光折变联合变换相关器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与匹配滤波相关器相比,联合变换相关器具有诸多优点,如空间带宽积高、无需滤波综合、易于实时操作等,所以近年来更加引起人们的研究兴趣。光折变晶体具有响应速度快、空间分辨率高、存储容量大等优点。将光折变晶体与联合变换相关器相结合构成光折变联合变换相关器,就可以充分发挥二者的优势。本文对非线性联合变换相关识别和光折变光学相关识别进行了较详细的研究。
     首先比较研究了两种基本的光学相关识别理论:Vander Lugt匹配滤波相关识别和联合变换相关识别,并提出了一般化光学相关识别的概念。其次,通过理论分析、计算机模拟和实验研究的方法,对非线性联合变换相关识别和光折变光学相关识别进行了研究,并给出了研究结果:(1)对联合变换功率谱进行二值化处理可以使得功率谱高频成份得到较大提高,从而大大提高联合变换相关器的识别能力。同时在研究过程中发现,不同阈值对二值化联合变换相关结果有着较大的影响,在各种阈值中存在一最佳阈值。并通过计算机模拟,确定出该最佳阈值位于联合变换功率谱的平均灰度值附近。(2)利用SBN:61:Cr晶体(1000ppm)和KNSBN:Ce晶体(0.07wt%)的二波耦合能量非线性转移特性,对联合变换相关器的输入图像进行边缘增强预处理,提高了相关峰的归一化强度,减小了相关峰的半宽度,从而大大提高了相关器的识别能力。(3)对二值化与光折变边缘增强联合变换相关器各自的特点进行了比较。(4)利用光折变晶体的体全息存储特性来实时制作匹配滤波器,避免了利用全息干板制作滤波器时的显影、定影等化学操作和滤波器的严格复位问题。同时采用CRT-LCLV作为实时输入器件,避免了输入图像的准确复位问题。因此利用这种相关器结构进行实时操作具有较大的可行性。(5)利用KNSBN:Cu晶体作为平方律转换器件,实现实时的功率谱转换,从而实现联合变换相关识别。本文最后对光折变边缘增强和二波耦合联合变换相关识别进行了比较。并对光折变二波耦合实验中一些参数选择进行了分析。
     研究结果表明,将光折变晶体与联合变换相关器相结合构成光折变联合变换相关器是可行的。
The joint transform correlator (JTC) is paid more attention by researchers than the matched filtering correlator (MFC) with its advantages, such as high spatial bandwidth product, without integrated filtering and real-time operation etc. Photorefractive crystals have some advantages, such as fast response, high spatial resolution and large storage capacity etc. We can exert both advantages by combining the photorefractive crystal with the JTC. The theories and experiments of the nonlinear joint transform correlation recognition and the photorefractive correlation recognition are investigated detailedly in this thesis.
    Firstly, the analysis and comparison is made between two basic types of optical correlator: the Vander Lugt MFC and the JTC. And the concept of the general optical correlator is proposed. Secondly, the nonlinear joint transform correlation recognition and the photorefractive correlation recognition are investigated by computer simulation and experiment, and the research results are given as following: (1) The correlation discrimination of the JTC can be greatly improved by binarizing the joint transform power spectrum nonlinearly. It is found in our experiment that the threshold magnitude has great influence on the correlation output of a binary JTC. That is, there exists an optimal threshold, which lies in the average gray of the joint transform power spectrum by computer simulation. (2) Taking the nonlinear energy transfer property of the photorefractive two-beam coupling in the SBN:61 crystal doped with 1000ppm Cr and the KNSBN crystal doped with 0.07wt% Ce, edge-enhancement preprocessing can be achieved, which will results in the larger normalized intensity and narrower width of the correlation peaks. And the discrimination of the JTC is greatly improved. (3) We make a comparison between the binary and photorefractive edge-enhancement JTC. (4) Taking the volume hologram storage of the photorefractive crystals, we can carry out the matched filtering correlation recognition with real-time operation. (5) We present a photorefractive two-beam coupling JTC, in which a KNSBN:Cu crystal is used to a square-law converter by the nonlinear energy transfer property of the photorefractive two-beam coupling. Finally, the comparison is made between the photorefractive edge-enhancement and two-beam coupling JTC. And we also analysis the parameters in the photorefractive two-beam coupling experiment.
    In conclusion, the experiment results show that it is feasible to combine the photorefracitve crystal with the joint transform correlator.
