中轴变换的几何学与最优化原理及其在数控加工中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了2D与3D中轴变换的微分几何学、最优化原理、统一求解方法及其在数控加工中的应用。
     论文从研究2D中轴变换入手,建立了中轴线与边界曲线之间法向映射的基本方程及两组微分关系式,在此基础上给出了与2D中轴变换相关的三个微分不变量之间的内在联系。考虑到分叉点所处的重要地位,论文讨论了中轴线的奇点条件与分类及其与分叉点形成机制的内在联系。依据特殊点可将复杂的中轴线划分为9类基元段,并给出了基于基本方程和微分关系式发展出的用于基元段求解的跟踪算法。
     注意到2D中轴变换的特殊性质,将旋轮线理论引入到其研究中,发展出相应的运动几何学。证明了存在有一对镜像映射的动瞬心线,它们在中轴线两侧做纯滚动时,所发生出的旋轮线即为边界线,并给出了曲率应满足的结构条件。建立了动瞬心线、中轴线与半径函数及边界线之间的关系方程,讨论了动瞬心线的确定及边界线的反求。据此可揭示出2D中轴变换的内在几何性质,指出在动瞬心线一定的条件下,改变中轴线的形状,便可得一族定长、等积、保角的基本型,这是一类更为深刻的几何学性质,渴望在工程设计中得到应用。
     在上述基础上,应用活动标架、发甫形式等方法研究更具难度的3D中轴变换的微分几何学。建立了中面与边界面之间映射关系的基本方程及标架变换关系;基于标架的运动,定义了梯度线、等值线、骨架线、切迹线等重要曲线,为研究提供了载体。应用标架的无穷小平移,揭示了中面与边界面之间的距离微分关系;应用标架的无穷小回转,给出了回转矢量之间的关系,进而得到七个微分不变量的表达式。在此基础上,讨论了3D中轴变换的规范型,及其在蒙日曲面上的应用。
     以最优化原理为先导,以微分几何学为基础,构成了本论文研究的主体脉络。从最优化原理出发,研究了2D、3D中轴变换所共有的本质属性,在此基础上给出了鞍点维数意义下的中轴点定义及其分类。建立了2D、3D中轴变换的鞍点规划模型,并证明了其最优条件包括等值性条件与凸体包容条件。依据这一条件,构思出分步求解、逐次逼近,线性化操作、精确验收的求解思路,解决了一维、及二维最小查询中的振荡、死循环问题,攻克了在求解过程中对分叉点、骨架点、结点等特殊点的识别与确定这一难点,发展出同时适用于2D、3D各维数鞍点规划模型的统一解法。
     本文最后以数控加工为落脚点,讨论了中轴变换在2.5D型腔零件及以闭式叶轮为代表的通道类零件数控加工中的应用。为适应加工的需要,依托于鞍点规划平台,文中对中轴变换进行了推广与发展。提出并研究了平面域的等距盒、通道面的通道等距盒、最大内接柱、及最佳刀轴面等概念,建立了它们的求解模型,并给出了其解法。据此发展出2.5D型腔分步加工的策略,及闭式叶轮加工的“两阶段三步骤”纵切法加工方案。
     本论文课题为国家自然科学基金资助项目“中轴变换的几何学原理及其在数控加工中的应用(No.50775022)”。
In this dissertation, the differential geometry, optimal theory and algorithm of2D and3D Medial Axis Transform (MAT) are studied, and on these bases, its applications to the NC machining are explored.
     Beginning from the2D MAT, the normal equidistant mapping equations and two differential relations between the boundary and the Medial Axis (MA) are first proposed. The relations of three differential invariants in the2D MAT are investigated. Considering the importance of the branch point, its generating mechanism is discussed based on the singularity condition and classifications of the MA. The MA of a closed domain, which is a complex tree-like structure, can be divided into nine types of fundamental segments according to different compositions of the irregular points. Furthermore, a tracing algorithm for the fundamental segments is derived based on the basis equation and differential relations.
