协同进化数值优化算法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
协同进化是自然界的一种普遍现象。当两个或更多个种群之间的进化相互影响时,就出现了协同进化,它通常被用来解释种群间的相互适应现象。生物学研究表明协同进化对于生物进化是有益的。协同进化算法是将协同进化机制引入传统进化算法而产生的一类进化算法的衍生算法。近年来,使用协同进化算法求解优化问题已成为进化计算研究领域的一个重要方向。本文主要进行协同进化算法的研究,包括建立协同进化模型、设计协同进化算法和进行协同进化算法的应用研究。本文在归纳总结现有协同进化算法的基础上将协同进化算法进行分类,并对各类协同进化算法的研究进展进行了综述。之后,本文针对包括无约束优化、约束优化以及多目标优化在内的数值优化问题提出了新的协同进化模型以及若干新的算法和策略,并将这些新算法应用于通信信号的检测问题和以卫星模块布局设计为背景的带平衡约束的圆形布局问题。本文的主要工作可概括如下:
     (1)借鉴协同进化和精英策略的思想,提出了解决高维无约束数值优化问题的M-精英协同进化模型和M-精英协同进化算法(M-Elite Coevolutionary Algorithm,MECA)。MECA算法认为适应度较高的个体群(称为精英种群),在整个种群进化中起着主导作用。算法将整个种群划分为由M个精英组成的精英种群和由其余个体组成的普通种群这样两个子种群,依次以M个精英为核心(称为核心精英)来选择成员以组建M个团队。若选中的团队成员是其他精英,则该成员与核心精英利用所定义的协作操作来交换信息;若团队成员选自普通种群,则由核心精英对其进行引导操作。其中,协作操作和引导操作由若干不同类型的交叉或变异算子的组合所定义。理论分析证明,算法以概率1收敛于全局最优解。对15个标准测试函数的测试结果显示,该算法对其中几乎所有测试函数都能够找到最优解或好的次优解。与两种经典的传统进化算法以及三种其他协同进化算法相比,在适应度函数评价次数相同时,该算法所求解的精度更高。同时,该算法的寻优时间较短,甚至略短于同等设置下的标准遗传算法。此外,对参数的实验分析结果显示,该算法对参数不敏感,易于使用。
     (2)改进M-精英协同进化算法并将其扩展应用于约束优化问题。以M-精英协同进化模型为基础,引入正交交叉算子,并使用静态罚函数法处理约束,研究了M-精英协同进化算法在约束优化问题中的应用。利用13个约束优化测试函数对算法进行了测试,仿真实验和参数分析结果表明该算法寻优精度高,寻优时间少,算法稳定,其性能优于一些经典的约束优化进化算法,也优于所对比的协同进化算法,能够有效解决复杂的约束优化问题。
     (3)在M-精英协同进化的框架下引入非支配近邻选择机制,提出了非支配近邻协同进化多目标优化算法(Nondominated Neighbor Coevolutionary Algorithm,NNCA)。将非支配种群根据拥挤距离的大小分为精英种群和普通种群,其中精英种群由nE个具有较大拥挤距离值的非支配个体组成。其所处区域个体分布越稀疏的精英个体,越有机会选择更多成员来组建团队,从而实现对其所在区域的更加充分的搜索。为避免当非支配个体过少时算法陷入因非支配近邻选择机制引起的“搜索停滞”状态,NNCA采用精英规模保障机制,即当精英种群实际规模达不到nE时,从由被支配个体构成的备选种群中随机选择若干个备选个体迁移至精英种群中,使精英种群规模达到nE,从而避免算法在当前非支配个体过少时仅围绕有限的几个非支配个体进行搜索以至陷入“搜索停滞”状态。协同进化机制、非支配近邻选择机制和强调精英种群作用的思想相结合,使得算法具有较好的搜索能力和较强的收敛性。关于13个多目标优化测试问题的实验分析结果表明,与NSGA-II、SPEA2以及NNIA等优秀多目标优化进化算法相比,NNCA得到的Pareto最优解在逼近性和宽广性方面具有比较明显的优势,而均匀性也仅次于SPEA2,优于NSGA-II和NNIA。
     (4)为解决垂直分层空时系统中的最大似然(Maximum-Likelihood,ML)检测算法复杂度过高的问题,并针对通信系统对实时性要求较高的特点,设计了一种复杂度较低且性能优良的算法,即M-精英进化算法(M-elite Evolutionary Algorithm,MEA),并将其应用于垂直分层空时系统的信号检测,来逼近ML检测算法的性能。通过一个经典背包问题的仿真验证了MEA求解组合优化问题的有效性,实际的通信系统仿真表明基于MEA的检测算法的性能优于一些经典的检测算法,也优于基于标准遗传算法及克隆选择算法的检测算法,能够较好地逼近ML检测算法的性能。
     (5)将M-精英协同进化算法扩展应用于求解带平衡约束的圆形Packing问题,该问题以卫星模块布局设计为背景,属于NP难问题。通过使用静态罚函数方法将约束Packing问题转化为无约束优化问题来求解。首先利用Welded Beam Design、Spring Design、Speed Reducer Design和Three-Bar Truss Design这4个工程设计优化问题验证了MECA解决实际工程问题的能力,之后对3个带平衡约束的圆形Packing问题的典型算例进行了测试,结果显示M-精英协同进化算法以较少的时间代价获得了质量较高的布局结果,能够解决复杂的约束Packing问题。
Coevolution is a universal phenomenon in the nature. Coevolution happens when two or more species influence each other's evolution and it is most often invoked to explain coadaptations between species. The biological study shows that coevolution is beneficial to biological evolution. A Coevolutionary Algorithm (CEA), which employs the coevolutionary mechanism within a classical evolutionary algorithm (EA), is an extension to EAs. Solving optimization problems with CEAs has become an important research area of evolutionary computation in recent years. This dissertation is focused on the research of CEA, including the coevolutionary model building, coevolutionary algorithm design and its applications. Firstly, CEAs are categorized based on the induction of the existing CEAs and then the state-of-the-art of CEAs is surveyed. After that, a new coevolutionary model and several new algorithms and strategies are proposed for numerical optimization including unconstrained optimization, constrained optimization and multiobjective optimization. Afterwards, the new algorithms are applied to the detection of communication signals and the equilibrium-constrained circles packing problem with the background of satellite module layout design. The main innovative points of this dissertation can be summarized as follows:
     (1) The M-elite coevolutionary model and the M-Elite Coevolutionary Algorithm (MECA) are proposed for high-dimensional unconstrained numerical optimization problems based on the concept of coevolutionary algorithm and elitist strategy. In the MECA, the individuals with high fitness, called elite population, are considered to play dominant roles in the evolutionary process. The whole population is divided into two subpopulations which are elite population composed of M elites and common population including other individuals, and team members are selected to form M teams by M elites acting as the cores of the M teams (named as core elites) respectively. If the team member selected is another elite individual, it will exchange information with the core elite by the cooperative operation defined in the paper; If the team member is chosen from the common population, it will be led by the core elite with the leading operation. The cooperative and leading operation above are defined by different combinations of several crossover operators or mutation operators. The algorithm is proved to converge to the global optimization solution with probability one. Tests on 15 benchmark problems show that the algorithm can find the global optimal solution or near-optimal solution for most problems tested. Compared with two classical EAs and three CEAs, MECA achieves an improved accuracy with the same number of function evaluations. Meanwhile, the runtime of MECA is less, even compared with the standard genetic algorithm with the same parameter setting. Moreover, the parameters of the MECA are analyzed in experiments and the results show that MECA is insensitive to parameters and easy to use.