引文
[1] H. Rajbenbach, S. Bann, P. Refregier, P. Joffre, J. Huignard, H. Buchkremer, A. S. Jensen, E. Rasmussen, K. Brenner, G. Lohman, Compact photorefractive correlator for robotic application, Appl. Opt., 1992, 31 (26): 5666~5674
    [2] Y. Kobayashi, H. Toyoda, Development of an optical joint transform correlation system for fingerprint recognition, Opt. Eng., 1999, 38(7): 1205~1210
    [3] T. J. Grycewicz, Techniques to improve binary joint transform correlator performance for fingerprint recognition, Opt. Eng., 1999, 38(1): 114~119
    [4] D. Weber, J. Trolnger, Novel implementation of nonlinear joint transform correlators in optical security and validation, Opt. Eng., 1999, 38(1): 62~68
    [5] T. Nomura, B. Javidi, Optical encryption using a joint transform correlator architecture, Opt. Eng., 2000, 39(8): 2031~2035
    [6] D. Abookasis, O. Arazi, J. Rosen, B. Javidi, Security optical systems based on a joint transform correlator with significant output images, Opt. Eng., 2001,40(8): 1584~1589
    [7] A. VanderLugt, Signal detection by complex spatial filtering, IEEE Trans. Inform. Theory, 1964, IT-10(2): 139~145
    [8] C. S. Weaver and J. W. Goodman, A technique for optically convolving two functions, Appl. Opt., 1966, 5(7): 1246~1249
    [9] J. L. Horner, Light utilization in optical correlators, Appl. Opt., 1982, 21(24): 4511~4514
    [10] J. L. Homer and P. D. Gianino, Phase-only matched filtering, Appl. Opt,, 1984, 23(6): 812~816
    [11] J. L. Homer and J. R. Leger, Pattern recognition with binary phase-only filters, Appl. Opt., 1985, 24(5): 609~611
    [12] R. R. Kallman, Optimal low noise phase-only and binary phase-only optical correlation filters for threshold detectors, Appl. Opt., 1986, 25(23): 4216~4217
    [13] D. M. Cottrell, R. A. Lilly, J. A. Davis, T. Day, Optical correlator performance of binary phaseonly filters using Fourier and Hartley transforms, Appl. Opt., 1987, 26(18):3755~3761
    [14] T. D. Wilkinson, W. A. Crossland, V. Kapsalis, Binary phase-only l/f joint transform correlator using a ferroelectric liquid-crystal spatial light modulator, Opt. Eng., 1999, 38(2): 357~360
    [15] 瞿宏琛,陈自宽,张铁群,路明哲,康辉,战元龄,朱秀山,基于对功率谱进行位相调制的联合变换相关器,中国激光,1998,25(2):139~144
    [16] 黄献烈,赖虹凯,位相调制的实时联合变换相关器,光学学报,1997,17(4):456~460
    [17] B. Javidi, Nonlinear matched filter based optical correlation, Appl. Opt., 1989, 28(21):4518~4520
    [18] 康辉,周金鹏,战元龄,基于液晶光阀非线性变换的实时光学相关识别,光学学报,1996.16(11):1596~1599
    [19] B. Javidi, Nonlinear joint power spectrum based optical correlation, Appl. Opt., 1989, 28(12): 2358~2367
    [20] B. Javidi, Synthetic discriminant function-based binary nonlinear optical correlator, Appl. Opt., 1989, 28(13): 2490~2493
    [21] B. Javidi, Q. Tang, D. A. Gregory, T. D. Hudson, Experiments on nonlinear joint transform correlator using an optically addressed spatial light modulator in the Fourier plane, Appl. Opt., 1991, 30(14): 1772~1776
    [22] S. Zhong, J. Jiang, S. Liu, C. Li, Binary joint transform correlator based on differential orocessing of the Joint transform power snectrum, Appl. Opt., 1997, 36(8): 1776~1780
    [23] 王滨,余飞鸿,刘旭,顾培夫,唐晋发,利用液晶光阀实现二值化联合变换相关器的研究,光学学报.1997,17(3):325~330
    [24] W. Yu, K. Nakagawa, T. Minemoto, All-optical subtracted joint transform correlator with a holographic interferometer, Appl. Opt., 1997, 36(35): 9205~9210
    [25] W. Yu, and T. Minemoto, Performances of an all-optical substracted joint transform correlator that uses a photorefractive crystal, Optical and Quantum Electronics, 2000, 32(3): 367~382
    [26] 黄献烈,赖虹凯,使用功率谱相减的实时联合变换相关器作多目标检测,中国激光,1997,24(8):745~750
    [27] A. K. Cherri and M. S. Alam, Reference phase-encoded fringe-adjusted joint transform correlation, Appl. Opt., 2001,40(8): 1216~1225
    
    
