用户名: 密码: 验证码:
驾驶员精神负荷评价及在辅助驾驶系统中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交通安全一直都是当今社会最为严峻的问题之一,统计数据表明我国已成为世界上交通事故死亡人数最多的国家之一。因此,需要对驾驶员、汽车和环境因素各角度全面深入地分析交通事故发生的原因并提出相应的解决措施,降低交通事故的发生频率和伤亡人数。
     汽车驾驶员负责环境信息的感知和汽车的操纵控制,是人车路闭环系统中最为关键的环节。驾驶员在驾驶过程中需要集中注意力,综合分析汽车的运动状态、交通状况等信息,决策出正确的驾驶策略并做出相应的驾驶动作。因此,汽车驾驶不仅需要驾驶员付出一定的体力还需要承担一定的精神负荷,而当驾驶员承受的负荷过高或过低时,就可能引起决策或操作的失误,从而导致交通事故的发生。
     随着交通密度、道路复杂性的增加以及车内信息设备的使用,驾驶成为了更加复杂的交互活动,驾驶员经常处于双任务或多任务的工况下,其注意力可能从环境感知、汽车操纵等与驾驶任务直接相关的任务中脱离。然而,大脑处理信息的能力存在一定的局限性,当处在复杂的多任务环境中时,与驾驶任务不直接相关的其他任务在脑资源方面势必会与驾驶任务形成竞争关系,从而使驾驶员承受的精神负荷增加。当处在较高的精神负荷水平时,及容易导致驾驶员出现紧张感和压力感,并在感知和决策方面出现分心或失误,引发交通事故的发生。
     针对上述问题,本文在分析总结国内外驾驶员行为研究现状基础上,借鉴心理生理学和实验心理学研究方法,分析了多任务工况下驾驶员生理参数的动态变化规律,建立了基于生理参数的精神负荷评价方法,并将关于驾驶员心理生理特性的研究方法和规律应用于辅助驾驶系统关键问题之中,为辅助驾驶系统开发提供一定的理论基础和技术支撑。本文的具体研究内容如下:
     1.反映驾驶员精神负荷的生理信号变化规律分析。这一部分的研究目的是通过多任务模拟驾驶试验探索和验证典型生理参数随驾驶员主观精神负荷的动态变化,初步建立典型生理参数与精神负荷之间的定量关系。借鉴人因工程研究的双任务试验范例,在驾驶模拟器中设定了驾驶任务与语音交互任务的双任务工况,记录整个试验过程中的心电、皮电和呼吸在内的三种生理信号以及转向盘角度的变化情况。在数据分析阶段,对心率变异性、皮电水平和呼吸频率三种指标的动态变化情况进行统计分析,并运用信息论中的熵分析方法对单一任务与双任务工况下的转向盘角度变化规律进行了对比分析,在此基础上运用多元回归分析方法建立了精神负荷的统一评价模型。
     2.基于多导生理参数和支持向量机的驾驶员精神负荷评价。针对实际驾驶过程中具体的多任务工况如接打电话、发送信息和播放音乐等,通过驾驶模拟器试验采集真实驾驶员驾驶过程中的脑电和皮电两种类型的生理信号,运用独立分量方法对原始数据进行滤波,通过小波包分解技术提取多维时频域参数,构建反映驾驶员精神状态的特征空间。之后,利用核主成分分析方法对脑电信号小波包参数和皮电信号统计学指标进行降维处理。在对比了Logistic回归模型、BP神经网络和支持向量机模型的多项性能指标后,选取支持向量机作为不同精神负荷水平的识别模型,实现对驾驶员精神负荷水平的识别。
     3.驾驶员精神负荷评价方法在换道意图识别中的应用。这一部分的研究目的是将前文中进行的驾驶员心理生理特性研究方法和规律应用于辅助驾驶系统的关键问题之中,为辅助驾驶系统的设计提供理论依据。目前在车道偏离预警系统产品开发过程中,主要通过转向盘角度的变化、汽车在车道中的位置以及转向灯是否开启等操纵信息甚至是在车道变换之前的视线分布信息识别驾驶员的换道意图,在检测到汽车在驾驶员无意识情况下偏离原车道时及时发出预警信息。本文将驾驶员心理生理特性分析方法引入驾驶意图识别之中,分析了换道过程中生理参数的动态变化规律,将反映驾驶员精神状态变化的多生理参数指标应用到意图识别模型的构建之中,得到了具有较高识别精度的换道意图识别模型。
     本文借鉴心理生理学和实验心理学的研究方法,建立了多任务工况下驾驶员精神负荷的评价方法,并将驾驶员心理生理特性应用于辅助驾驶系统关键问题的解决之中。研究结果服务于驾驶状态和车内预警系统等汽车主动安全和辅助驾驶系统的理论研究和工程化应用,提高驾驶员的驾驶安全性和舒适性。
Traffic safety has always been the most serious problem in current society, statisticsshow that China has the highest number of traffic fatalities in the world. Therefore, depthanalysis of the driver, vehicle and traffic condition is needed in order to find appropriatesolutions to reduce the frequency of traffic accidents and casualties.