     Depending on the cycloid theory, the kinematics geometry of the2D MAT is generated. It is proved that there is a pair of moving centrodes under a pure rolling contact with the MA, and the two cycloids generated will be the boundary curves. Meanwhile, the conditions that the curvatures of the moving centrodes and the MA should satisfy are given. After constructing the relations between the moving centrodes, MA and radius function, boundary curves, the method how to determine the moving centrodes and the reverse method for the boundary are presented. Accordingly, the intrinsic geometric properties of2D MAT are revealed. If the moving centrodes are determined, with the change of the shape of the MA, a family of fundamental domains can be obtained with the same perimeter, area and angularity of tangent lines. This is a kind of deeper geometric properties, which are expected to be used in the field of engineering design.
     Based on the above discussion, the properties of moving frame and differential form are employed to investigate the differential geometry of3D MAT, which is more difficult to be studied. Similarly, the normal equidistant mapping equations and moving frames attached to both the MA (medial axis) point and the associated boundary points are constructed firstly. In view of the movement of local frames, the gradient curve, level curve and skeletal curve etc., are defined to serve as carriers for the study. After exploring the infinitesimal translation and rotation of the moving frames, the relations of distance differentials, rotation vectors and seven differential invariants are derived. Finally, a special case, the normal form, is defined, and it shows that the3D MAT problem for the moulding surfaces can be converted into a2D one.
     If the differential geometry serves as the basis, the optimal theory will serve as the precursor for this study. From the optimal theory of MAT, after exploring its saddle point properties, a redefinition and classification for the medial axis points are provided, from the perspective of the dimension of saddle point. Then, the mathematical programming method is employed to construct the saddle point programming models. Based on the optimality conditions, two solving strategies, i.e. the divide and conquer strategy and the linearization strategy, are derived. And a modified Newton method is adopted for the calculation of the minimum distance avoiding oscillation. In addition, the irregular points are identified according to the sudden changes of the solutions to the normal points. A generic algorithm for computing various medial axis points is proposed, and it is proved to be efficient and accurate by numerical examples.
     Finally, as a further goal, this dissertation discusses the applications in the NC machining of2.5D pockets and closed impeller. In order to satisfy the demands for machining, it needs to extend the concept of MAT. More specifically, the offset box, maximal inscribed cylinder and the optimal cutter axial surface are presented and determined relying on the saddle point programming. Accordingly, the step machining method for the2.5D pockets, and the rip cutting idea for the closed impeller are developed.
     This dissertation is supported by National Natural Science Foundation of China,"The Geometric Theories of the Medial Axis Transform and its Applications in NC Machining (No.50775022)'
引文
[1]Blum H. A transformation for extracting new descriptors of shape. Models for the perception of speech and visual form [J]. Cambridge:MIT Press,1967,362-381,
    [2]Blum H. Biological shape and visual science [J]. Journal of Theoretical Biology, 1973,2:205-287.
    [3]Blum H, Nagel R. Shape description using weighted symmetric axis features [J]. Pattern Recognition,1978,10:167-180.
    [4]Nackman L. R. Curvature relations in three-dimensional symmetric axes [J]. Computer Graphics and Image Processing,1982,20(1):43-57.
    [5]Nackman L. R, Pizer S. M. Three-dimensional shape description using the symmetric axis transform I:Theory [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985,7 (2):187-202.
    [6]Montanari U. Continuous skeletons from digitized images[J]. Assoc Comput Machinery, 1969,16(4):534-49.
    [7]Armstrong C. G.Modeling requirements for finite element analysis[J]. Computer Aided Design,1994,26(7):573-8.
    [8]Wolter F. E. Cut locus and medial axis in global shape interrogation and representation [J]. Computer Aided Geometric Design,1992:92-98.
    [9]Gelston S, Dutta D. Boundary surface recovery from skeleton curves and surfaces [J]. Computer Aided Geometric Design,1995,12:27-51.
    [10]Lavender D, Bowyer A. Voronoi diagrams of set theoretic solid models [J]. IEEE Computer Graphics Application,1992,9:69-77
    [11]David G. L. Liner and Nonlinear Programming [M]. MA:Addison-Wesley,1984.
    [12]胡毓达.非线性规划[M].北京:高等教育出版社.1990.
