PA12T、PA12I及其共聚物的合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着科学技术的飞速发展,为了解决电子产品的小型化、精密化和降低成本的问题,通常采用在集成电路板上搭载、连接半导体芯片和电子元件的工艺,为此,表面实装技术(SMT)得到迅速推广和普及。这种新的技术对使用的有机材料的耐热性、精密成型性及尺寸稳定性提出了更严格的要求。
     聚酰胺在电子电器领域有着广泛的应用,为了适应对其耐热性、吸水率、尺寸稳定性等方面新的要求,人们在分子结构设计时可在分子主链上引入带有热稳定性好的芳香环,例如用芳香族酸或胺代替脂肪族酸或胺,来合成的全芳香族或半芳香族的尼龙。目前已经实际应用的有聚对苯二甲酰对苯二胺(PPTA),聚对间苯二甲酰间苯二胺(PMIA),聚己二酰间苯二甲胺(MXD6),聚对苯二甲酰己二胺(PA6T)和聚对苯二甲酰壬二胺(PA9T)等。全芳族尼龙PPTA、PMIA,由于熔点很高,成型加工极为困难,主要用于溶液法制造纤维。半芳香族尼龙MXD6、PA6T、PA9T中MXD6的熔点较低(245℃),虽较容易加工,但耐热性能相对较差;而PA6T的耐热性较好,但熔点过高(370℃),需经共聚改性后方可采用通用加工手段进行加工,这样会使其吸水率升高,影响其综合性能;最近开发出来的PA9T是以对苯二甲酸与较长碳链的壬二胺聚合得到的,PA9T具有兼顾耐热性与加工性的综合优点,发展十分迅速。
     本课题以对苯二甲酸、间苯二甲酸与1,12-十二碳二元胺反应,合成了聚对苯二甲酸十二碳二胺(PA12T),聚间苯二甲酸十二碳二胺(PA12I)及其共聚物PA(12T-co-12I)。讨论了聚合条件对反应的影响,研究了其反应动力学,考察了产物的热分解、熔融结晶行为和共聚物组成对结晶度的影响。以上研究工作迄今未见报道。本研究工作得到了如下主要结果与结论:
     1.中和成盐的过程中,十二碳二元胺可分别与对苯二甲酸、间苯二甲酸直接进行成盐反应,可以通过电导滴定法来判定等当量点。
     2.当采用溶液聚合时,聚合反应速率随温度的升高而增大;抽真空、延长反应时间和升高反应温度,对分子量提高有利;但温度过高(>120℃)时,延长反应时间反而使产物粘数下降。在本实验条件下,最佳反应条件为:120℃,5h;N-甲基吡咯烷酮(NMP)体系和二甲基甲酰胺(DMF)溶剂体系对聚合反应影响不明显。
    
    3.采用本体聚合时,当反应温度较低时(蕊260℃),随着反应时间的延长,聚合物
     粘数增大,反应温度较高时,聚合物粘数则随反应时间的延长而降低,最佳反应
     条件为250℃,6一7h。与溶液聚合相比,本体法可获得较高粘数的聚合物。通过
     对PA 1 ZT、PA12I及其共聚物的聚合反应的研究发现,随着PA121组分的增加,相
     同反应条件下,产物的粘数呈增大趋势,熔点逐步降低,透明性逐渐增大,韧性
     增强。
    4.通过FTIR和’H一NMR图谱分析,确定了这些产物是以对苯二甲酸间苯二甲酸和十
     二碳二元胺为原料制备的半芳香聚酞胺。
    5.从X射线衍射峰的变化可以看出,在所得的产物中,PA12T的结晶度最高,均聚
     PA12工最低,为透明非晶态聚合物;共聚酞胺随着PA12工的含量的增加,其结晶
     度逐渐降低。
    6.通过TG试验可以看出,PA12T的热分解温度较脂肪族尼龙有明显的提高,PA 12工
     含量对PA(12T一c、12工)的热稳定性基本上没有影响,热分解反应为一步反应。
     热分解温度随升温速率的增加而增大。用Kissinger方程、ozawa一Flynn一wall方
     程、Fr 1 edman方程和CoatS一Redfern方程处理热分解动力学,求得PA12T和PA12I
     的表观分解活化能。PA 1 ZT和PA 1 21的热分解过程分别是Deceleration中的D,、
     DZ、D3机理和RL机理;
    7.通过DSC熔融曲线可以看出,PA 12T的熔点达254.0℃,玻璃化转变温度为103.6
     ℃,可以满足SMT工艺对耐热性和可加工性的要求。非等温结晶动力学研究表明,
     聚酞胺的结晶后期有二次结晶现象。由6opoxoBCK训认方法得到PA12T与共聚酞胺
     的Avrami指数均约为4,说明它们是均相成核,三维生长。
In recent years, with the rapid development of science and technology, the surface mount technology(SMT) was made general and universal application for making the electronic products miniaturization, precision and lower cost in semiconductor CMOS chips and electronic components which were joined together on the integrated device electronics in the electron industry. Such a new technology bring a higher demand for the used organic materials, such as thermo toleranceN dimension precision and stability.