     Driver is responsible for the perception of traffic information and vehicle status, playingthe most important role in the closed-loop of driver-road-vehicle system. A driver needs toconcentrate during driving and analyze the state of vehicle dynamics and traffic conditions,then making a proper driving strategies and maneuver. Therefore, a driver does not only needto afford some physical workload but also mental workload. When the load is too high or toolow, it may lead the driver making wrong decisions or driving maneuver, resulting in trafficaccidents.
     Changes of the driving task makes the problem above particularly prominent. Driversoften undertake dual-task or multi-task operating conditions because of the growing trafficdensity, complexity of road condition and usage of vehicle information system, theirattention may be detached from the current driving condition that directly related to thedriving task. However, the brain's ability to process information has certain limitations.When in a complex condition, unrelated tasks are bound to compete for the brain resourcethat should be used in driving task, so that driver's mental workload increased in thiscondition. When the mental workload reaches a certain level, it makes the drivers feelpressure and tension, leading to errors in the perception and decision-making.
     In order to solve the problems above, this paper analyzed and summarized the researcharticles in the field of driver behavior home and abroad, and based on the knowledge andresearch methods of experimental psychology and psychophysiology, evaluation method ofdriver mental workload under dual-task condition using psychological and physiologicalparameters is established. The methods and results in the research of driver mentalworkload was then used in driver assistance systems to solve the key issues, providing atheoretical basis and technical support for the development of driver assistance system.Specific contents of this paper are as follows:
     1. Research on dynamic changes of driver physiological signal under multi-taskconditions. The purpose of this part of research is to explore and verify the relationshipbetween driver mental workload and physiological information, establishing an evaluation method of mental workload based on typical physiological indexes.
     Dual-task paradigm in experimental psychology is introduced into our experiment. Adual-task condition is carried out in driving simulator containing driving task and voiceinteraction task. ECG, skin conductance, respiration and the steering wheel angle is recordedacross the entire experimental trial. In the data analysis stage, three kinds of physiologicalindexes including heart rate variability, skin conductance level and respiratory rate areanalyzed. A combined measure of driver mental workload is then created using multipleregression analysis and physiological indexes above. Finally, steering entropy method isused in the analysis of steering wheel angle under dual-task condition.
     2. Driver mental workload evaluation based on physiological parameters and supportvector machine. In this part, a driver mental workload recognition model is established basedon kernel principal component analysis and support vector machine.A field study is carriedout aiming at the events in actual driving conditions such as receiving calls, sendingmessages and playing music. Two types of physiological signals including EEG and skinconductance are recorded. Independent component method is used as the filter of EEG, andmulti-dimensional wavelet packet decomposition technique is used to extract thetime-frequency domain parameters. Kernel principal component analysis method is used toreduce the dimension of input data. At last, support vector machine is selected as the mentalworkload evaluation model after the comparison of model performance among Logisticregression, BP neural network and support vector machine.
     3. Application of driver psychological and physiological characteristics in the driverassistance system. The research purpose of this part is the application of driver psychologicaland physiological characteristics in design of driver assistance system. In the developmentprocess of lane departure warning system, driving intent is recognized mainly through thechanges of steering wheel angle, position of the vehicle, turning signal and gaze direction.When unintentionally lane departure is recognized through these parameters, a warningsignal is released to the driver. Lane change experiment is designed and physiological andvehicle status information are collected. Typical physiological indexes is analyzed and usedin the recognition model of lane change intention. Finally, a recognition model with higheraccuracy is derived compared with the model using vehicle status information only.
     Research method of psychophysiology and experimental psychology is used in thispaper, a mental workload evaluation method under dual-task condition based onphysiological indexes is created. Research method of driver's psychological andphysiological characteristics is then used in the key issues in driver assistance systems.
引文
[1] Yerkes R M, Dodson J D. The relation of strength of stimulus to rapidity of habit‐formation[J]. Journal of comparative neurology and psychology,1908,18(5):459-482.