     (2) The M-Elite Coevolutionary Algorithm (MECA) is improved and extended to solve constrained optimization problems. The orthogonal crossover operator is introduced into MECA to improve the algorithm performance and static penalty functions are used to handle constraints. Tests are made on 13 benchmark problems. The experimental results and the parameter analysis show that the MECA can obtain high solution quality with less runtime and is robust and it obtains better performances than some classical constrained optimization evolutionary algorithms as well as another coevolutionary algorithm, and can solve difficult constrained optimization problem.
     (3) The Nondominated Neighbor Coevolutionary Algorithm (NNCA) is proposed for multiobjective optimization by introducing the nondominated neighbor selection (NNS) mechanism to the M-elite coevolutionary frame. The whole nondominated population is divided into two subpopulations which are elite population and common population according to the crowding-distance values, where elite population is composed of nE nondominated individuals with higher crowding-distance values. The elite individual located in less-crowded region will have more chances to select more members for its own group and thus this region can be explored more sufficiently. A Size Guarantee Mechanism (SGM) for elite population is proposed so as to avoid the‘search stagnation’situation due to the NNS mechanism when the nondominated individuals are too few. The SGM is realized in such a way: as the actual size of elite population is smaller than nE, several dominated individuals, which are selected from the reserved population composed of dominated individuals, will emigrate to the elite population to ensure that the size of elite population is equal to nE. The SGM can prevent the algorithm searching around limited nondominated individuals and trapping into the‘search stagnation’situation. The combination of coevolutionary mechanism, NNS mechanism and the idea of emphasizing the role of elite population make the NNCA obtain good search capability and convergence performance. Tests on 13 multiobjective optimization benchmark problems show that NNCA does much better than other excellent multiobjective optimization evolutionary algorithm including NSGA-II, SPEA2 and NNIA in terms of the approximation property and the extent property. Meanwhile, except SPEA2, NNCA does best in terms of diversity maintenance.
     (4) A new algorithm named as M-elite Evolutionary Algorithm (MEA) is presented with low complexity and high performance to approach the performance of Maximum-Likelihood (ML) detection, for solving the problem of the high complexity of ML detection in real-time Vertical-Bell laboratories LAyered Space-Time (V-BLAST) communication system. The simulation of one knapsack problem validates the effectiveness of MEA to solve combinatorial optimization problems. Furthermore, the simulation of V-BLAST communication system shows that the MEA-based detection algorithm can approach the performance of ML well, and is superior to the detection algorithms based on standard genetic algorithm and that based on clonal selection algorithm as well as some classical ones.
     (5) The M-Elite Coevolutionary Algorithm (MECA) is extended to the equilibrium-constrained circles packing problem with the background of satellite module layout design, which belongs to NP-hard problem. Static penalty functions are used to transform a constrained packing problem into an unconstrained one. Firstly, four engineering design problems including Welded Beam Design, Spring Design, Speed Reducer Design and Three-Bar Truss Design are used to validate the effectiveness of MECA for practical engineering optimization. Then tests are made on 3 equilibrium-constrained circles packing problems and the experimental results show that the MECA can obtain high quality solution with less runtime, and can solve difficult constrained packing problems.
引文
[1] Weise, T.. Global Optimization Algorithms - Theory and Application. Online e-book under GNU Free Documentation License, 2009.
    [2] Arnold Neumaier. Global optimization and constraint satisfaction. Proceedings of GICOLAG workshop (of the research project Global Optimization, Integrating Convexity, Optimization, Logic Programming and Computational Algebraic Geometry), December 2006.
    [3]夏人伟.工程数值优化方法研究进展.航空学报, 2000, 21(6):488-491.
    [4]徐宗本,张讲社,郑亚林.计算智能中的仿生学:理论与算法.北京:科学出版社,2003.
    [5] De Jong K. An analysis of the behavior of a class of genetic adaptive systems. Doctoral dissertation, University of Michigan, 1975.
    [6] Grefenstette J. Optimization of control parameters for genetic algorithms. IEEE Transaction on Systems, Man, and Cybernetics, 1986, 16(1): 122-128.
    [7] Fogel D.B. Evolutionary programming for training neural networks. International Joint Conference on Neural Networks’90, Washington DC, 1990: 601-605.
    [8] Goldberg D.E., Deb K. A Comparative analysis of selection schemes used in genetic algorithms. Foundations of Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, 1991: 69-93.
    [9] Fogel D.B. Asymptotic convergence properties of genetic algorithms and evolutionary programming: An analysis and experiments. Cybern. And Systems: An International Journal, 1994, 25:389-407.
    [10] Srinivas M., Patnik L.M. Adaptive probability of crossover and mutation in genetic algorithms. IEEE Transaction on Systems, Man, and Cybernetics. 1994, 24(4): 656-667.
    [11] Koza J.R., Bennett F.H., and Andre D. Automated synthesis of analog electrical circuits by means of genetic programming. IEEE Transaction on Evolutionary Computation, 1997, 1(2): 109-128.
    [12] Jiao Licheng and Wang Lei. A novel genetic algorithm based on immunity. IEEE Transactions on System, Man, and Cybernetics-Part A, 2000, 30(5):552-561.
    [13] J.J. Liang, S. Baskar, P.N. Suganthan, and A.K. Qin. performance evaluation of multiagent genetic algorithm. Natural Computing, 2006, 5:83-96.
    [14] Yiu-Wing Leung and Yuping Wang. An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Transactions on Evolutionary Computation, 2001, 5(1):41-53.
    [15]钟伟才,薛明志,刘静,焦李成.多智能体遗传算法用于超高维函数优化.自然科学进展, 2003,12(10):1078-1083.
    [16] Zhong Weicai, Liu Jing, Xue Mingzhi, and Jiao Licheng. A multiagent genetic algorithm for global numerical optimization. IEEE Transactions on System, Man, and Cybernetics-Part B, 2004, 34(2):1128-1141.
    [17]公茂果,焦李成,杨咚咚,马文萍.进化多目标优化算法研究.软件学报, 2009, 20(2): 271-289.
    [18] Deb K. Multi-Objective Optimization Using Evolutionary Algorithms. Chichester: John Wiley & Sons, 2001.
    [19] Gong MG, Jiao LC, Du HF, Bo LF. Multiobjective immune algorithm with nondominated neighbor-based selection. Evolutionary Computation, 2008, 16(2):225?255.
    [20]王磊.免疫进化计算理论及应用.西安电子科技大学博士学位论文. 2001,9.
    [21]陈国良,王煦法,庄镇泉,王东生编著.遗传算法及其应用.北京:人民邮电出版社,2001.