    [13]钱名海,应用鞍点规划研究形位误差评定的理论与方法[D].大连:大连理工大学,1991.
    [14]刘健,王晓明.鞍点规划与形位误差评定[M].大连:大连理工大学出版社,1996.
    [15]Palagyi K, Kuba A. A parallel 3D 12-subiteration thining algorithm [J]. Graphical Models and Image Processing,1999,61:199-221.
    [16]Palagyi K. A 3-subiteration 3D thinning algorithm for extracting medial surfaces [J]. Pattern Recognition Letters,2002,23:663-675.
    [17]Shih F. Y, Pu C. C. A skeletonization algorithm by maxima tracing on euclidean distance transform [J]. Pattern Recognition,1995,28(3):331-341.
    [18]Borgefors G. Weighted digital distance tranforms in for dimensions [J]. Discrete Applied Mathematics,2003,125:161-176.
    [19]车武军.距离变换与中轴变换在变形问题中的应用研究[D].浙江大学博士学位论文,2003.
    [20]车武军,杨勋年,汪国昭.动态骨架算法[J].软件学报,2003,14(4):818-823.
    [21]Montanari U. Continuous skeletons from digitized images [J]. Assoc Comput Machinery, 1969,16 (4):534-49.
    [22]Baja G. S, Thiel E. Weighted skeleton decomposition for pattern representation and description [J]. Pattern Recogn.1994,27(8):1039-49.
    [23]Kim D, Hwang I, Park B. Representing the Voronoi diagram of a simple polygon using rational quadratic Bezier curves [J]. Computer Aided Design.1995,27(8):605-614
    [24]周培德.确定任意多边形中轴的算法[J].北京理工大学学报,2000,20(6).
    [25]Preparata F. P. The medial axis of a simple polygon [J]. Proceedings of the 6th Symposium on the Mathematical Foundations of Computer Science,1977,443-450.
    [26]Lee D. T. Medial axis transformation of a planar shape [J]. IEEE Trans Pattern Analysis and Machine Intelligence,1982,4:362-369.
    [27]Srinivasan V, Nackman L. R. Voronoi diagram for multiply-connected polygonal domains Ⅰ:Algorithm [J]. IBM J Res Develop,1987,31(3):361-72.
    [28]Gursoy H. N, Patrikalakis N. M. An automatic coarse and finite surface mesh generation scheme based on medial axis transform:Part Ⅰ algorithm [J]. Engineering with Computers, 1992,8(3):121-137.
    [29]Gursoy H. N, Patrikalakis N. M. An automatic coarse and finite surface mesh generation scheme based on medial axis transform:Part Ⅱ implementation [J]. Engineering with Computers,1992,8(4):179-196.
    [30]Chou J. J. Voronoi diagrams for planar shapes [J]. Computer Graphics and Applications, 1995,15(2):52-59.
    [31]Ramamurthy R, Farouki R. T. Voronoi diagram and medial axis algorithm for planar domains with curved boundaries-Ⅰ:Theoretical foundations [J].Journal of Computational and Applied Mathematics,1999,102(1):119-141.
    [32]Ramamurthy R, Farouki R. T. Voronoi diagram and medial axis algorithm for planar domains with curved boundaries-Ⅱ:Detailed algorithm description [J]. Journal of Computational and Applied Mathematics,1999,102(2):253-277.
    [33]Farouki R. T, Ramamurthy R. Degenerate point/curve and curve/curve bisectors arising in medial axis computations for planar domains with curved boundaries [J]. Computer Aided Geometric Design,1998,15:615-635.
    [34]Brandt J. W, Algazi V. R. Continuous skeleton computation by voronoi diagram [J]. CVGIP: Image Understanding,1992,55(3):329-338.
    [35]Held M. VRONI:An engineering approach to the reliable and efficient computation of Voronoi diagrams of points and line segments [J]. Computational Geometry,2001, 18(2):95-123.
    [36]Attali D, Lachaud J.0. Delaunay conforming isosurface, skeleton extraction and noise removal[J]. Computational Geometry Theory Appl,2001,19:175—189.
