波形调制多阶光盘的内部2年关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高密度、大容量是光存储发展的趋势。多阶存储是提高存储容量的技术路线之一。本文研究了一种新提出的多阶存储方法——波形调制多阶。它基于普通DVD盘片生产设备和读出光学头,具有独特的物理格式。本文对该多阶方法的一些关键技术进行了研究。
     本文研究了波形调制多阶的存储原理和具体实现方案。波形调制多阶是在原有二值存储的原始坑和岸中加入子岸和子坑,以改变读出信号的波形,并把波形作为阶次识别的标志。相对于传统的利用信号幅值来识别阶次的多阶方法,它能克服其在存储容量和伺服性能上的不足。本文给出了它在DVD只读光盘平台上的具体实现方案。
     由于波形调制多阶光盘在写入过程中存在子坑/子岸的加入,它的写策略优化跟其他存储方法有很大的不同。本文提出了一套基于仿真计算的写策略优化方法,建立了从母盘刻录到信号读出的完整计算模型。把阶次易于分辨和游程不被改变作为优化的目标,得到了各个游程阶次的写策略参数。在商用DVD生产线和读出系统对写策略优化结果进行了验证,得到的信号波形能跟仿真结果吻合,实际信号的抖晃值在8%以下,游程错误率能保持在2×10~(-4)以下。
     波形调制多阶利用读出信号的波形来识别阶次,它的阶次识别方法也跟其它多阶方法不同。由于读出信号跟符号序列没有对应关系,部分相应最大似然法不能直接用于本多阶存储方法。本文提出了先游程检测再阶次检测的信号检测方案,设计了一套基于最小欧氏距离的自适应阶次识别方法。该阶次检测方法不仅能克服读取过程中的信号波动,还能克服不同批次盘片工艺偏移带来的信号差异。在硬件平台上对该方法用FPGA进行了实现,得到了低于2×10~(-4)的阶次错误率,实现了高清视频的连续稳定播放。
     本文还分析了母盘刻录工艺和伺服误差对读出信号的影响,定义了波形偏差参数来定量评估对阶次识别的影响。通过仿真计算,得到了母盘刻录工艺改变和存在聚焦/循迹误差时的读出信号,以及不同改变量下的波形偏差。分析结果对控制母盘刻录工艺和伺服控制的设计有重要的参考价值。
High density and large capacity are the trends of optical storage. Multi-level is a candidate technology to increase storage capacity. A new proposed multi-level method, signal waveform modulation (SWM) multi-level is researched. It is based on conventional DVD production equipment and readout optical pick-up, and it has exclusive physical format. Research on some key technologies on this multi-level method is presented.
     Storage principle and specific implementation are presented. For SWM multi-level, a sub-pit/sub-land is inserted into the original land/pit in order to change the waveform of readout signal. The waveform is used for level differentiation. Compared to conventional multi-level, which uses signal amplitude for level differentiation, the SWM multi-level has advantages on storage capacity and servo performance. The specific implementation on read-only DVD platform is presented.
     Due to the insertion of sub-pit/sub-land, the write strategy optimization is different from that of other storage method. A write strategy optimization method based on simulation is proposed. A complete calculation model from mastering to readout signal is established. The optimization target is that the levels are easy to differentiate and the run-length is varied by the sub-pit/sub-land. The write strategy vector for every run-length and every level is achieved by simulation calculatiion. The result is validated on the commercial DVD production line and readout system. The readout waveform agrees with the simulation result. The jitter is below 8% and the error radio of run-length can be kept less than 2×10~(-4).
     The SWM employs waveform for the level differentiation, and thus its level detection is difference from other multi-level method. Because the readout signal does not respond to a symbol sequence, the partial response maximum like-hood (PRML) detection cannot be used to the SWM multi-level. A signal detection solution, where level detection is after run-length detection, is proposed. An adaptive level detection method based on minimum Euclid distance is presented. This level detection can overcome the readout signal fluctuation as well as the processing variation of disk production. This detection method is implemented on the hardware platform with FPGA. A level error ratio of less than 2×10~(-4) is achieved. Constant and stable playback of high definition video is realized.