    [22]刘若辰.免疫克隆策略算法及其应用研究.西安电子科技大学博士学位论文.2005,6.
    [23]薛明志.进化计算与小波分析若干问题研究.西安电子科技大学博士学位论文. 2004,10.
    [24]刘静.协同进化算法及其应用研究.西安电子科技大学博士学位论文. 2004,9.
    [25]王磊,潘进,焦李成.免疫算法.电子学报. 2000, 28(7):747-748.
    [26]张军,刘克胜,王熙法.一种基于免疫调节算法的BP网络设计.安徽大学学报(自然科学版). 1999, 23(1):63-66.
    [27] Chun J S, Jung H K, Hahn S Y. A study on comparison of optimization performance between immune algorithm and other heuristic algorithms. IEEE Transactions on Magnetic.1998, 34(5): 2972-2975.
    [28] Endih S, Toma N, Yamada K. Immune algorithm for n-TSP, IEEE International Conference on Systems, Man, and Cybernetics. 1998, 4: 3844-3849.
    [29] Barenco A., Deutsch D., Ekert A., Jozsa R.. Conditional quantum dynamics and logic gates. Phys. Rev. Lett., 1995, 74(20): 4083-4086.
    [30] Deutsch D, Jozsa R.. Rapid solution of the problems by quantum computation. Proc. Royal Society of London A, 1992, 439: 553-558.
    [31] Simon D. R.: On the power of quantum computation. SIAM Journal on Computing, 1997, 26(5): 1474-1483.
    [32] Spector L., Barnum H., Bernstein H. J., Swamy N.. Finding a better-than-classical quantum AND/OR algorithm using genetic programming. In Proc. 1999 Congr. Evolutionary Computation, Washington, D.C., 1999, 3: 2239-2246.
    [33] Rubinstein B.I.P.. Evolving quantum circuits using genetic programming. In Proc. 2001 Congr. Evolutionary Computation, Seoul, Korea, 2001, 1: 144-151.
    [34] Lukac M., Perkowski M.: Evolving quantum circuits using genetic algorithm. In Proc. 2002 NASA/DOD Conf. Evolvable Hardware, 2002: 177-185.
    [35] Han K.-H., Park K.-H., Lee C.-H., Kim J.-H.: Parallel quantum-inspired genetic algorithm for combinatorial optimization problem. In Proc. 2001 Congr. Evolutionary Computation, Seoul, Korea, 2001, 2: 1422-1429.
    [36] Han K.-H., Kim J.-H.: Quantum-Inspired Evolutionary Algorithm for a Class of Combination Optimization. IEEE Transactions on Evolutionary Computation, 2002, 6: 580-593.
    [37] Han K.-H., Kim J.-H., Quantum-Inspired Evolutionary Algorithms with a New Termination Criterion, H∈Gate, and Two-Phase Scheme. IEEE Transactions on Evolutionary Computation, 2004, 8: 156-169.
    [38] Lozano M, Herrera F, Krasnogor N, Molina D. Real-Coded memetic algorithms with crossover hill-climbing. Evolutionary Computation, 2004, 12(3):273-302.
    [39] N.J. Radcliffe, P.D. Surry. Formal Memetic Algorithms. In: Terence C. Fogarty (Ed.) Evolutionary Computing, Springer, 1994: 1-16.
    [40] Merz, P. , Freisleben, B. Fitness landscape analysis and memetic algorithms for the quadratic assignment problem, IEEE Transactions on Evolutionary Computation, 2000, 4(4): 337- 352.
    [41] Ishibuchi, H. , Yoshida, T. , Murata, T. Balance between genetic search and local search inmemetic algorithms for multiobjective permutation flowshop scheduling. IEEE Transactions on Evolutionary Computation, 2003, 7(2): 204- 223.
    [42] Y. S. Ong and A.J. Keane. Meta-Lamarckian Learning in Memetic Algorithm, IEEE Transactions On Evolutionary Computation, 2004, 8(2): 99-110.
    [43] Peter Merz. Advanced fitness landscape analysis and the performance of memetic algorithms. Evolutionary Computation. 2004, 12(3): 303-325.
    [44] Krasnogor, N. and Smith, J. A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Transactions on Evolutionary Computation, 2005, 9(5): 474- 488.
    [45] Y. S. Ong, M. H. Lim, N. Zhu and K. W. Wong, Classification of Adaptive Memetic Algorithms: A Comparative Study. IEEE Transactions On Systems, Man and Cybernetics - Part B, 2006, 36(1): 141-152.
    [46] F. Neri, J. Toivanen, G. L. Cascella and Y. S. Ong. An Adaptive Multimeme Algorithm for Designing HIV Multidrug Therapies, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2007, 4(2): 264-278.
    [47] Hart William E. , Krasnogor, N. , Smith, J.E. Recent Advances in Memetic Algorithms. Springer, 2005.
    [48] Dorigo M., Maniezzo V. and Colorni A.. The ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 1996, 26(1): 29-41.
    [49] Kennedy J. and Eberhart R.C... Particle swarm optimization. In Proceedings of IEEE International Conference on Neural Networks, volume IV, Perth, Australia, IEEE Service Center, Piscataway, NJ. 1995:1942-1948.
    [50]焦李成,公茂果,王爽等.自然计算、机器学习与图像理解前沿.西安:西安电子科技大学出版社,2008.
    [51] Michalewicz, Z.. A Perspective on Evolutionary Computation. In X. Yao, (ed.), Progress in Evolutionary Computation. Springer-Verlag, 1995: 73–89.
    [52]徐桂荣,王永标,龚淑云.协同进化—生物发展的全球观.地质科技情报, 1998, 17(2): 102-105.
    [53] Ehrlich, P.R. and Raven, P.H. Butterflies and plants: a study in coevolution. Evolution, 1964, 18(4): 586-608.
    [54] Daniel H. Janzen. When is it Coevolution? Evolution, 1980, 34(3): 611-612.
    [55] C. Rosin and R. Belew. New methods for competitive coevolution. Evolutionary Computation, 1997, 5(1): 1-29.
    [56] Coello C A C, Sierra M R. A Coevolutionary Multi-Objective Evolutionary Algorithm. Congress on Evolutionary Computation. Canberra: IEEE Press, 2003: 482-489.
    [57] M. Potter, K. De Jong. A cooperative coevolutionary approach to function optimization. Parallel Problem Solving from Nature, Y. Davidor and H.-P. Schwefel, Eds. Berlin, Germany: Springer-Verlag, 1994: 249–257.
    [58] Wiegand RP. An analysis of cooperative coevolutionary algorithms. Phd. Dissertation, Department of Computer Science, George Mason University, Fairfax, VA, USA, 2003.
    [59] G. Ochoa, E. Lutton, E. Burke. Cooperative Royal Road: avoiding hitchhiking. In Evolution Artificielle 2007. Tours, France.
    [60] S. Ficici, J. Pollack. A game-theoretic approach to the simple coevolutionary algorithm. Proceedings of the Sixth International Conference on Parallel Problem Solving from Nature (PPSNVI). Springer Verlag, 2000: 467-476.