    [37]Fabri R, Estrozi L. F., Costa L. F. On Voronoi diagrams and medial axes [J]. Journal of Mathematical Imaging and Vision,2002,17(1):27-40.
    [38]Attali D, Boissonnat J. D., Edelsbrunner H. Stability and computation of medial axes: a state of the art report[J]. Mathematical Foundations of Scientific Visualization, Computer Graphics and Massive Data Exploration.2009,109-125.
    [39]Choi HI, Choi SW, Moon HP. New algorithm for medial axis transform of plane domain [J]. Graphical Models and Image Processing,1997,59(6):463-483.
    [40]Teixeira RC. Medial axes and mean curvature motion I:Regular points [J]. Journal of Visual Communication and Image Representation,2002,13:135-155.
    [41]August A. T., Zucker S. W. On the evolution of the skeleton. Technical report DCS/TR 1179, Department of Computer Science, Yale University.
    [42]Ramanathan M, Gurumoorthy B. Constructing medial axis transform of planar domains with curved boundaries[J]. Computer Aided Design.2002,35:619-632.
    [43]Cao L. X, Liu J. Computation of medial axis and offset curves of curved boundaries in planar domain [J]. Computer Aided Design,2008,40:465-475.
    [44]Degen W. L. F. Exploiting curvatures to compute the medial axis for domains with smooth boundary [J]. Computer Aided Geometric Design,2004,21:641-660.
    [45]Aichholzer 0, Aigner W, Aurenhammer F. Medial axis computation for planar free-form shapes [J]. Computer Aided Design,2009,41:330-349.
    [46]Dorado R. Medial axis of a planar region by offset self-intersections [J]. Computer Aided Design,2009,29:1-10.
    [47]Gau Y. S. Optimal Tool Set Selection and Tool Path Planning for 3-Axis CNC Milling [D]. University of Wisconsin-Madison,1997.
    [48]SmithT. S., Farouki R. T, Kandari M. Optimal slicing of free-form surfaces [J]. Computer Aided Geometric Design,2002,19(1):43-64.
    [49]Elber G, Cohen E, Drake S. MATHSM:medial axis transform toward high speed machining of pockets [J]. Computer Aided Design,2004,37:241-250.
    [50]Chen Z. C., Fu Q. An optimal approach to multiple tool selection and their numerical control path generation for aggressive rough machining of pockets with free-form boundaries [J]. Computer Aided Design,2011,43:651-663.
    [51]Dutta D, Hoffmann CM. On the skeleton of simple CSG objects [J]. Journal of Mechanical Design, Transaction of ASME,1993,115:87-94.
    [52]Reddy J, Turkiyyah G. Computation of 3D skeletons by a generalized Delaunay triangulation technique [J]. Computer Aided Design,1995,27 (9):677-694.
    [53]Attali D, Montanvert A. Computing and simplifying 2D and 3D continuous skeletons [J]. Computer Vision and Image Understanding,1997,67(3):261-73.
    [51]Dey T. K., Zhao W. Approximate medial axis as a voronoi subcomplex [J]. In:Proceedings of the symposium on solid modeling and applications,2002,356-366.
    [55]Dey T. K, Woo H, Zhao W. Approximate medial axis for cad models [J]. In:Proceedings of the symposiumon solidmodeling and applications,2003:280-285.
    [56]Sheehy D. J., Armstrong C. G., Robinson D. J. Shape description by medial sheet construction [J]. In:Proceedings of the Third ACM Solid Modeling Conference, Hoffmann, Salt Lake City.UT,1995.
    [57]Turkiyyah G. M., Storti D. W, Ganter M. An accelerated triangulation method for computing the skeletons of free-form solid models [J]. Computer Aided Design,1997,29(1):5—19.
    [58]Stroud I, RennerGabor, Xirouchakis P. A divide and conquer algorithm for medial sheet calculation of planar polyhedra [J]. Computer Aided Design,2007,39(9):794-817.
    [59]Leymarie F. F., Kimia B. B. The medial scaffold of 3D unorganized point clouds. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(2):313-330.
    [60]Sherbrooke E. C, Patrikalakis N. M, Brisson E. An algorithm for the medial axis transform of 3d polyhedral solids [J]. IEEE Transactions on Visualization and Computer Graphics, 1996,2(1):44-61.