     The influence of mastering processing and servo error on the readout signal is analyzed. A parameter, waveform deviation, is defined to evaluation the influence on level detection. By simulation, the readout signals with mastering processing fluctuation and focusing/tracking error are figured out. As well, responding waveform deviations are achieved. The results provide important reference to the control of mastering processing and servo system design.
引文
[1]徐端颐.光盘存储系统设计原理.北京:国防工业出版社,2000.
    [2]干福熹.数字光盘存储技术.北京:科学出版社,1998.
    [3]徐端颐.高密度光盘数据存储.北京:清华大学出版社,2003.
    [4]戎霭伦,司徒活,张忠麟等.光信息存储的原理、工艺及系统设计.北京:国防工业出版社, 1993.
    [5]鲍赫伊斯.光盘系统原理.匡正芳,译.北京:国防工业出版社, 1989.
    [6] Narahara T, Kobayashi S, Hattori M, et al. Optical disc system for digital video recording. Jpn. J. Appl. Phys., 2000, 39(2B): 912-919.
    [7] Ichimura I, Maeda F, Osato K, et al. Optical disc recording using a GaN blue-violet laser diode. Jpn. J. Appl. Phys., 2000, 39(2B): 937-942.
    [8] Shinotsuka M, Onagi N and Harigaya M.High-density and high-data-transfer-rate optical disk with blue laser diode and Ag-In-Sb-Te phase-change material. Jpn. J. Appl. Phys., 2000, 39(2B): 976-977.
    [9] Higuchi T and Koyanagi H. 27.4 Gbyte read-only dual-layer disc for blue lasers.Jpn. J. Appl. Phys., 2000, 39(2B): 933-936.
    [10] Akiyama T, Uno M, Kitaura H, et al. Rewritable dual-layer phase-change optical disc utilizing a blue-violet laser. Jpn. J. Appl. Phys., 2001, 40(3B): 1598-1603.
    [11] Shoji M, Nakamura A, Miyashita H, et al. High-density recording on a phase-change rewritable disk using a 405nm blue laser diode. Jpn. J. Appl. Phys., 2002, 41(3B):1687-1688.
    [12] Nakamura A, Shoji M, Miyashita H, et al. High-density recording on a dual-layer phase change disk using partial response maximum likelihood method. Jpn. J. Appl.Phys., 2003, 42(2B): 1072-1073.
    [13]沈全洪,徐端颐,齐国生,等.高密度蓝光存储及其扩展技术.光学技术, 2005, 31(6):921-924.
    [14] Terris B D, Mamin H J and Rugar D. Near-field optical data storage. Appl. Phys.Lett., 1996, 68(2): 141-143.
    [15]洪涛,王佳,李达成.近场光学在高密度存储中的应用.光学技术, 2001, 27(3):255-259.
    [16] Shinoda M, Saito K, Ishimoto T, et al. High density near-field optical disc system.Jpn. J. Appl. Phys., 2006, 45(2B): 1321-1324.
    [17] Hosaka S, Shintani T, Miyamoto M, et al. Nanometer-sized phase-change recording using a scanning near-field optical microscope with a laser diode. Jpn. J. Appl. Phys., 1996, 35(1B): 443-447.
    [18] Sakai A, Yamada H, Fujita M, et al. Proposal of optical near-field probe using evanesent field of microdisk laser. Jpn. J. Appl. Phys., 1998, 37(2): 517-521.
    [19]范晓冬.光存储中大数值孔径蓝光超分辨聚焦方法及器件研究[博士学位论文].北京:清华大学精密仪器与机械学系, 2005.
    [20] Ando H, Yokota T, Tanoue K, et al. Optical head with annular phase-shifting apodizer. Jpn. J. Appl. Phys., 1993, 32(11B): 5269-5276.
    [21] Yamanaka Y, Hirose Y, Fuji H, et al. High density recording by superresolution in an optical disk memory system. Appl. Optics, 1990, 29(20): 3046-3051.