    [61] C. K. Goh, K. C. Tan. A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization. IEEE Transactions on Evolutionary Computation, 2009, 13(1): 103–127.
    [62] M. Potter, K. De Jong. Cooperative coevolution: An architecture for evolving coadapted subcomponents. Evolutionary Computation, 2000, 8(1): 1–29.
    [63] B. Li, T.-S. Lin, L. Liao, and C. Fan. Genetic Algorithm Based on Multipopulation Competitive Coevolution. IEEE Congress on Evolutionary Computation, 2008: 225-228.
    [64] Ray T, Liew KM. Society and civilization: An optimization algorithm based on the simulation of social behavior. IEEE Transactions on Evolutionary Computation, 2003, 7(4):386?396.
    [65] Liu J, Zhong WC, Jiao LC. An Organizational Evolutionary Algorithm for Numerical Optimization. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, 2007, 37(4):1052-1064.
    [66] Naoyuki K, Koji S, Fukuda T. The role of virus infection in virus-evolutionary genetic algorithm. In Proceedings of the IEEE International Conference on Evolutionary Computation. Nagoya, IEEE, 1996: 182-187.
    [67] Naoyuki Kubota, Takemasa Arakawa, Toshio Fukuda, Koji Shimojima. Trajectory generation for redundant manipulator using virus evolutionary genetic algorithm. In Proceedings of the 1997 IEEE International Conference on Robotics and Automation. Albuquerque: IEEE, 1997: 205-210.
    [68] N. Kubota, Toshio Fukuda. Schema representation in virus-evolutionary genetic algorithm for knapsack problem. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation. Anchorage: IEEE, 1998: 834-839.
    [69] Zhihua Hu,Yongsheng Ding,Qing Shao. Immune co-evolutionary algorithm based partition balancing optimization for tobacco distribution system, Expert Systems with Applications,2009,36(3):5248-5255.
    [70]王磊,刘小勇.协同人工免疫计算模型的研究.电子学报, 2009, 37(8): 1739-1745.
    [71] Mark P. Kleeman, Gary B. Lamont. Coevolutionary Multi-Objective EAs: The Next Frontier? 2006 IEEE Congress on Evolutionary Computations, Vancouver, BC, Canada, 2006: 1726-1735.
    [72]李碧,林土胜.协同进化在遗传算法中的应用述评.计算机科学, 2009, 36(4): 34-37.
    [73] Jinwei Gu, Xingsheng Gu, Bin Jiao. A Coevolutionary Genetic Based Scheduling Algorithm for stochastic flexible scheduling problem. Proceedings of the 7th World Congress on Intelligent Control and Automation. Chongqing: IEEE, 2008: 4160-4165.
    [74] Ong, C., Quek, H., Tan, K., Tay, A.. Discovering Chinese chess strategies through coevolutionary approaches. IEEE Symposium on Computational Intelligence and Games, 2007: 360–367.
    [75] Floreano D., Kato T., Marocco D., Sauser E.. Coevolution of active vision and feature selection. Biological Cybernetics 90, 2004: 218–228.
    [76] Jian Hu, Xiang Yang-Li. Association Rules Mining Using Multi-objective Coevolutionary Algorithm. 2007 International Conference on Computational Intelligence and Security Workshops. IEEE, 2007: 405-408.
    [77] Yao, X. Global optimisation by evolutionary algorithms. Proceedings of the Second Aizu International Symposium on Parallel Algorithm/Architecture Synthesis, Aizu-Wakamatsu, Japan, Society Press, IEEE Computer, 1997: 282-291.
    [78] Sun J., Zhang Q., Tsang E.P.K. DE/EDA: A new evolutionary algorithm for global optimization. Information Sciences 169, 2005: 249–262.
    [79] Yuping Wang, Chuangyin Dang. An Evolutionary Algorithm for Global Optimization Based on Level-Set Evolution and Latin Squares. IEEE Transactions on Evolutionary Computation, 2007, 11(5): 579-595.
    [80] van den Bergh F, Engelbrecht AP. A cooperative approach to particle swarm optimization. IEEE Transactions on Evolutionary Computation, 2004, 8(3):225-239.
    [81] Z. Yang, K. Tang, and X. Yao. Large scale evolutionary optimization using cooperative coevolution. Information Sciences, 2008, 178(15): 2985–2999.
    [82] Tapabrata Ray, Xin Yao. A Cooperative Coevolutionary Algorithm with Correlation Based Adaptive Variable Partitioning. 2009 IEEE Congress on Evolutionary Computation. IEEE, 2009: 983-989.
    [83] Xin Yao, Yong Liu, Guangming Lin. Evolutionary Programming Made Faster. IEEE Transactions on Evolutionary Computation, 1999, 3(2): 82-102.
    [84] Leung YW, Wang YP. An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Trans. on Evolutionary Computation, 2001, 5(1):41-53.
    [85] Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.-P., Auger, A., Tiwari, S.. Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization. Technical Report, Nanyang Technological University, Singapore And KanGAL Report Number 2005005 (Kanpur Genetic Algorithms Laboratory, IIT Kanpur), 2005.
    [86] Michalewicz Z, Schoenauer M. Evolutionary algorithm for constrained parameter optimization problems. Evolutionary Computation, 1996, 4(1):1?32.
    [87] Thomas P. Runarsson, Xin Yao. Stochastic Ranking for Constrained Evolutionary Optimization. IEEE Trans on Evolutionary Computation, 2000, 4(3): 284–294.
    [88] E. M. Montes, C. A. C. Coello, A Simple Multimembered Evolution Strategy to Solve Constrained Optimization Problems. IEEE Trans on Evolutionary Computation, 2005, 9(1): 1–17.
    [89] B. Tessema, G.G. Yen. A Self Adaptive Penalty Function Based Algorithm for Constrained Optimization. IEEE Congress on Evolutionary Computation, 2006. 16-21 July 2006:246– 253.
    [90] Coello Coello C.A.. Constraint-handling techniques used with evolutionary algorithms. Proceedings of the 2007 Genetic and Evolutionary Computation Conference—GECCO 2007, New York, ACM Press, 2007: 3057–3077.
    [91]王勇,蔡自兴,周育人,肖赤心.约束优化进化算法.软件学报, 2009, 20(1): 11-29.
    [92] Michalewicz Z, Nazhiyath G. Genocop III: A co-evolutionary algorithm for numerical optimization problems with nonlinear constraints. In: Fogel DB, ed. Proc. of the 2nd IEEE Int’l Conf. on Evolutionary Computation. Piscataway: IEEE Service Center, 1995: 647?651
    [93] Michalewicz Z, Janikow CZ. Handling constraints in genetic algorithm. In: Belew RK, Booker LB, eds. Proc. of the 4th Int’l Conf. on Genetic Algorithms (ICGA-91).Los Altos: Morgan Kaufmann Publishers, 1991: 151?157.
    [94] Huang F, Wang L, He Q. An effective co-evolutionary differential evolution for constrained optimization. Applied Mathematics and computation, 2007, 186(1):340?356.
    [95] Tahk MJ, Sun BC. Coevolutionary augmented Lagrangian methods for constrained optimization. IEEE Transactions on Evolutionary Computation, 2000, 4(2):114–124.