    [2] Wilson G F, Eggemeier F T. Psychophysiological assessment of workload in multi-taskenvironments[J]. Multiple-task performance,1991:329-360.
    [3] Wickens C D. Multiple resources and mental workload[J]. Human Factors: The Journal ofthe Human Factors and Ergonomics Society,2008,50(3):449-455.
    [4] Colle H A, Reid G B. A framework for mental workload research and applications usingformal measurement theory[J]. International Journal of Cognitive Ergonomics,1997.
    [5] Xie B, Salvendy G. Review and reappraisal of modeling and predicting mental workload insingle-and multi-task environments[J]. Work&stress,2000,14(1):74-99.
    [6] Smith M E, Gevins A, Brown H, et al. Monitoring task loading with multivariate EEGmeasures during complex forms of human-computer interaction[J]. Human Factors: TheJournal of the Human Factors and Ergonomics Society,2001,43(3):366-380.
    [7] ISO10075-3:2004Ergonomic principles related to mental workload--Part3: Principlesand requirements concerning methods for measuring and assessing mental workload.
    [8] Hart S G, Staveland L E. Development of NASA-TLX (Task Load Index): Results ofempirical and theoretical research[J]. Human mental workload,1988,1(3):139-183.
    [9] Rubio S, Diaz E, Martin J, et al. Evaluation of Subjective Mental Workload: A Comparisonof SWAT, NASA‐TLX, and Workload Profile Methods[J]. Applied Psychology,2004,53(1):61-86.
    [10] Pauzie A. A method to assess the driver mental workload: The driving activity load index(DALI)[J]. IET Intelligent Transport Systems,2008,2(4):315-322.
    [11] Cain B. A review of the mental workload literature[R]. DEFENCE RESEARCH ANDDEVELOPMENT TORONTO (CANADA),2007.
    [12] Mehler B, Reimer B, Coughlin J F, et al. Impact of incremental increases in cognitiveworkload on physiological arousal and performance in young adult drivers[J].Transportation Research Record: Journal of the Transportation Research Board,2009,2138(1):6-12.
    [13] Martens M H, Van Winsum W. Measuring distraction: the peripheral detection task[J].TNO Human Factors, Soesterberg, Netherlands,2000.
    [14] Watson, T., Krause, J., Le, J., and Rao, M.,"Vehicle Integrated Non-Intrusive Monitoringof Driver Biological Signals," SAE Technical Paper2011-01-1095,2011,doi:10.4271/2011-01-1095.
    [15] Cai, H. and Lin, Y.,"An Experiment to Non-Intrusively Collect Physiological Parameterstowards Driver State Detection," SAE Technical Paper2007-01-0403,2007,doi:10.4271/2007-01-0403.
    [16] De Waard D. The measurement of drivers' mental workload[M]. Groningen University,Traffic Research Center,1996.
    [17] Kramer A F. Physiological metrics of mental workload: A review of recent progress[J].Multiple-task performance,1991:279-328.
    [18] Grossman P. Respiratory and cardiac rhythms as windows to central and autonomicbiobehavioral regulation: selection of window frames, keeping the panes clean and viewingthe neural topography[J]. Biological psychology,1992,34(2):131-161.
    [19] Lee D H, Park K S. Multivariate analysis of mental and physical load components in sinusarrhythmia scores[J]. Ergonomics,1990,33(1):35-47.
    [20] Nickel P, Nachreiner F. Sensitivity and diagnosticity of the0.1-Hz component of heart ratevariability as an indicator of mental workload[J]. Human Factors: The Journal of theHuman Factors and Ergonomics Society,2003,45(4):575-590.
    [21] Brookhuis K A, De Waard D, Janssen W H. Behavioural impacts of advanced driverassistance systems–an overview[J]. European Journal of Transport and InfrastructureResearch,2001,1(3):245-253.
    [22] Mehler B, Reimer B, Coughlin J F, et al. Impact of incremental increases in cognitiveworkload on physiological arousal and performance in young adult drivers[J].Transportation Research Record: Journal of the Transportation Research Board,2009,2138(1):6-12.
    [23] Eilebrecht B, Wolter S, Lem J, et al. The relevance of HRV parameters for driver workloaddetection in real world driving[C]//Computing in Cardiology (CinC),2012. IEEE,2012:409-412.