    [22] Ogawa S and Shono K. Present and future of 3.5inch magneto-optical disk. Proc.of SPIE, 1998, 3562: 24-31.
    [23] Takahashi A, Murakami Y and Terashima S. Magnetic super-resolution. IEEE Trans.On Magnetics, 1995, 31(6): 3215-3220.
    [24] Kasami Y, Yasuda K, Ono M, et al. Premastered optical disk by superresolution using rear aperture detection. Jpn. J. Appl. Phys., 1996, 35(4B): 423-428.
    [25] Tominaga J, Nakano T and Atoda N. An approach for recording and readout beyond the diffraction limit with an sb thin film. Appl. Phys. Lett., 1998, 73(15): 2078-2080.
    [26] Shima T, Nakano T, Kim J, et al. Super-rens disk for blue laser system retrieving signals from polycarbonate substrate side. Jpn. J. Appl. Phys., 2005, 44(5B):3631-3633.
    [27] Takamori N, Yamamoto M, Mori G, et al. Dual-layer energy-gap-induced super-resolution read-only-memory disc using ZnO film. Jpn. J. Appl. Phys., 2006,45(2B): 1366-1369.
    [28] Psaltis D and Burr G W. Holographic data storage. Computer, 1998, 31(2): 52-60.
    [29] Hesselink L, Orlov S S and Bashaw M C. Holographic data storage systems. Proc. of IEEE, 2004, 92(8): 1231-1280.
    [30] Vardy A, Blaum M, Siegel P H, et al. Conservative arrays: multi-dimensional modulation codes for holographic recording. IEEE Trans. Inform. Theory, 1996, 42(1): 227-230.
    [31] Schnoes M, Ihas B, Hill A, et al. Holographic data storage media for practical systems. Proc. of SPIE, 2003, 5005: 29-37.
    [32] Wilson W L, Anderson K, Curtis K, et al. Toward the commercial realization of high performance holographic data storage. Proc. of SPIE, 2004, 5521: 29-37.
    [33] Schnoes M, Ihas B, Dhar L, et al. Photopolymer use for holographic data storage. Proc. of SPIE, 2003, 4988: 68-76.
    [34] Horimai H and Li J. A novel collinear optical setup for holographic data storage system. Proc. of SPIE, 2004, 5380: 297-303.
    [35] Horimai H, Tan X and Li J. Collinear holography. Appl. Optics, 2005, 44(13): 2575-2579.
    [36] Horimai H and Tan X. Advanced collinear holography. Opt. Rev., 2005, 12(2): 90-92.
    [37] Parthenopoulos D A and Rentzepis P M. Three-dimensional optical storage memory. Science, 1989, 245: 843-845.
    [38] Toriumi A and Kawata S. Reflection confocal microscope readout system for three-dimensional photochromic optical data storage. Opt. Lett., 1998, 23(24): 1924-1926.
    [39] O.M Alpert, A.N. Shipway, Y. Takatami, et al. Dynamic two-photon recording and readout of over 100 layers of data. ISOM technical digest, 2007: 76-77.
    [40] Strickler J H, Webb W W and. Three-dimensional optical data storage in refractive media by two-photon point excitation. Opt. Lett., 1991, 16(22): 1780-1782.
    [41] Albota M, Xu C, Webb W W, et al. Design of organic molecules with large two-photon absorption cross sections. Science, 1998, 281: 1653-1656.
    [42] Cumpston B H, Ananthavel S P, Barlow S, et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature, 1999, 398: 51-54.
    [43] Gu M and Day D. Use of continuous-wave illumination for two-photon three-dimensional optical bit data storage in a photobleaching polymer. Opt. Lett., 1999, 24(5): 288-290.
    [44] Kawata Y, Ishitobi H and Kawata S. Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory. Opt. Lett., 1998, 23(10): 756-758.
    [45] Day D, Gu M and Smallridge A. Use of two-photon excitation for erasable–rewritable three-dimensional bit optical data storage in a photorefractive polymer. Opt. Lett., 1999, 24(14): 948-950.