    [28] M. S. Alam, X. Chen, M. A. Karim, Distortion-invariant fringe-adjusted joint transform correlation, Appl. Opt., 1997, 36(29): 7422~7427
    [29] M. S. Alam and D. Chain, Efficient multiple target recognition using a joint wavelet transform processor, Opt. Eng., 2000, 39(5): 1203~1210
    [30] Z. Wang, J, Guan, G. Mu, R. Fu, Rotation-invariant phase-shifting joint transform correlator by use of circular harmonic expansion, Opt. Eng., 2000, 39(10): 2595~2600
    [31] V. R. Riasati, P. P. Banerjee, M, A. G. Abushagur, K. B. Howell, Rotation-invariant synthetic discriminant function filter for pattern recognition, Opt. Eng., 2000, 39(5): 1156~1161
    [32] C. H. Michael, L. P. Bryon, Real-time joint transform correlator with phase conjugation for distortion correction, Opt. Lett., 1987, 12(8): 549~551
    [33] P. P. Banerjee, E. Gad, T. Hudson D. McMillen, H. Abdeldayem, D. Frazier, K. Matsushita, Edge enhancement and edge-enhanced correlation with photorefractive polymers, Appl. Opt., 2000, 39(29): 5337~5346
    [34] M. S. Alam, O. Perez, M. A, Karim, Preprocessed multiobject joint transform correlator, Appl. Opt., 1993, 32(17): 3102~3107
    [35] 张培琨,李育林,刘家英,刘继芳,乔学光,忽满利,基于小波边缘提取的灰度图像联合相关识别预处理,光子学报,1999,28(4):351~355
    [36] C. Psaltis, J. Yu, J. Hong, Bias-free-time-integrating optical correlator using a photorefractive crystal, Appl. Opt.. 1985, 24(24): 3860~3865
    [37] B. Liang, Z. Wang, J. Guan, G. Mu, C. M. Cartwright, Four-wave mixing and edge-enhanced optical correlation in a Ce:KNSBN crystal, Opt. Lett., 2000, 25(15): 1086~1088
    [38] J. R. Goff, Experimental realization of a multiproduct photorefractive correlation system for temporal signals, Appl. Opt., 1997, 36(26): 6627~6635
    [39] J. H. Hong, T. Y. Chang, Photorefractive time-integrating correlator, Opt. Lett., 1991, 16(5): 333~335
    [40] W. Feng, Y. Yan, G. Jin, M. Wu, Q. He, Volume holographic wavelet correlation processor, Opt. Eng., 2000, 39(9): 2444~2450
    [41] S. Shin and B. Javidi, Three-dimensional object recognition by use of a photorefractive volume holographic processor, Opt. Lett., 2001, 26(15): 1161~1163
    [42] 宋菲君,S.Jutamulia,近代光学信息处理,北京大学出版社,北京,1998
    [43] F. T. S. Yu, S. Wu, S. Rajah, D. A. Gregory, Compact joint transform correlator with a thick photorefractive crystal, Appl. Opt., 1992, 31(14): 2416~2418
    [44] N. J. Cook, A. Carnicer. S. Vallmitjana. I. Jurells, C.M. Cartwright, W.A. Gillespie, Implementation of a photorefractive binary joint transform correlator, J. Opt. Soc. Am. B, 1998, 15(7): 1977~1984
    [45] H. Zhang, C. M. Cartwright, M. S. Ding. W. A. Gillespie, Optical implementation of a photorefractive joint transform correlator with wavelet filters, Opt. Commun., 2000, 181: 223~230
    [46] H. Zhang, C. M. Cartwright, M. S. Ding, W. A. Gillespie, Image feature extraction with various wavelet functions in a photorefractive joint transform correlator, Opt. Commun., 2000, 185: 277~284
    [47] H. Yau, N. Cheng, R. Tsou, H. Lee, Y. Tong, Real-time incoherent optical pattern recognition with photorefractive crystals, Jpn. J. Appl. Phys., 1998, 37. Pt. 1. No. 9A: 4834~4837
    [48] J. Khoury, J. Fu, M. Cronin-Golomb, Quadratic processing and nonlinear optical phase rectification in noise reduction, J. Opt. Soc. Am. B., 1994, 11(10): 1960~1970
    [49] J. Khoury, M. Cronin-Golomb, Photorefractive two-beam-coupling nonlinear joint-transform correlator, J. Opt. Soc. Am. B., 1994, 11(11): 2167~2174
    [50] G. Asimellis, J. Khoury, J. Kane, C. Woods, Two-port photorefractive joint-transform correlator, Opt. Lett., 1995, 20(24): 2517~2519
    [51] J. Khoury, J. S. Kane, G. Asimellis, M. Cronin-Golomb. C. Woods. All-optical nonlinear joint Fourier transform correlator. Appl. Opt., 1994, 33(35): 8216~8225