    One often introduces the aromatic rings into the organic macroraolecular main chain to enhance polymer' s thermotolerance and reduce their water absorption. For example, aromatic acid or aromatic amine was used in place of aliphatic acid or aliphatic amine to synthesize the aromatic or semiaromatic nylon. Several products of this kind polymers have been used practically in many fields, such as Poly(p-phenylene terephthalamide) (PPTA), Poly(M-phenyleneisophthalamide) (PMIA), poly(hexamethyleneisophthalamide) (MXD6), poly(hexamethyleneterephthalamide) (PA6T),
    poly(nonamethyleneterephthalamide)(PA9T), etc. Aromatic nylons ,PPTA and MPIA were mainly used in manufacturing fibre, and difficult to mold. The MXD6, one of semiaromatic nylons, has a relatively lower melting point (Tm). Though it is easy for molding , but its thermo tolerance was not good enough. The another semiaromatic nylon, PA6T, can not be processed by general processing methods unless it is modified by copolymerization with other component owing to its excessive high Tm. But this modification would bring the materials on the increasing of the water absorption and the instability of the dimension. PA9T exploited recently was synthesized using terephthalic acid and nonane diamine and owned combined merit of the heat-durability and the processing
    
    
    ability.
    In this study, poly(dodecamethyleneterephthalamide) (PA12T), poly(dodecamethyleneisophthalamide) (PA12I) and PA(12T-co -121) were synthesized using terephthalic acid, isophthalic acid with dodecamethylene diamines. The effect of polymerization condition on reaction and reaction kinetics was investigated. The thermal decomposition, the behaviors of melting and crystallization of product were studied. And the changes of crystallinity induced by the contents of PA12I were also discussed. The above research works are still have not be seen in the literature up to date. The results of our works summarized as follows:
    1. dodecamethlyene diammonium terephthalate(PA12T salt) and dodecamethlyene diammonium isophthalate(PA12I salt) can be prepared by using terephthalic acid or isophthalic acid with dodecamethylene diamines in ethanol solution, respectively. Equivalent point can be determined by conductometric
    titration.
    2. In solution polymerization, the reaction rate increases with the increasing
    of the reaction temperature; The numerical average molecular weight ( Mn)
    increases with the increasing of the reaction temperature, reaction time and pumpdown time. But when the reaction temperature being excessive high
    (>120#) , the Mn will decrease with the prolongation of reaction time. The optimal reaction condition is 120#, 5h in these experiments; The effect of solvent NMP or DMF on Mn is not obvious.