    [24] Backs R W, Lenneman J K, Wetzel J M, et al. Cardiac measures of driver workload duringsimulated driving with and without visual occlusion[J]. Human Factors: The Journal of theHuman Factors and Ergonomics Society,2003,45(4):525-538.
    [25] Lee D H, Park K S. Multivariate analysis of mental and physical load components in sinusarrhythmia scores[J]. Ergonomics,1990,33(1):35-47.
    [26] Wilson G F. In-flight psychophysiological monitoring[J]. Progress in ambulatorymonitoring,2001:435-454.
    [27] Smith M E, Gevins A, Brown H, et al. Monitoring task loading with multivariate EEGmeasures during complex forms of human-computer interaction[J]. Human Factors: TheJournal of the Human Factors and Ergonomics Society,2001,43(3):366-380.
    [28] Lei S, Welke S, Roetting M. A Comparison of Classification for Driver Mental WorkloadUsing ERP and Band Power Parameters[J].
    [29] Gheorghe, L. and Sunda, T.,"Brain Waves Measurement Based Evaluation of MentalWorkload Related to Visual Information While Driving," SAE Int. J. Passeng. Cars–Mech.Syst.4(1):578-585,2011, doi:10.4271/2011-01-0593.
    [30] Yang G, Lin Y, Bhattacharya P. A driver fatigue recognition model based on informationfusion and [42] dynamic Bayesian network[J]. Information Sciences,2010,180(10):1942-1954.
    [31] Brookhuis K A, De Waard D, Janssen W H. Behavioural impacts of advanced driverassistance systems–an overview[J]. European Journal of Transport and InfrastructureResearch,2001,1(3):245-253.
    [32] Baldauf D, Burgard E, Wittmann M. Time perception as a workload measure in simulatedcar driving[J]. Applied ergonomics,2009,40(5):929-935.
    [33] Mehler B, Reimer B, Coughlin J F, et al. Impact of incremental increases in cognitiveworkload on physiological arousal and performance in young adult drivers[J].Transportation Research Record: Journal of the Transportation Research Board,2009,2138(1):6-12.
    [34] Beatty J. Task-evoked pupillary responses, processing load, and the structure of processingresources[J]. Psychological bulletin,1982,91(2):276-292.
    [35] Wilson G F. In-flight psychophysiological monitoring[J]. Progress in ambulatorymonitoring,2001:435-454.
    [36] Bailey B P, Iqbal S T. Understanding changes in mental workload during execution ofgoal-directed tasks and its application for interruption management[J]. ACM Transactionson Computer-Human Interaction (TOCHI),2008,14(4):21.
    [37] Cain B. A review of the mental workload literature[R]. DEFENCE RESEARCH ANDDEVELOPMENT TORONTO (CANADA),2007.
    [38] Victor T W, Harbluk J L, Engstr m J A. Sensitivity of eye-movement measures toin-vehicle task difficulty[J]. Transportation Research Part F: Traffic Psychology andBehaviour,2005,8(2):167-190.
    [39] Benedetto S, Pedrotti M, Minin L, et al. Driver workload and eye blink duration[J].Transportation research part F: traffic psychology and behaviour,2011,14(3):199-208.
    [40] Reimer B. Impact of cognitive task complexity on drivers' visual tunneling[J].Transportation Research Record: Journal of the Transportation Research Board,2009,2138(1):13-19.
    [41] Liang Y, Reyes M L, Lee J D. Real-time detection of driver cognitive distraction usingsupport vector machines[J]. Intelligent Transportation Systems, IEEE Transactions on,2007,8(2):340-350.
    [42] De Waard D. The measurement of drivers' mental workload[M]. Groningen University,Traffic Research Center,1996.
    [43] Mehler B, Reimer B, Coughlin J F, et al. Impact of incremental increases in cognitiveworkload on physiological arousal and performance in young adult drivers[J].Transportation Research Record: Journal of the Transportation Research Board,2009,2138(1):6-12.
    [44] Veltman J A, Gaillard A W K. Physiological indices of workload in a simulated flighttask[J]. Biological psychology,1996,42(3):323-342.
    [45] Boxtel A, Jessurun M. Amplitude and bilateral coherency of facial and jaw‐elevator EMGactivity as an index of effort during a two‐choice serial reaction task[J].Psychophysiology,1993,30(6):589-604.
    [46] Yang J, Yao S, Li J, et al. Application of mean EMG to the evaluation of human workloadduring manual operation][J]. Hang tian yi xue yu yi xue gong cheng=Space medicine&medical engineering,1997,10(6):425.
