086 (1992).
    5.14 M. Zavelani-Rossi, G. Cerullo, and V. Magni, IEEE J. QE-34,61 (1998).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700