    3. In bulk polymerization, The reduced viscosity(n) of the product increases with prolongation of reaction time under the relative lower reaction temperature ( <260# ) , and decreases under the higher reaction temperature, optimal reaction condition was 250#, 6~7h. By comparison with solution polymerization, the higher r\ can be obtained using the bulk polymerization method. Through research on polymerization reaction of PA12T, PA12I and their copolymers, some important results were gained as follows: n, toughness and transparency of polymers gradually increase and
    
    melting temperature gradually decrease with the increasing of PA12I content in PA(12T-co-12I).
    4. The structures of polymerization products are ascertained by their spectrum of FTIR and 1H-NMR. The results show these products ar
引文
[1] Yeong C Y,Won H J. Segmented block copolyetheramides based on nylon 6 and polyoxypropylene. I. Synthesis and characterization. Journal of Applied Polymer Science,1994, 54(5) :585-591
    [2] La Mantia F T, Scaffaro R.Melt stabilization of wet polyamide 6. Polymer Degradation and Stability,2002, 75(3) :473-477
    [3] Lanska,Bozena, Stabilization of polyamides-I.The efficiency of antioxidants in polyamide 6,Polymer Degradation and Stability,1996,53(1) :89-98
    [4] Rhee S,White J L. Crystal structure,morphology, orientation,and mechanical properties of biaxially oriented polyamide 6 films. Polymer,2002,43(22) : 5903-5914
    [5] Kudo K, Suguie T, Hirami M. Melt-polymerized aliphatic-aromatic copolyamides. I. Melting points of nylon 66 copolymerized with aromatic diamines and terephthalic acid. Journal of Applied Polymer Science,1992,44(9) :1625-1629
    [6] Naoya Ogata. Studies on polycondensation reactions of nylon salt. I. The equilibrium in the system of polyhexamethylene adipamide and water. Die Makromolekulare Chemie,1960,42(1) :52-67
    [7] Huang C C,Chang F C. Reactive compatibilization of polymer blends of poly(butylene terephthalate) and polyamide 6,6: 2. Morphological and mechanical properties. Polymer,1997,38(17) : 4287-4293
    [8] Colin A.F, Leslie HR, Nick E B.Water penetration in nylon 6, 6:Absorption,desorption,and exchange studied by NMR microscopy. Journal of Polymer Science Part A: Polymer Chemistry,1993,31(1) : 159-168
    [9] Gijsman P,Tummers D,Janssen K. Differences and similarities in the thermooxidative degradation of polyamide 46 and 66. Polymer Degradation and Stability, 1995, 49(1) : 121-125
    [10] Adriaensens P,Pollaris A,Carleer R,Vanderzande D,Gelan J,Litvinov
    
    V M, Tijssen 5. Quantitative magnetic resonance imaging study of water uptake by polyamide 4,6. Polymer, 2001,42(19):7943-7952
    [11] Reinicke R, Haupert F, Friedrich K. On the tribological behaviour of selected, injection moulded thermoplastic composites. Composites Part A: Applied Science and Manufacturing (Incorporating Composites and Composites Manufacturing), 1998, 29(7): 763-771
    [12] 王群,邵正中,于同隐.聚酰胺-46的合成和结构研究(Ⅱ)——产物的基本表征和结构研究.高等学校化学学报,1997,18(4):628-632
    [13] Alberto B, Domennico G, Mario G, Pietro M, Giorgio M. Thermal decomposition processes in aliphatic-aromatic polyamides investigated by mass spectrometry. Macromolecules, 1986, 19(11):2693-2699
    [14] Kudo k, Suguie J, Hirami M. Melt-polymerized aliphthatic-aromatic copolyamides Ⅰ. Melting points of nylon 66 copolymerized with aromatic diamines and terephthalic acid. Journal of Applied Polymer Science, 1992, 44(9):1625-1629
    [15] Inoue J. Polymer news. Journal of Applied Polymer Science, 1961, 5(18): 753-754
    [16] Powell C S, Kalika D S. The semicrystalline morphology of aliphatic-aromatic polyamide blends. Polymer, 2000, 41(12): 4651-4659
    [17] Siciliano A, Severgnini D, Seves A, Pedrelli T, Vicini L. Thermal and mechanical behavior of polyamide 6/polyamide 6I/6T blends. Journal of Applied Polymer Science, 1996, 60(10): 1757-1764.