    [96] Krohling RA, Coelho LS. Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems. IEEE Transactions on Systems Man, and Cybernetics (B), 2006, 36(6):1407?1416.
    [97] K. Deb. An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 2000, 186(2-4): 311–338.
    [98] F. Jiménez, A. F. Gomez-Skarmeta, G. Sanchez, and K. Deb. An evolutionary algorithm for constrained multi-objective optimization. in Proc. IEEE World Congr. Evolutionary Computation, 2002: 1133–1138.
    [99] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, T. Meyarivan. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
    [100] E. Zitzler, M. Laumanns, L. Thiele. SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization. In K. Giannakoglou et al., editors, EUROGEN 2001, International Center for Numerical Methods in Engineering (CIMNE), 2002: 95–100.
    [101] M. Laumanns, G. Rudolph, H.-P. Schwefel. A spatial predator-prey approach to multi-objective optimization: A preliminary study. Proc. 5th Int. Conf. Parallel Problem Solving From Nature, 1998: 241–249.
    [102] X. Li. A Real-Coded Predator-Prey Genetic Algorithm for Multiobjective Optimization. In Evolutionary Multi-Criterion Optimization Conference, 2003: 207–221.
    [103] K. Schmitt, J. Mehnen, T. Michelitsch. Using predators and preys in evolution strategies. In H.-G. Beyer et al., editors, Genetic and Evolutionary Computation Conference, New York, ACM Press, 2005, 1: 827–828.
    [104] Grimme, C., Schmitt, K.. Inside a predator-prey model for multi-objective optimization: A second study. In Cattolico, M., ed.: GECCO-2006, Seattle, Washington, USA, ACM Press, 2006: 707–714.
    [105] Lohn J., Kraus W. F., Haith G. L.. Comparing a Coevolutionary Genetic Algorithm for Multiobjective Optimization. In: Fogel, D., et. al. (eds.): Proc. 2002 Congress on Evolutionary Computation (CEC’02). IEEE Press, Piscataway NJ, 2002: 1157–1162.
    [106] E. Zitzler. Evolutionary algorithms for multiobjective optimization: Methods and applications. Doctoral dissertation ETH 13398, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, 1999.
    [107] N. Srinivas, K. Deb. Multiobjective optimization using non-dominated sorting in genetic algorithms. Evolutionary Computation, 1994, 2(3): 221–248.
    [108] N. Keerativuttiumrong, N. Chaiyaratana, V. Varavithya. Multiobjective cooperative coevolutionary genetic algorithm. Proc. Parallel Problem Solving from Nature VII Conf., 2002: 288–297.
    [109] Fonseca C. M., Fleming P. J.. Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In Forrest, S., editor. Proceedings of the Fifth International Conference on Genetic Algorithms, Morgan Kauffman, San Mateo, California. 1993: 416-423.
    [110] Maneeratana K., K. Boonlong, N. Chaiyaratana. Multi-Objective Optimisation by Co-Operative Co-Evolution. Lecture Notes in Computer Science 3242, 2004: 772–781.
    [111] J. Horn, N. Nafpliotis. Multiobjective optimization using theniched Pareto genetic algorithm. Illinois Genetic Algorithms Lab.(IlliGAL), Univ. Illinois at Urbana–Champaign, Urbana, IL,Tech.Rep. 930005, 1993.
    [112] Tan K C, Lee T H, Yang Y J. A Cooperative Coevolutionary Algorithm for Multi-objective Optimization. IEEE International Conference on Systems, Man and Cybernetics, Holland, 2004.
    [113] A.W. Iorio, X. Li. A cooperative coevolutionary multiobjective algorithm using non-dominated sorting. Proc. Genetic and Evolutionary Computation Conference, (GECCO), 2004: 537–548.
    [114] Tan C.H., Goh C.K., Tan K.C., Tay A.. A Cooperative Coevolutionary Algorithm for Multiobjective Particle Swarm Optimization. 2007 IEEE Congress on Evolutionary Computation (CEC 2007), Singapore, IEEE Press, Los Alamitos, 2007: 3180–3186.
    [115] Tse Guan Tan, Hui Keng Lau, Jason Teo. Cooperative Coevolution for Pareto Multiobjective Optimization: An Empirical Study using SPEA2. TENCON 2007(2007 IEEE Region 10 Conference), Taipei, 2007: 1-4.
    [116] Tse Guan Tan, Jason Teo, Hui Keng Lau. Performance Scalability of a Cooperative Coevolution Multiobjective Evolutionary Algorithm. 2007 International Conference on Computational Intelligence and Security, Harbin, China, IEEE, 2007: 119-123.
    [117] C.A. Coello Coello, G. T. Pulido. Multiobjective optimization using a micro-genetic algorithm. Proc. Genetic and Evolutionary Computation Conf. (GECCO’2001), San Francisco, CA, 2001: 274–282.
    [118] J. Knowles, D. Corne. The Pareto archived evolution strategy: A new baseline algorithm for multiobjective optimization. Proceedings of the 1999 Congress on Evolutionary Computation. Piscataway, NJ, IEEE Press, 1999: 98–105.
    [119] Schaffer JD. Multiple objective optimization with vector evaluated genetic algorithms. In: Grefenstette JJ, ed. Proc. of the Int’l Conf. on Genetic Algorithms and Their Applications. Hillsdale: L. Erlbaum Associates, Inc., 1985: 93?100.
    [120] Deb K. Multi-Objective genetic algorithms: Problem difficulties and construction of test problems. Evolutionary Computation, 1999, 7(3): 205?230.
    [121] Kursawe F.. A variant of evolution strategies for vector optimization. In: Schwefel HP, M?nner R. Parallel Problem Solving from Nature-PPSN I. Berlin: Springer-Verlag, 1991: 193?197.
    [122] Zitzler E, Deb K, Thiele L.. Comparison of multi-objective evolutionary algorithms: Empirical results. Evolutionary Computation, 2000, 8(2): 173?195.
    [123] Deb K, Thiele L, Laumanns M, Zitzler E.. Scalable multi-objective optimization test problems. In: Fogel DB, ed. Proc. of the IEEE Congress on Evolutionary Computation, CEC 2002. Piscataway: IEEE Service Center, 2002: 825?830.
    [124]尚荣华,焦李成,马文萍,公茂果.用于约束多目标优化的免疫记忆克隆算法.电子学报, 2009, 37(6): 1289-1294.
    [125] Deb K, Jain S.. Running performance metrics for evolutionary multi-objective optimization. Technical Report, No.2002004, Kanpur: Indian Institute of Technology Kanpur, 2002.
    [126] Van Veldhuizen D. A., Lamont G. B.. On measuring multiobjective evolutionary algorithm performance. Proceedings of the 2000 IEEE Congress on Evolutionary Computation, CEC 2000, IEEE Service Center, 2000: 204–211.
    [127] J. R. Schott. Fault tolerant design using single and multicriteria genetic algorithm optimization. Master’s thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, May 1995.