    [61]Culver T, Keyser J, Manocha D. Accurate computation of the medial axis of a polyhedron [J]. In Proceedings of the Symposium on Solid Modeling and Applications,1999:179-190.
    [62]Ang P. Y, Armstrong C. G. Adaptive shape-sensitive meshing of the medial axis [J]. Engineering with Computers,2002,18:253-64.
    [63]Ramanathan M, Gurumoorthy B. Constructing medial axis transform of extruded and revolved 3D objects with free-form boundaries [J]. Computer Aided Design,2005, 37:1370-1387.
    [64]Ramanathan M, Gurumoorthy B. A tracing algorithm for constructing medial axis transform of 3D objects bound by free-formsurfaces[J]. In:Proceedings of the international conference on shape modeling and applications. Washington (DC, USA):IEEE Computer Society; 2005. p.228-237
    [65]Ramanathan M, Gurumoorthy B. Interior Medial Axis Transform computation of 3D objects bound by free-form surfaces [J]. Computer Aided Design.2010,42:1217-1231.
    [66]Musuvathy S, Cohen E, Damon J. Computing medial axes of generic 3D regions bounded by B-spline surfaces [J]. Computer Aided Design,2011,43:1485-1495.
    [67]Sotomayor, J, Siersma, D, Garcia R. Curvatures of conflict surfaces in euclidean 3-space geometry and topology of c austics—caustics [J]. Banach Center Publ,1998,50:277-285.
    [68]M. Peternell, Geometric properties of bisector surfaces [J]. Graphical Models,2000, 62(3):202-236.
    [69]Pizer S. M., Fletcher P. T. Deformable M-Reps for 3D Medical Image Segmentation [J]. International Journal of Computer Vision,2003,55(2):85—106.
    [70]Damon J. Smoothness and geometry of boundaries associated to skeletal structures 1: sufficient conditions for smoothness [J]. Annales de 1'Institut Fourier,2003,53(6): 1941-1985.
    [71]Damon J. Smoothness and geometry of boundaries associated to skeletal structures, II: Geometry in the Blum case [J]. Compositio Mathematica,2004,140(6):1657-1674.
    [72]Damon J. Determining the Geometry of Boundaries of Objects from Medial Data [J]. International Journal of Computer Vision,2005,63(1):45-64.
    [73]Siddiqi K, Pizer S. Medial representations:mathematics, algorithms and applications [M]. Springer Publishing Company Incorporated,2008.
    [74]梅向明,黄敬之.微分几何[M].北京:高等教育出版社,1981
    [75]芬尼可夫著,高彻译.微分几何[M].北京:高等教育出版社,1957.
    [76]Cao L. X, Jia Z. Y, Liu J. Computation of medial axis and offset curves of curved boundaries in planar domains based on the cesaro's approach [J]. Computer Aided Geometric Design,2009,26:444-454.
    [77]佐佐木重夫著,苏步青译.微分几何学[M].上海:上海科学技术出版社,1963.
    [78]杨基厚.机构运动学与动力学[M].北京:机械工业出版社,1987.
    [79]王德伦.机构运动微分几何学研究[D].大连:大连理工大学,1994.
    [80]Cao L. X, Ba W. L., Liu J. A surface modeling method based on the envelope template [J]. Computer Aided Geometric Design,2011,28:527-536.
    [71]Choi S. W, Seidel H.P. Hyperbolic Hausdorff Distance for Medial Axis Transform [J]. Graphical Models,2001,63:369-384.
    [85]Alt H, Scharf L. Computing the Hausdorff distance between curved objects [J]. International Journal of Computational Geometry&Applications,2008,8:307-320.
    [83]Chen X. D, Ma W. Y, Xu G. Computing the Hausdorff distance between two B-spline curves [J]. Computer Aided Design,2010,42:1197-1206.
    [84]Kim Y. J, Oh Y. T, Yoon S. H. Precise Hausdorff distance computation for planar freeform curves using biarcs and depth buffer [J].The Visual Computer,2010,26:1007-1016.