    [18] Kudo K, Suguie T, Hirami M. Melt-polymerized aliphatic-aromatic copolyamides. I. Melting points of nylon 66 copolymerized with aromatic diamines and terephthalic acid. Journal of Applied Polymer Science, 1992, 44(9): 1625-1629
    [19] Ellis T S. Moisture-induced plasticization of amorphous polyamides and their blends. Journal of Applied Polymer Science, 1988, 36(3):451-466
    [20] 刘德山,傅清红,周其痒.芳-脂族共聚酰胺热致液晶的合成与表征.清华大学学报(自然科学版),1990,30(3):47-53
    
    
    [21] 单国荣,潘智存,贺玉斌,王晓工,刘德山,周其痒.合成方法对芳香共聚酰胺性能的影响Ⅰ.共聚酰胺的对数比浓粘度.高分子材料科学与工程,1997,13(6):56-59
    [22] 谷立广,刘德山,王晓工,杨翠荣,周其痒.芳香-脂肪族共聚酰胺的序列结构和容致液晶性能.高分子学报,1994,(1):65-69
    [23] 黄如注.PPA树脂的生产与应用.化工新型材料,1994,22(6):I4-I7
    [24] 赵育.新型耐热聚酰胺PA9T.四川化工与腐蚀控制,1999,2(5):16-22
    [25] Furukawa K, Seki S, Akashi T. Transparent copolyamides. Japan, JP 75103594, 1975. 1-6
    [26] 杨贵生,卢凤才.催化剂用量对MC尼龙合成、形态与性能的影响.高分子学报,1992,(1)15-22
    [27] 翟羽伸.从新型聚酰胺树脂PA9T的开发看树脂品种牌号的创新.化工新型材料,1999,27(1):14-16
    [28] 德国BASF公司.具有高结晶度的部分芳族共聚酰胺模塑料.中国,中华人民共和国国家知识产权局,CN1136055,1996.1-16
    [29] 可乐丽股份有限公司.聚酰胺组合物.中国,中国专利代理(香港)有限公司,CN1220289A,1999.1-23
    [30] 埃勒夫阿托化学有限公司.聚酰胺制备方法.中国,中华人民共和国国家知识产权局,CN1051779C,2000.1-19
    [31] 复旦大学化学系高分子教研组编.高分子实验技术.(第一版).上海:复旦大学出版社出版,1984.2-5
    [32] 何曼君,陈维孝,董西侠.高分子物理.(修订版).上海:复旦大学出版社出版,1990.152-153
    [33] 张留城,李佐邦.高分子化学丛书(缩合聚合).(第一版).北京:化学工业出版社,1986.112-125
    [34] Ubale V P, Sagar A D, Maldar N N, Birajdar M V. Synthesis and characterization of aromatic-aliphatic polyamides. Journal of Applied Polymer Science, 2001, 79(3):566-571
    [35] Kakimoto M A, Negi Y S, Imai Y. Synthesis and characterization of soluble aromatic polyamides derived from 2,5-bis-(4-chloroformylphenyl)
    
    3,4-diphenylthiophene and aromatic diamines.Journal of Polymer Science: Polymer Chemistry Edition,1985,23(6) :1787-1795
    [36] Poppe, Wassily, Chen, Yu T, Paschke, Edward E.Filled composition comprising crystalline copolyamide from terephthalic acid isophthalic acid and hexamethylene diamine. The United States,US 4863991, 1989. 1-13
    [37] Hewel,Manfred, Dalla T, Hans. Copolyamides with long-chain polyamide units. The United States,US 5700900, 1997. 1-13
    [38] Ogo,Yoshimasa,Murakami, Hidetatsu, Oouchi, Kunihiro, sudou, masaru, Amimoto,Yoshikatsu, Omori, Satoshi, Nozaki, Masahiro.Semiaromatic polyamides,processes for preparing the same and composition containing the same. The United States,US 5849826, 1998. 1-45
    [39] Barthelemy, Pascal.Crystallized semiaromatic polyamides having high Tg and Tm less than 290 degree C. from hindered aromatic diamine and branched chain aliphatic diamine. The United States,US 4937322,1990. 1-9
    [40] Funston G, Lum and Earl F,Richmond, Calif.Process for separating hexamethylene diamond salts of isophthalic and terephthalic acids. The United States,US 2742496, 1956. 1-3