    [128] Cohoon J.P., Hegde S.U., Martin W.N., Richards D.. Punctuated equilibria: a parallel genetic algorithm. Proceedings of the Second International Conference on Genetic Algorithms, 1987: 148-154.
    [129] C.A. Coello Coello, M.R. Sierra. A Study of the Parallelization of a Co-evolutionary Multi-objective Evolutionary Algorithm. Lecture Notes in Artificial Intelligence, vol. 2972, Springer–Verlag, 2004: 688–697.
    [130] Smith JE. Coevolving memetic algorithms: a review and progress report. IEEE Transactions on System, Man, and Cybernetics-Part B, 2007, 37(1): 6–17.
    [131]胡志华.基于免疫系统的协同进化机制及其应用研究.博士论文,东华大学, 2009.
    [1] Yao X, Liu Y, . Evolutionary programming made faster. IEEE Trans. on Evolutionary Computation, 19 82-102.
    [2] Leung YW ang YP An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Trans. on Evolutionary Computation, 2001,5(1):41-53.
    [3]张铃,张钹.佳点集遗传算法.计算机学报,2001,24(9):917-922.
    [4] Potter MA, De Jong KA. A cooper pproach to function optimization. Proc. of the Parallel Problem Solving from Nature—PPSN III. Berlin: Springer-Verlag, 1994. P. A cooperative approach to particle swarm optimization. 01,12(4):556-562. ,飞,阳.进化遗传算法.软件学ctive optimization. IEEE Trans. on Evolutionary Computation, 2006,10(5):527-549.—Part B: Cybernetics, 20 37( 6 . ma S. Elitism-Based compact genetic algorithms rans. on on, 2003,7(4): 367-385. Lin GM99,3(2):, W . ative coevolutionary a249-257.
    [5] van den Bergh F, Engelbrecht AIEEE Trans. on Evolutionary Computation, 2004,8(3):225-239.
    [6]曹先彬,罗文坚,王煦法.基于生态种群竞争模型的协同进化.软件学报,20
    [7]胡仕成徐晓李向项目优化调度的病毒协同报,2004,15(1):49-57.
    [8] Tan KC, Yang YJ, Goh CK. A distributed cooperative coevolutionary algorithm for multiobje
    [9] Liu J, Zhong WC, Jiao LC. An Organizational Evolutionary Algorithm for Numerical Optimization. IEEE Trans. on Systems, Man, and Cybernetics07, 4):1052-10 4
    [10] Ahn CW, Ra krishna R . IEEE TEvolutionary Computati
    [1]Liu Jing,Zhong Weicai,Jiao Licheng.An Organizational Evolutionary Algorithm for Numerical Optimization.IEEE Trans.on Systems,Man,and Cybernetics--Part B:Cybernetics,2007,37(4):1052-1064.
    [2]Thomas P Runarsson,Xin Yao.Stochastic Ranking for Constrained Evolutionary Optimization.IEEE Trams.on Evolutionary Computation,4(3):284-294,September 2000.
    [3] E.M.Montes,C.A.C.Coello,A Simple Multimembered Evolution Strategy to Solve Constrained Optimization Problems.IEEE Trans.on Evolutionary Computation,vol.9,no.1,pp.1-17,Feb.2005.
    [4] B.Tessema,GG.Yen,A Self Adaptive Penalty Function Based Algorithm for Constrained Optimization.IEEE Congress on Evolutionary Computation,2006.16-21 July 2006 Page(s):246-253.
    [5] S.Koziel and Z.Michalewicz.Evolutionary algorithms,homomorphous mappings,and constrained parameter optimization.Evolutionary Computation,1999,7(1):19-44.
    [6] Coello,Carlos.Constraint-Handling Techniques Used WiIll Evolutionary Algorithms.GECCO’07,ACM[2009-7-15]http://doi.acm.org/10.1145/1274000.1274105
    [7]Deb K.An efficient constraint handling method for genetic algorithms.Computation Methods in Applied Mechanics and Engineering,2000,86(2-4):311-338.
    [8] Chi-Keong Goh,KaY Chen Tan.A Competitive-Cooperative Coevolutionary Paradigm for Dynamic Multiobjective Optimization.IEEE Trans.on Evolutionary Computaion,2009,13(1):103-127.
    [9]Hu Zhihua,Ding Yongsheng,Shao Qing.Immune Co-evolutionary Algorithm Based Partition Balancing Optimization for Tobacco Distribution System.Expert Systems with Applications,2009,36(3):5248-5255.
    [10]潘晓英,焦李成.社会协作的多智能体进化.西安电子科技大学学报,2009,36(2):274.280.
    [11]Yiu-Wing Leung,Yuping Wang.An Orthogonal Genetic Algorithm with Quantization for Global Numerical Optimization.IEEE Trans.on Evolutionary Computation,2001,5(1):41-53.
    [12]丛琳,沙宇恒,焦李成.采用正交免疫克隆粒子群算法求解SAT问题.西安电子科技大学学报,2007,34(4):616-621.
    [13]Weicai Zhong,Jing Liu,Mingzhi Xue,Licheng Jiao.A Multiagent Genetic Algorithm for Global Numerical Optimization.IEEE Trans.on Systems.Man.and Cybernetics--Part B:Cybernetics,2004,34(2):1128-1141
    [14]Sanyou Y Zeng,Lishan S.Kang,Lixin X.Ding.An Onllogonal Multi-objective EvolutionaryAlgorithm for Multi-objective Optimization Problems with Constraints.EvolutionaryComputation,Spring 2004,12(1):77-98
    [15]Hu XM,Zhang J,Li Y O~hogonal methods based ant colony search for solving continuousoptimization problems.Journal of Computer Science and Technology,2008,23(1):2-18
    [1] Coello Coello C.A..A update survey of evolutionary multiobj ective optimization techniquestate of the art and future trends.The 1 999 Congress on Evolutionary Computation,Washingto D.C..1999.1:3-13.
    [2]玄光男,程润伟.遗传算法与工程优化.北京:清华出版社,2004
    [3] Zitzler E..Evolutionary Algorithm for Mulitobjective Optimization:Methods and ApplicationsPh.D.thesis,Swiss Federal Institute of Technology(ETH),Zurich,Switzerland,November,1999
    [4]Pareto V.Course Economic Politique.Volume I and II,Lausanne,Rouge,1896
    [5] Schaffer JD.Multiple objective optimization with vector evaluated genetic algorithms.InGrefenstette JJ,ed.Proc.of the Int’l Conf on Genetic Algorithms and Their ApplicationsHillsdale:L.Erlbaum Associates,Inc.,1985:93-100
    [6] Goldberg DE.Genetic algorithm for search,optimization,and machine learning.BostonAddison-Wesley Longman Publishing Co.,Inc.,1989
    [7] Coello Coello CA.An updated survey of evolutionary multiobj ective optimization techniquesState of the art and future trends.In:Banzhaf W,Daida J,Eiben AE,Garzon MH,Honavar V,Jakiela M,Smith RE,eds.Proc.of the IEEE Congress on Evolutionary Computation,CEC1999.Piscataway:IEEE Service Center.1999:3-13
    [8] Coello Coello CA.Evolutionary multiobjective optimization:current and future challenges.InBenitez JM,Cordon O,Hoffmann F,Roy R,eds.Advances in Soft Computing-Engineering,Design and Manufacturing.Berlin:Springer-Verlag,2003:243-256
    [9] Coello Coello CA.Recent trends in evolutionary multi-objective optimization.In:Abraham A,Jain LC,Goldberg R,eds.Evolutionary Multi-Objective Optimization:Theoretical Advancesand Applications.Berlin:Springer-Verlag.2005:7-32
    [10]Coello Coello CA.20 years of evolutionary multi-objective optimization:What has been doneand what remains to be done.In:Yen GY,Fogel DB,eds.Computational IntelligencePrinciples and Practice.New York:IEEE Computational Intelligence Society,2006:73-88
    [11]Coello Coello CA.Evolutionary multi-objective optimization:A historical view of the fieldIEEE Computational Intelligence Magazine,2006,1(1):28-36.