    [85]邹海.最优设计中的新计算方法[M].北京:新时代出版社,1982.
    [86]Floudas C. A. Handbook of test problems in global and local optimization [M]. Dordrecht: Kluwer Academic,1999.
    [87]李庆扬.非线性方程组的数值解法[M].北京:高等教育出版社,2000.
    [88]陈丽萍,龚堰钰,王小椿.快速完备的用于CAD/CAM自由曲面求交的算法.机械工程学报,2000,36(7):102-105.
    [89]伯拉须凯(德),方德植译.微分几何引论.北京:科学出版社,1963.
    [90]Giblin P, Kimia B. B. Formal classification of 3d medial axis points and their local geometry [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,2004, 26:238-251.
    [91]Monge G. Application de 1'Analysis a la Geometrie (5 ed.).Histoire de 1'Acad. Des Sciences de Paris,1850.
    [92]Abdel-Baky R. A. On the Congruences of the Tangents to a Surface [J]. Mathematisch Naturwissenschaftliche Klasse,1999,136:9-18.
    [93]Pottmann H, Hofer M, Odehnal B. Line Geometry for 3D Shape Understanding and Reconstruction [J]. In:Proceedings of the 8th European Conference on Computer Vision, 2004,1:297-309.
    [94]Pottmann H, Hofer M. Geometry of the squared distance function to curves and surfaces [J]. In:Hege H C, Polthier K eds. Visualization and Mathematics Ⅲ, Springer Verlag, 2003:223-244.
    [95]Chen H. J, Duan Z. Y, Liu J. Research on basic principle of moulding surface conjugation [J]. Mechanism and Machine Theory,2008,43:791-811.
    [96]唐荣锡CAD/CAM技术[M].北京:航空航天大学出版社,1994.
    [97]Lee Y.S, Chang T. C. Application of computational geometry in optimizing 2.5D and 3D NC surface machining [J], Computers in Industry,1995,26:41-59.
    [98]周济,周艳红.数控加工技术[M].北京:国防工业出版社.2002.
    [99]Suh Y. S, Lee K. NC milling tool path generation for arbitrary pockets defined by sculptured surfaces [J]. Computer Aided Design,1990,22(5):273-284.
    [100]Hansan A, Arhab F. An algorithm for generating NC path for arbitrarily shaped pockets with islands [J].ACM Trans on Graph,1992,11(2):152-182.
    [101]Lambregts C. A. H. An efficient automatic tool path generator for 2.5D free-from pockets [J]. Computers in Industry,1996,29:151-157.
    [102]Marshall S, Griftiths G. J. A survey of cutter-path construction techniques for milling machines [J]. International Journal of Production Research,1994,32(12):2861-2877.
    [103]苏云玲,曹利新.三元整体叶轮曲面造型及其计算机辅助制造技术[J].大连理工大大学学报,2004,44(5):681-684.
    [104]宫虎,曹利新,刘健.数控侧铣加工非可展直纹面的刀位整体优化原理与方法[J].机械工程学报,2005,41(11):134-139.
    [105]Chu C. H, Huang W. N, Hsu Y. Y. Machining accuracy improvement in five-axis flank milling of ruled surfaces [J]. International Journal of Machine tools & manufacture,2008, 48:914-921.
    [106]薛亚峰.闭式叶轮的几何造型与数控分层加工方法研究[D].大连理工大学硕十论文,2012.
    [107]胡毓达.非线性规划[M].北京:高等教育出版社,1990.
    [108]吴福忠,柯映林.组合曲面参数线五坐标加工刀具轨迹的计算[J].计算机辅助设计与图形学学报,2003,15(10):1247-1252.
    [109]刘槐光,闫光荣,陈言秋等.组合曲面的空间环切等距加工[J].工程图学报,2002,23(1):1-7.
    [110]张学超,史耀耀,任学军.闭式叶盘叶身加工切触点规划算法研究与实现[J].航空精密制造技术,2006,42(4):34-37.
    [111]任学军,何卿功,姚倡峰.闭式整体叶盘通道五坐标分行定轴加工刀轴矢量规划方法研究[J].航空学报,2012,33:2-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700