    [46] http://www.call-recall.com
    [47] Takuo Tanaka, Satoshi Kawata, Three-dimensional multilayered fluorescent optical disk, ISOM technical digest, 2007: 70-71
    [48] Schlichting W, Faris S, Fan B, et al. Recording and readout of a cholesteric liquid crystal based mulilayer disk. Jpn. J. Appl. Phys., 1997, 36(1B): 587-588.
    [49] Tatezono F, Harada T, Shimizu Y, et al. Photochromic rewritable memory media: a new nondestructive readout method. Jpn. J. Appl. Phys., 1993, 32(9A): 3987-3990.
    [50] Tsujioka T, Kume M and Irie M. Optical density dependence of write/read characteristics in photo-mode photochromic memory. Jpn. J. Appl. Phys., 1996,35(8): 4353-4360.
    [51]赵辉.光致变色多阶光信息存储通道特性研究[博士学位论文].北京:清华大学精密仪器与机械学系, 2003.
    [52]雷志军.光致变色材料多波长多阶光存储读写策略研究[博士学位论文].北京:清华大学精密仪器与机械学系, 2004.
    [53]麦雪松.基于光致变色原理的多波长光存储研究[博士学位论文].北京:清华大学精密仪器与机械学系, 2003.
    [54] Spielman S, Johnson B V, McDermott G A, et al. Using pit-depth modulation to increase capacity and data transfer rate in optical discs. proc. of SPIE, 1997, 3109: 98-104.
    [55] Zhou T, Tan C, Leis C, et al. Multilevel amplitude-modulation system for optical data storage. proc. of SPIE, 2002, 4930: 7-20
    [56] Balasubramanian K, Hieslmair H, Lee D, et al. Multilevel-enabled double-density writable and rewritable digital versatile disc system. Jpn. J. Appl. Phys., 2003, 42(2B): 1062-1067.
    [57] Hieslmair H, Stinebaugh J and Wong T. 34GB multilevel-enabled rewritable system using blue laser and high-numeric aperture optics. Jpn. J. Appl. Phys., 2003, 42(2B): 1074-1075.
    [58] Haeiwa H, Nakashima H, Kokubun Y, et al. Precise formation of fine pits on birefringent film for multilevel optical data storage. Jpn. J. Appl. Phys., 2002, 41(7B): 4841-4844.
    [59] Nakajima J, Terashima S and Ohta K. Readout of optical disk recorded by pit edge and depth modulation. Jpn. J. Appl. Phys., 2001, 40(3B): 1846-1849.
    [60] Langereis G, Coene W and Spruijt L. An implementation of limited multi-level (LML) optical recording. Jpn. J. Appl. Phys., 2001, 40(3B): 1711-1715.
    [61] Kobayashi S, Horigome T, de Kock J P, et al. Single carrier independent pit edge recording. proc. of SPIE, 1995, 2514: 73-81.
    [62] de Kock J P, Kobayashi S, Ishimoto T, et al. Sampled servo read only memory system using single carrier independent pit edge recording. Jpn. J. Appl. Phys., 1996, 35(1B): 437-442.
    [63] Issiki F, Hosaka S, Miyamoto M, et al. XY-stage-based electron-beam recorder for the single-carrier independent pit-edge recording radial rartial response format. Jpn. J. Appl. Phys., 2002, 41(3B): 1714-1716.
    [64] Nishida T, Isshiki F, Suzuki T, et al. XY-stage driving electron-beam mastering with nanometer-accuracy positioning for high-density optical disk. Jpn. J. Appl. Phys., 2003, 42(2B): 772-773.
    [65] Kobayashi S, Yamatsu H and Takemoto Y. A polarization readout method applied to a groove baseband recording optical read-only memory discs. Jpn. J. Appl. Phys., 2001, 40(3B): 1704-1710.
    [66] Lo F H, Kuo J W, Tseng N H, et al. Recording of multi-level run-length-limited modulation signals on compact disc/digital versatile disc rewritable discs. Jpn. J. Appl. Phys., 2004, 43(7B): 4852-4855.