    [12]公茂果,焦李成,杨咚咚,马文萍.进化多目标优化算法研究.软件学报,2009,20(2):271-289.
    [13]Fonseca CM,Fleming PJ.Genetic algorithm for multiobjective optimization:Formulation,discussion and generation.In:Forrest S.ed.Proc.of the 5th Int’l Conf on Genetic Algorithms.San Mateo:Morgan Kauffman Publishers,1993:416-423.
    [14]Horn J,Nafpliotis N,Goldberg DE.A niched Pareto genetic algorithm for multiobjective optimization.In:Fogarty TC.ed.Proc.of the 1st IEEE Congress on Evolutionary Computation Piscataway:IEEE,1994:82-87.
    [15]Srinivas N,Deb K.Multiobjective optimization using non-dominated sorting in genetic algorithms.Evolutionary Computation,1994,2(3):221-248.
    [16]Zitzler E,Thiele L.Multi-Objective evolutionary algorithms:A comparative case study and the strength Paxeto approach.IEEE Trans.on Evolutionary Computation,1999,3(4):257-271.
    [17]Come DW,Jerram NR,Knowles JD,Oates MJ.PESA-II:Region-Based selection inevolutionary multi-objective optimization.In:Spector L:Goodman ED:Wu A,Langdon WB:Voigt HM,Gen M,eds.Proc.of the Genetic and Evolutionary Computation Conf,GECCO2001.San Francisco:Morgan Kaufmann Publishers,2001:283-290.
    [18]Zitzler E,Laumanns M,Thiele L.SPEA2:Improving the strength Pareto evolutionary algorithm.In:Giannakoglou K,Tsahalis DT,Pdriaux J,Papailiou KD,Fogarty T,eds.Evolutionary Methods for Design,Optimization and Control with Applications to Industrial Problems.Berlin:Springer-Verlag,2002:95-100.
    [19]Erickson M,Mayer A,Horn J.The niched Pareto genetic algorithm 2 applied to the design of groundwater remediation system.In:Zitzler E,Deb K,Thiele L,Coello Coello CA,Come D,eds.Proc.of the 1 st Int’l Conf on Evolutionary Multi-Criterion Optimization.EMO 2001.Berlin:Springer-Verlag.2001:681-695.
    [20]Knowles JD,Come DW.Approximating the non-dominated front using the Pareto axchived evolution strategy.Evolutionary Computation,2000,8(2):149-172.
    [21]Come DW,Knowles JD,Oates MJ.The Paxeto-envelope based selection algorithm for multi-objective optimization.In:Schoenauer M,Deb K,Rudolph G,Yao X,Lutton E,Merelo JJ,Schwefel HP,eds.Parallel Problem Solving from Nature,PPSN VI.LNCS,Berlin:Springer-Verlag,2000:869-878.
    [22]Deb K,Pratap A,Agaxwal S,Meyaxivan T.A fast and elitist multi-objective genetic algorithm:NSGA-II.IEEE Trans.on Evolutionary Computation,2002,6(2):182-197.
    [23]Fieldsend JE,Singh S.A multi-objective algorithm based upon particle swarm optimization,an efficient data structure and turbulence.In:Bullinaxia JA.ed.Proc.of the 2002 UK Workshopon Computational Intelligence. Birmingham: University of Birmingham, 2002: 37?44.
    [24] Reyes Sierra M, Coello Coello CA. Improving PSO-based multi-objective optimization using crowding, mutation and e-dominance. In: Coello Coello CA, Aguirre AH, Zitzler E, eds. Proc. of the 3rd Int’l Conf. Evolutionary Multi-Criterion Optimization, EMO 2005. Berlin: Springer-Verlag, 2005: 505?519.
    [25] Abido MA. Two level of nondominated solutions approach to multiobjective particle swarm optimization. In: Thierens D, Beye nke J, Clark JA, Cliff D, Congdon CB, Deb K, eds. Proc. of the Genetic and Evolutionary Computation Conf., GECCO 2007. New rans. on Evolutionary Computations, 2004,8(3):256?279. blems using an artificial e inspired operators for ab-initio protein structure prediction. In: Rothlauf F, Branke J, Workshop on twork for multi-objective optimization. immune algorithm with nondominated r HG, Bongard J, BraYork: ACM Press, 2007:726?733.
    [26] Coello Coello CA, Pulido GT, Lechuga MS. Handing multiple objectives with particle swarm optimization. IEEE T
    [27] Coello Coello CA, Cortes NC. Solving multiobjective optimization proimmune system. Genetic Programming and Evolvable Machines, 2005, 6(2):163?190.
    [28] Cutello V, Narzisi G, Nicosia G. A class of Pareto archived evolution strategy algorithms using immunCagnoni S, Corne DW, Drechsler R, Jin YC, eds. Proc. of the3rd European Evolutionary Computation and Bioinformatics, EvoWorkshops 2005. Berlin: Springer-Verlag, 2005: 54?63.
    [29] Freschi F, Repetto M. VIS: An artificial immune neEngineering Optimization, 2006, 38(8): 975?996.
    [30] Gong MG, Jiao LC, Du HF, Bo LF. Multiobjective neighbor-based selection. Evolutionary Computation, 2008, 16(2):225?255.
    [31] M. Laumanns, G. Rudolph, H.-P. Schwefel. A spatial predator-prey approach to multi-objective optimization: A preliminary study. Proc. 5th Int. Conf. Parallel Problem Solving From Nature, 1998: 241–249.
    [32] Lohn J., Kraus W. F., Haith G. L.. Comparing a Coevolutionary Genetic Algorithm for Multiobjective Optimization. In: Fogel, D., et. al. (eds.): Proc. 2002 Congress on Evolutionary Computation (CEC’02). IEEE Press, Piscataway NJ, 2002: 1157–1162.
    [33] N. Keerativuttiumrong, N. Chaiyaratana, V. Varavithya. Multiobjective cooperative coevolutionary genetic algorithm. Proc. Parallel Problem Solving from Nature VII Conf., 2002: 288–297.
    [34] M. Potter, K. De Jong. A cooperative coevolutionary approach to function optimization. Parallel Problem Solving from Nature, Y. Davidor and H.-P. Schwefel, Eds. Berlin, Germany: Springer-Verlag, 1994: 249–257.