    [41] Epstein,Bennett N,Pagilagan, Rolando U.Toughened polyamide blends. The United States,US 4410661,1983. 1-13
    [42] MacDonald C A. Applications and Measurements of Polycapillary X-Ray Optics. Journal of X-Ray Science and Technology, 1996,6(1) :32-47
    [43] Zhang H F,Zhang L H,Yang B Q,Mo Z S.The influence of Y-radiation on polyamide 1010 aggregate structures. Polymer Degradation and Stability, 1995, 50(1) : 71-74
    [44] Rhee S,White J L.Crystal structure, morphology, orientation,and mechanical properties of biaxially oriented polyamide 6 films. Polymer,2002, 43(22) :5903-5914
    [45] Tang T,Lei Z L,Huang B T.Studies on morphology and crystallization of polypropylene/polyamide 12 blends. Polymer, 1996, 39(15) : 3219-3226
    [46] Llopiz J, Romero M M, Jerez A, LaureiroY.Generalization of the Kissinger
    
    equation for several kinetic models. Thermochimica Acta, 1995, 255(2) :205-211
    [47] Kim S W,Cho Y S,Shim M J. Thermal degradation kinetics of PE by the Kissinger equation. Materials Chemistry and Physics,1998,52(1) :94~97
    [48] Bonnet E, White R L.Species-specific isoconversion effective activation energies derived by thermogravimetry-mass spectrometry. Thermochimica Acta,1998,311(1) :81-86
    [49] Hwang S H, Lee G S. The curing and decomposition kinetics for diglycidylether of bisphenol-A/di (4-aminobenzanilide)ether system. European Polymer Journal, 2000,36(10) : 2305-2308
    [50] Pielichowski K. Kinetic analysis of the thermal decomposition of polyaniline. Solid State Ionics, 1997, 104(1) :123-132
    [51] Marcilla A,Beltran M. Thermogravimetric kinetic study of poly(vinyl chloride) pyrolysis.Polymer Degradation and Stability,1995,48(2) :219-229
    [52] Li X G,Huang M R,Guan G H,Sun H. Kinetics of thermal degradation of thermotropic poly(p-oxybenzoate-co-ethylene terephthalate) by single heating rate methods. Polymer International, 1998, 46(4) :289-297
    [53] Nunez L,Fraga F,Nunez M R,Villanueva M. Thermogravimetric study of the decomposition process of the system BADGE (n=0) /1,2 DCH. Polymer, 2000,41(12) : 4635-4641
    [54] Mu P, Wang R F,Zhao L. Studies on the non-isothermal kinetics of thermal decomposition of the complex of europium p-methylbenzoate with 2,2'-dipyridine. Thermochimica Acta, 1997, 296(1) :129-134
    [55] Baram J,Erukhimovitch V. A model for non-isothermal crystallization kinetics. Journal of Non-Crystalline Solids, 1996, 208(3) :288-293
    [56] Sajkiewicz P,Carpaneto L,Wasiak A. Application of the Ozawa model to non-isothermal crystallization of poly(ethylene terephthalate). Polymer, 2001, 42(12) :5365-5370
    [57] Ozawa T. Kinetics of non-isothermal crystallization. Polymer,1971,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700