    [67] Jiang S H, Kuo J W, Ma C P, et al. Signals from multi-level run-length-limited modulation recordings using partial response maximum likelihood. Jpn. J. Appl. Phys., 2005, 44(5B): 3453-3456.
    [68]宋洁.多阶游程受限只读光盘刻录和复制技术研究[博士学位论文].北京:清华大学精密仪器与机械学系, 2007.
    [69]张启程.多阶只读光盘读出信号路径反馈最大似然检测原理与实现[博士学位论文].北京:清华大学精密仪器与机械学系, 2007.
    [70]沈全洪.蓝光与多阶高密度光盘伺服及时钟恢复技术研究与实验[博士学位论文].北京:清华大学精密仪器与机械学系, 2007.
    [71]袁海波.用于多阶RLL调制光盘的信号处理原理和方法[博士学位论文].北京:清华大学精密仪器与机械学系, 2008.
    [72]胡华.多阶只读光盘系统的信道编码与信号检测[博士学位论文].北京:清华大学精密仪器与机械学系, 2008.
    [73]胡恒.蓝光与多阶高密度光存储信道的游程受限码研究[博士学位论文].北京:清华大学精密仪器与机械学系, 2007.
    [74] AVS国家标准正式实施,每年可节省数十亿美元专利费.记录媒体技术, 2006, 4(3):14.
    [75] Hu H, Pei J and Pan L. M-ary even nonzero symbol and run-length limited code for multilevel read only memory. Electron. Lett., 2006, 42: 294-295.
    [76] Quanhong Shen, Jing Pei, Haizheng Xu, Lin Wang, Duanyi Xu. Analysis of the differential phase detection signal in Multi-level run-length limited read-only disk driver. Jpn. J. Appl. Phys., 2006,45(7):5764-5768
    [77] Hopkins H H. Diffraction theory of laser read-out systems for optical video discs. J. Opt.Soc. Am., 1979,69(1):4-24.
    [78] Cheng X F,Jia H B,Xu D Y.Vector diffraction analysis of optical disk readout.Appl.Opt.,2000,39:6436--6440.
    [79] ECMA-267.120 mm read-only DVDRead-Only Disk
    [80] Qicheng Zhang, Yi Ni, Duanyi Xu, Heng Hu, Jie Song, Hua Hu. Multilevel Run-Length Limited Recording on Read-Only Disc. Jpn. J. Appl. Phys., 2006, 45(5A): 4097-4101
    [81] Jing Pei, Lihua Li, Haizheng Xu, Longfa Pan, Theory and practice of multilevel method in high-definition discs, Proc. SPIE, 2008, 7125: 712503-1~712503-7.
    [82] Mingming Yan, Jing Pei, Longfa Pan,et.al.Analysis of the differential phase detection signal of a novel multi-level read-only disc, Chinese optics letters, 2009,7(5): 424-427
    [83] DILL F H,NEUREURTHER A R,TUTTLE J A,et.al.Modeling projection printing of positive photoresists.IEEE Trans.Electron.Devices,1975,22(7):456-464.
    [84]唐毅,宋洁,潘龙法,多阶游程受限光盘母盘刻录的建模与工艺,光学精密工程,2008,16 (6): 1063-1068
    [85] H. Yuan, D. Xu, Q. Zhang and J. Song,“Dynamic model of mastering for multilevel run-length limited read-only disc,”Opt. Express 15, 4176-4181
    [86] Sekiguchi A, Mack C A, Minami Y, et al. Resist metrology for lithography simulation, part 2: development parameter measurements. Proc. of SPIE-The International Society for Optical Engineering, 1996, 2725:49-63.
    [87] Trefonas P and Daniels B. New principle for image enhancement in single layer positive photoresists. Proc. of SPIE, 1987, 771: 194-210.
    [88] Hirai Y, Sasago M, Endo M, et al. Process modeling for photoresist developmentand design of dlr/sd (double-layer resist by a single development) process. IEEE Trans. Computer-Aided Design, 1987, 6: 403-409.
    [89] Pasman J, Put P L M, Kraakman P A, et al. Evaluation of Photolithographic Processes for High-Density Optical Disc Mastering. Proc. SPIE, 1992, 1663: 336-348.