    [35] Maneeratana K., K. Boonlong, N. Chaiyaratana. Multi-Objective Optimisation byCo-Operative Co-Evolution.Lecture Notes in Computer Science 3242,2004:772-781
    [36]Coello C A C,Sierra M R.A Coevolutionaxy Multi-Objective Evolutionary AlgorithmCongress on Evolutionary Computation.Canberra:IEEE Press,2003:482-489
    [37]C.K.Goh,K.C.Tan.A competitive-cooperative coevolutionary paradigm for dynamicmultiobjective optimization.IEEE Trans.Evol.Comput.,2009,13(1):103-127
    [38]Zitzler E,Deb K,Thiele L..Comparison of multi-objective evolutionary algorithms:Empiricalresults.Evolutionary Computation,2000,8(2):173-195
    [39]Deb K,Jain S..Running performance metrics for evolutionary multi-objective optimizationTechnical Report,No.2002004,Kanpur:Indian Institute of Technology Kanpur,2002
    [40]Van Veldhuizen D.A.,Lamont G.B..On measuring multiobjective evolutionary algorithmperformance.Proceedings of the 2000 IEEE Congress on Evolutionary Computation,CEC2000,IEEE Service Center,2000:204-211
    [41]J.R.Schott.Fault tolerant design using single and multicriteria genetic algorithm optimizationMaster’S thesis,Department of Aeronautics and Astronautics,Massachusetts Institute ofTechnology,Cambridge,MA,MaY 1995
    [42]Zitzler E,Thiele L,Laumanns M,Fonseca CM,da Fonseca VG.Performance assessment ofmultiobjective optimizers:An analysis and review.IEEE Trans.on Evolutionary Computation,2003,7(2):117-132
    [43]Deb K.Multi-Objective genetic algorithms:Problem difficulties and construction of testproblems.Evolutionary Computation,1999,7(3):205-230
    [44]Deb K,Thiele L,Laumanns M,Zitzler E.Scalable multi-objective optimization test problemsIn:Fogel DB,ed.Proc.of the IEEE Congress on Evolutionary Computation,CEC 2002Piscataway:IEEE Service Center,2002:825-830
    [1] A. Adjoudani, E C. Beck, A P. Burg, et al. Prototype experience for MIMO BLAST over third-generation wireless system. IEEE Journal on Selected Areas in Communications, 2003, 21(3): 440-451.
    [2] G D. Golden, C J. Foschini, R A. Valenzuela, P W. Wolniansky. Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture. Electronics Letters,1999, 35(1): 14-16.
    [3] Caihong Mu, Mingming Zhu. Clonal selection detection algorithm for the V-BLAST system. Proc. of ICNC 2006, Xi’an, 2006, LNCS 4222, 402-411.
    [4]张铃,张钹.佳点集遗传算法.计算机学报,2001, 24(9):917-922.
    [5]隆聚类协同学报,2008, 30(2),263-266.疫克隆算法.计算机学报,2007,30(2),176-183.
    [7] n.20ht ult DElectrical and Computer Engineering,缑水平,焦李成,田小林.基于免疫克神经网络的图像识别.电子与信息
    [6]李阳阳,焦李成.求解SAT问题的量子免K. K. Soo, Y. M. Siu, W. S. Chan, L. Yang, R. S. Che Particle-swarm-optimization-based multiuser detector for CDMA communications. IEEE Transactions on Vehicular Technology, 07, 56(5): 3006-3013.
    [8] Me az Sharmin, Chintha Tellambura. M iuser detection in S-CDMA using hybrid evolutionary strategy. IEEE Canadian Conference onCanada, 2008, 605-608.
    [9] Jih-Gau Juang, Ming-Te Huang, Wen-Kai Liu. PID Control using presearched genetic algorithms tems, Man, and Cybe s-PApplicfor a MIMO system. IEEE Transactions on Sys rnetic art C: ations and Reviews, 2008, 38(5): 716-727.
    [10] algoritEvolu焦李成,慕彩红,王伶.通信中的智能信号处理.电子工业出版社,2006.
    [11] Chang Wook Ahn, R. S. Ramakrishna. Elitism-based compact genetic hms. IEEE Transactions on tionary Computation, 2003, 7(4): 367-385.
    [12]徐宗本,聂赞坎,张文修.父代种群参与竞争遗传算法几乎必然收敛.应用数学学报,2002, 25(1):167-175.
    [1]黄文奇,何琨.求解长方体Packing问题的纯粹拟人算法.中国科学F辑,信息科学,2009,39(6):617-622.
    [2]胡清华,孙治国,邓四二,滕弘飞.一种求解Packing问题概率控制搜索行为的启发式算法.大连理工大学学报,2009,49(1):71-76.
    [3]TENG Hong-Fei,SUN Shou-Lin,GE Wen-Hal,ZHONG Wan-Xie.Layout optimization forthe dishes installed on a rotating table.Science in China(Series A),1994,37(10):1272-1280.
    [4] Szykman S,Cagan J.Constrained three-dimensional component layout using simulated anneding.Journal ofMechanicd Design,Transactions of the ASME,1997,119(1):28-35.
    [5]唐飞,滕弘飞.一种改进的遗传算法及其在布局优化中的应用.软件学报,1999,1O(10):1096-1102.
    [6]钱志勤,滕弘飞,孙治国.人机交互的遗传算法及其在约束布局优化中的应用.计算机学报,2001,24(5):553-559.
    [7]李宁,刘飞,孙德宝.基于带变异算子粒子群优化算法的约束布局优化研究.计算机学报,2004,27(7):897-903.
    [8] Yiu-Wing Leung,Yuping Wang.An orthogonal genetic algorithm with quantization for global numerical optimization.IEEE Trans.on Evolutionary Computation,2001,5(1):41-53.
    [9]王奕首,史彦军,滕弘飞.用改进的散射搜索法求解带平衡约束的圆形Packing问题.计算机学报,2009,32(6):1214-1221.
    [10]K.Deb.An efficient constraint handling method for genetic algorithms.Comput.Methods Appl.Mech.Eng.,2000,186(2-4):311-338.
    [11]C.A.C.Coello.Self-adaptive penalties for GA based optimization.Proc.Congress Evolutionary Computation(CEC 1999),1999,1:573-580.
    [12]H.L.Li,P Papalambros.A production system for use of global optimization knowledge.ASME J.Mech.Transm.Autom.Des..1985.107:277-284.
    [13]S.Hernendez.Multiobjective structural optimization.Geometry and Optimization Techniques for Structural Design,S.Kodiyalaxn and M.Saxena,Eds.Amsterdam,The Netherlands:ElsevieL 1994:341-362.
    [14]Liu J,Zhong WC,Jiao LC.An Organizational Evolutionary Algorithm for Numerical Optimization.IEEE Trans.on Systems,Man,and Cybernetics--Part B:Cybernetics,2007,37(4):1052-1064.
    [15]T.Ray,K.M.Liew Society and civilization:An optimization algorithm based on the simulation of social behavion IEEE Trans.on Evolutionary Computation,2003,7(4):386-396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700