    [47] Veldhuizen I J T, Gaillard A W K, De Vries J. The influence of mental fatigue on facialEMG activity during a simulated workday[J]. Biological Psychology,2003,63(1):59-78.
    [48] Schleifer L M, Spalding T W, Kerick S E, et al. Mental stress and trapezius muscleactivation under psychomotor challenge: a focus on EMG gaps during computer work[J].Psychophysiology,2008,45(3):356-365.
    [49] Veltman J A, Gaillard A W K. Physiological indices of workload in a simulated flighttask[J]. Biological psychology,1996,42(3):323-342.
    [50] Hjortskov N, Rissen D, Blangsted A K, et al. The effect of mental stress on heart ratevariability and blood pressure during computer work[J]. European Journal of AppliedPhysiology,2004,92(1-2):84-89.
    [51] Yang G, Lin Y, Bhattacharya P. A driver fatigue recognition model based on informationfusion and [42] dynamic Bayesian network[J]. Information Sciences,2010,180(10):1942-1954.
    [52] Mazaeva N, Ntuen C, Lebby G. Self-Organizing Map (SOM) model for mental workloadclassification[C]//IFSA World Congress and20th NAFIPS International Conference,2001.Joint9th. IEEE,2001,3:1822-1825.
    [53] Laine T I, Bauer K W, Lanning J W, et al. Selection of input features across subjects forclassifying crewmember workload using artificial neural networks[J]. Systems, Man andCybernetics, Part A: Systems and Humans, IEEE Transactions on,2002,32(6):691-704.
    [54] Lei S, Welke S, Roetting M. A Comparison of Classification for Driver Mental WorkloadUsing ERP and Band Power Parameters[J].
    [55] Putze F, Jarvis J P, Schultz T. Multimodal recognition of cognitive workload formultitasking in the car[C]//Pattern Recognition (ICPR),201020th International Conferenceon. IEEE,2010:3748-3751.
    [56] Hwang S L, Yau Y J, Lin Y T, et al. Predicting work performance in nuclear powerplants[J]. Safety science,2008,46(7):1115-1124.
    [57] Pala, S., Schnell, T., Becklinger, N., Giannotti, C. et al.,"Adaptation of the CognitiveAvionic Tool Set (CATS) into Automotive Human Machine Interface Design Process,"SAE Technical Paper2011-01-0594,2011, doi:10.4271/2011-01-0594.
    [58] Pala S, Yoshida S, McBride J, et al. METHOD TO DETERMINE DRIVER WORKLOADFUNCTION AND USAGE OF DRIVER WORKLOAD FUNCTION FORHUMAN-MACHINE INTERFACE PERFORMANCE ASSESSMENT: U.S. PatentApplication13/337,671[P].2011-12-27.
    [59] Takae Y, Etori N, Watanabe T, et al. A study of a physiological index for evaluating driver'smental workload[J]. JSAE Review,2005,
    [60] Reimer B, Mehler B, Coughlin J F. An Evaluation of Driver Reactions to New VehicleParking Assist Technologies Developed to Reduce Driver Stress[J].2010.
    [61] Salvucci D D, Liu A. The time course of a lane change: Driver control and eye-movementbehavior[J]. Transportation research part F: traffic psychology and behaviour,2002,5(2):123-132.
    [62] Ikenishi T, Kamada T, Nagai M. Parallel factor analysis of driver's EEG in lane changemaneuver for cooperative driver assistance systems[C]//Analysis, Design, and Evaluationof Human-Machine Systems.2010,11(1):105-110.
    [63] Doshi A, Trivedi M. A comparative exploration of eye gaze and head motion cues for lanechange intent prediction[C]//Intelligent Vehicles Symposium,2008IEEE. IEEE,2008:49-54.
    [64] Clarion A, Ramon C, Petit C, et al. An integrated device to evaluate a driver’s functionalstate[J]. Behavior research methods,2009,41(3):882-888.
    [65] Healey J, Picard R. Smartcar: detecting driver stress[C]//Pattern Recognition,2000.Proceedings.15th International Conference on. IEEE,2000,4:218-221.
    [66] Schmidt S, Walach H. Electrodermal activity (EDA)-State-of-the-art measurement andtechniques for parapsychological purposes[J]. Journal of Parapsychology,2000,64(2):139-164.
    [67] Kane M J, Conway A R A, Miura T K, et al. Working memory, attention control, and theN-back task: a question of construct validity[J]. Journal of Experimental Psychology:Learning, Memory, and Cognition,2007,33(3):615.