    [90] Put P L, Urbach H P, Morton R D, et al. Resolution limit of optical disc mastering. Jpn. J. Appl. Phys., 1997, 36: 539-548.
    [91]成先富.光盘矢量衍射理论研究. [博士学位论文],北京:清华大学精密仪器与机械学系, 2001.
    [92]王玉英.光致变色光盘读出系统的衍射理论分析. [博士学位论文],北京:清华大学精密仪器与机械学系, 2005.
    [93] Judkins J B and Ziolkowski W. Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings. J OPT SOC AM. A, 1995, 12(9):1974–1983.
    [94] Judkins J B, Haggans C W, Ziolkowski W, et al. Two-dimensional finite-difference timedomain simulation for rewritable optical disk surface structure design. APPL OPT, 1996, 35(14):2477–2487.
    [95] Liu J F, Xu B X, Chong T C, et al. Three-dimensional finite-difference time-domain analysis of optical disk storage system. JPN J APPL PHYS, 2000, 39(2B):687–692.
    [96] Peng C. Supperresolution near-field readout in phase-change optical disk data storage. APPL OPT, 2001, 40(23):3922–3931.
    [97] Harvey J E. Fourier treatment of near-field scalar diffraction theory. Am. J. Phys, 1979, 45:5764–5768.
    [98] Honguh Y. Readout signal analysis of optical disk based on approximated vector diffraction theory. Jap. J. Appl. Phys., 2003, 42:735–739
    [99] Kabal P and Pasupathy S. Partial-response signaling. IEEE Trans. Commun., 1975, 23(9): 921–934.
    [100] Forney G D. Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference. IEEE Trans. Inform. Theory, 1972, 18(3):363–378.
    [101] Han K and Spencer R R. Performance and implementation of adaptive partial response maximum likelihood detection. IEEE Trans. Magn., 1998, 34(5):3806–3915.
    [102] Dolivo F, Hermann R, and Olcer S. Performance and sensitivity analysis of maximum likelihood sequence detection on magnetic recording channels. IEEE Trans. Magn., 1989, 25(5):4072–4074.
    [103] Kobayashi H. Application of probabilistic decoding to digital magnetic recording systems. IBM J.Res., 1971, 15(1):368–375.
    [104] Tobita M, Yamagami T, and Watanabe T. Viterbi detection of partial response on a magneto optical recording channel. Proc. of SPIE, 1992, 1663:166–173.
    [105] Choi S H, Kong J J, Chung B G, et al. Viterbi detector architecture for high speed optical storage. IEEE TENCON, 1997, 1: 82-89.
    [106] Takehara S, Ogawa A, Nagai Y, et al. Combined adaptive controlled partial response and maximum likelihood signal processing for high-density optical disks. Jpn. J. Appl. Phys., 2003, 42(2B): 924-930.
    [107] Ide N. Adaptive partial-response maximum-likelihood detection in optical recording media. Jpn. J. Appl. Phys., 2002, 41(3B): 1789-1790.
    [108] Miyashita H, Nakamura A, Nakajima T, et al. New PRML for asymmetrical signals in high-density optical disks. Jpn. J. Appl. Phys., 2002, 41(3B): 1787-1788.
    [109] Lee J and Lee J. Adaptive equalization using expanded maximum-likelihood detector output for optical recording systems. Jpn. J. Appl. Phys., 2005, 44(5B): 3499-3502.
    [110] Lee K, Lee J and Lee J. Adaptive partial response maximum likelihood detection with tilt estimation using sync pattern. Jpn. J. Appl. Phys., 2006, 45(2B): 1110-1112.
    [111]边肇祺,张学工模式识别北京:清华大学出版社2000
    [112] J.P.Marques de Sa,模式识别——原理、方法及应用.吴逸飞译.北京:清华大学出版社, 2002
    [113] Bricot C, Lehureau J C, Puech C, et al. Optical readout of videodisc. IEEE Trans Consum Electron, 1976, CE22:304–310.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700