    [52] J. Khoury. P. D. Gianino. C. L. Woods, Engineering aspects of the two-beam-coupling correlator. Opt. Eng., 2000, 3(5): 1177~1183
    [53] 刘思敏,郭儒,凌振芳,光折变非线性光学,中国标准出版社,北京,1992
    [54] 岳学锋,邵宗书,光折变材料及其应用,山东科学技术出版社,济南,1994
    
    
    [55] A. Ashkin, G. D. Boyd, J. M. Mziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, Optically induced refractive index inhomogeneities in LiNbO_3 and LiTaO_3, Appl. Phys. Lett., 1966, 17(9): 72~74
    [56] F. S. Chen, J. T. Lamanchia, D. B. Fraserm, Holographic storage in Lithium niobate, Appl. Phys. Lett., 1968, 19(13): 223~225
    [57] D. L. Staebler, J. J. Amodei, Coupled-wave analysis of holographic storage in LiNbO_3 J. Appl. Phys., 1972, 43(3): 1042~1049
    [58] D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, Multiple storage and erasure of fixed holograms in Fe-doped LiNbO_3 Appl. Phys. Lett., 1975, 26(4): 182~184
    [59] J. Feinberg, D. Heinman, A. R. Tanguay, J. R. W. Hellwarth, Photorefractive effects and lightinduced charge migration in barium titanate, J. Appl. Phys., 1980, 51(3): 1297~1305
    [60] J. Feinberg, Self-pumped continuous-wave phase conjugate using internal reflection, Opt. Lett., 1982, 7(10): 486~488
    [61] M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, Passive phase conjugate mirror based on self-induced oscillation in an optical ring cavity, Appl. Phys. Lett., 1983, 42(11): 919~921
    [62] J. E. Ford, Yeshaiahu, S. H. Lee, Enhanced photorefractive performance from 45° -cut BaTiO_3, Appl, Opt., 1989, 28(22): 4808~4815
    [63] T. Y. Chang, R. W. Hellwarth, Optical phase conjugation by backscattering in barium titanate, Opt. Lett., 1985, 10(8): 408~410
    [64] F. H. Mok, M. C. Tackitt, H. M. Stoll, Storage of 500 high resolution holograms in a LiNbO_3 crystal, Opt. Lett., 1991. 16(8):605~607
    [65] Tschudi T., Deuz C., Muller K. O., Heimann T., Volume holographic data storage and processing using phase-coded multiplexing, LEOS'98. 11th Annual Meeting, 1998, 2:144
    [66] Y. Kawata, H, Ishitobi, S. Kawata, Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory, Opt. Lett., 1998 23(10): 756~758
    [67] J. Ma, T. Chang, J. Hong, R. Neurgaonkar, G. Barbastathis, D. Psaltis, Electrical fixing of 1000 angle-multiplexed holograms in SBN:75, Opt. Lett., 1997, 22(14): 1116~1118
    [68] Yuanqing Wu, Jingjun Xu. SiMin Liu, GuangYin Zhang, Automatic low-frequency spatial filter that uses light-induced scattering in LiNbO_3-Fe crystal, Appl. Opt,, 1992, 31(17): 3210~3212
    [69] J. Feinberg, Real-time edge-enhancement using the photorefractive effect, Opt. Lett, 1980, 5(8): 330~332
    [70] J. P. Huignard, J. P. Herriaum, Real-time coherent object edge reconstruction with Bi_(12)SiO_(20) crystals, Appl. Opt., 1978, 17(17): 2671~2672
    [71] Jingwen Zhang, HaiYing Xu,Yang Yuan,KeBin Xu, Real-time coherent image differentiation using a self-pumped phase conjugator with KNSBN:Cu, Appl. Opt., 1993, 32(8): 1470~1472
    [72] 赵建林,吴建军,王彬,杨德兴等,SBN:Cr晶体用于光学图像边缘增强的实验研究,光学学报,2002 21(11):1343~1346
    [73] 吕乃光,傅里叶光学.机械工业出版社,北京,1998
    [74] 于美文,光学全息及信息处理,国防工业出版社,北京,1984
    [75] 王大勇,光电混合相关识别的基本理论和实验研究,博士论文,1994,4
    [76] 赵达尊,张怀玉,空间光调制器,北京理工大学出版社,北京,1992
    [77] 李育林,傅晓理,空间光调制器及其应用,国防工业出版社,北京,1996
    [78] A. Tanone, C. M. Uang, F, T. S. Yu, E. C. Tam, D. A. Gregory, Effects of thresholding in jointtransform correlation, Appl. Opt., 1992, 31 (32): 4816~4822
    [79] J. Zhao, B. Wang, J. Wu, D. Yang, S.Kapphan, R.Pankrath, Investigation of Photorefractive Two-Wave Coupling in Cr-doped Strontium Barium Niobate (SBN:Cr) Crystal, Chinese Physics, 2001, 10(8): 739~742
    [80] 王彬,掺杂SBN晶体的光折变波耦台特性研究,硕士论文,2001.3
    [81] 吴建军,掺杂SBN晶体在光信息处理中的应用研究,硕士论文,2001.3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700