    [68] Mehler B, Reimer B, Dusek J. MIT AgeLab delayed digit recall task (n-back)[J].Cambridge, MA: Massachusetts Institute of Technology,2011.
    [69] Nakayama O, Futami T, Nakamura T, et al. Development of a steering entropy method forevaluating driver workload[J]. SAE transactions,1999,108(6; PART1):1686-1695.
    [70]尧德中,刘铁军,雷旭,等.基于脑电的脑-机接口:关键技术和应用前景[J].电子科技大学学报,2009,38(5):550-554.
    [71]刘长生,唐艳,汤井田.基于独立分量分析的脑电中眼电伪迹消除[J][J].计算机工程与应用,2007,43(17):230-232.
    [72]杨福生,洪波.独立分量分析及其在生物医学工程中的应用[J].国外医学:生物医学工程分册,2000,23(3):129-134.
    [73]杨立才,李佰敏,李光林,等.脑机接口技术综述[J].电子学报,2005.
    [74]杨福生,调和分析.小波变换的工程分析与应用[M].科学出版社,1999.
    [75]张静远,张冰,蒋兴舟.基于小波变换的特征提取方法分析[J].信号处理,2000,16(2):156-162.
    [76]郭应时.交通环境及驾驶经验对驾驶员眼动和工作负荷影响的研究[D].西安:长安大学,2009.
    [77]王和勇,姚正安,李磊.基于聚类的核主成分分析在特征提取中的应用[J].计算机科学,2005,32(4):64-66.
    [78]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42.
    [79]戚德虎,康继昌. BP神经网络的设计[J].计算机工程与设计,1998,19(2):48-50.
    [80]陈卫中,潘晓平,宋兴勃,等. ROC曲线中最佳工作点的选择[J].中国卫生统计,2006,23(2):157-158.
    [81] Polychronopoulos A, Tsogas M, Amditis A J, et al. Sensor fusion for predicting vehicles'path for collision avoidance systems[J]. Intelligent Transportation Systems, IEEETransactions on,2007,8(3):549-562.
    [82] Polychronopoulos A, Tsogas M, Amditis A J, et al. Sensor fusion for predicting vehicles'path for collision avoidance systems[J]. Intelligent Transportation Systems, IEEETransactions on,2007,8(3):549-562.
    [83] Ueruen Dogan,Towards a Driver Model: Preliminary Study of Lane Change Behavior,Proceedings of the11th International IEEEConference on Intelligent TransportationSystemsBeijing, China, October12-15,2008.
    [84]储颖,肖献强,朱家诚.基于驾驶行为及意图的汽车主动安全技术研究[J].机械设计与制造,2011,1(1):266-268.
    [85] Kumagai T, Sakaguchi Y, Okuwa M, et al. Prediction of driving behavior throughprobabilistic inference[C]//Proceedings of the Eighth International Conference onEngineering Applications of Neural Networks.2003:8-10.
    [86]宗长富,王畅,何磊,郑宏宇.基于双层隐式马尔可夫模型的驾驶意图辨识[J].汽车工程,2011,33(8):701-706.
    [87]吕岸,胡振程,陈慧.基于高斯混合隐马尔科夫模型的高速公路超车行为辨识与分析[J].汽车工程,2010(007):630-634.
    [88] Kuge N, Yamamura T, Shimoyama O, et al. A driver behavior recognition method based ona driver model framework[J]. SAE transactions,2000,109(6):469-476.
    [89] Yuhara N, Tajima J. Advanced steering system adaptable to lateral control task and driver'sintention[J]. Vehicle System Dynamics,2001,36(2-3):119-158.
    [90] Salvucci D D, Liu A. The time course of a lane change: Driver control and eye-movementbehavior[J]. Transportation research part F: traffic psychology and behaviour,2002,5(2):123-132.
    [91] Ikenishi T, Kamada T, Nagai M. Parallel factor analysis of driver's EEG in lane changemaneuver for cooperative driver assistance systems[C]//Analysis, Design, and Evaluationof Human-Machine Systems.2010,11(1):105-110.
    [92] Zhou H, Itoh M, Inagaki T. How Do Cognitive Distraction Affect Driver Intent ofChanging Lanes?[M]//Intelligent Robotics and Applications. Springer Berlin Heidelberg,2009:235-244.
    [93] Doshi A, Trivedi M. A comparative exploration of eye gaze and head motion cues for lanechange intent prediction[C]//Intelligent Vehicles Symposium,2008IEEE. IEEE,2008:49-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700