改进的差分进化算法及其在通信信号处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受计算机技术发展的推动,智能优化技术日臻成熟,已经发展成为一门重要的应用学科,在认识世界和改造世界中的作用也日益显现出来。工程应用实践业已表明,经过优化处理的系统,其性能可以得到显著提升。在通信信号处理领域,许多应用问题本质上也可以归结为优化问题,如通信信号的波形优化成型设计、调制信号的特征提取、多输入多输出通信系统的符号检测等等。对于诸如此类的问题,传统的方法往往难以直接得到满意解,采用优化计算的方法可求得近似最优的处理结果。作为一种新型的优化计算方法,差分进化以简单实用、收敛快、鲁棒性好等特点得到了人们的广泛研究和应用,对进化优化计算的思想创新和技术发展做出了特有的贡献。
     但是,类似于其它基于种群的演化算法,差分进化也存在某种缺陷,主要表现为搜索停滞和早熟收敛,尤其对于高维复杂工程应用问题,标准差分进化算法不能有效解决。针对此问题,论文提出了相应的改进方法,并通过经典测试函数进行了实验验证,同时研究了改进的差分进化算法在通信信号处理中的两种具体应用。论文的主要研究成果如下:
     (1)提出了基于参数自适应和混沌局部优化的Memetic差分进化算法(DECLS)。该算法利用参数的自适应调整提高差分进化的全局寻优性能,并利用嵌入的混沌局部优化在最优值附近详细开发,以补偿标准差分进化算法在精细搜索方面的不足,提高最终优化精度。同时,混沌搜索的随机性还可在一定程度上弥补标准差分进化早熟收敛的缺陷。实验证明,混沌搜索和自适应差分进化的组合是十分合理的。DECLS算法在一系列测试中均明显优于标准差分进化算法,也优于其它差分进化变种。并且,DECLS算法在高维函数优化中也表现出一定的优越性。
     (2)由于标准差分进化是为解决连续问题优化而设计的,不能直接用于二进制空间优化。针对此问题,论文提出了基于参数自适应策略的二进制离散差分进化算法(ABDE)。该算法对标准差分进化算法的变异方法进行了改进,同时令交叉因子和收缩因子根据优化环境自适应调整,以达到最好的优化效果。在13个标准测试函数和经典的二进制规划0-1背包问题上的测试表明,与其它两种二进制DE算法和常用的遗传算法相比,该算法具有更强的搜索能力、更快的收敛速度和更稳定的优化性能。
     (3)对甚小线性调频(VMCK)调制信号进行了分析,并基于数值拟合原理,提出了基于正弦基拟合分解和差分进化的甚小线性调频信号优化方案,以达到改善VMCK频谱结构的目的,理论分析和仿真表明该方案可成功的去除VMCK谐波线谱,得到带宽更窄,边带抑制更强,且能量更为集中的VMCK波形,同时信号的解调性能有了进一步提高。
     (4)通过将多输入多输出(MIMO)通信系统的最小误码率(MBER)问题转化为一种最优化问题,研究了差分进化在MIMO通信系统符号检测中应用的可行性,并提出了利用Memetic连续差分进化算法优化MBER解码矩阵W系数的MIMO线性检测方法。实验表明,该方法优于基于MMSE和ZF的MIMO线性检测算子。进一步的,论文又给出了一种以二进制离散差分进化算法寻优代替最大似然检测穷搜索技术的非线性MIMO符号检测方案,以期在可接受的误码率范围内,尽最大可能的降低最大似然检测的计算消耗。
With the promotion of computer technology, the intelligent optimization technique becomes mature gradually. It has been developed as an important application subject and increasingly revealed effects in understanding and transforming the world. Proved by engineering applications, the performance of a system can be enhanced significantly with an optimizing procedure. In communication and signal processing area, many problems can boil down to a kind of optimization issue in nature. For instance, communication waveforms shaping and optimizing design, features extraction of modulation signals, and symbol detection in MIMO (multi-input multi-output) communication system, etc.. These problems usually can not be solved ideally by traditional methods. However, we can obtain their approximate optimal solutions through an optimization process. As a new search technique, differential evolution has been profoundly researched and widely used for its advantages of simple and particle uses, fast convergence, and robust. It has made special contributions to the theoretical innovation and technological development of evolutionary computation.
     However, similar to other population based optimizers, differential evolution has certain drawbacks such as stagnation and premature convergence. Particularly for high-dimensional complex problems, the standard differential evolution can not solve them effectively. To overcome the defects of standard differential evolution algorithm, improving ways have been proposed and further tested over benchmark functions in this dissertation. Finally, two specific applications in communication area have been studied based on the improved differential evolution algorithm. The main contributions of the work are as follows:
     (1) The dissertation proposes an effective memetic differential evolution algorithm, or DECLS, that utilizes parameter adaptation to enhance the global optimizing performance, and chaotic local search to improve the final solution accuracy by carefully exploiting around the best individual. Moreover, the randomness of chaotic search can compensate for the premature convergence of standard DE to some extent. Simulations proved that the combination of a chaotic local search and a parameter adaptation mechanism is very reasonable. Results show that DECLS is superior to the standard DE and other DE variants. What is more, the DECLS has also shown certain advantages in solving high dimensional problems.
     (2) To overcome the problem that standard DE can not be directly used in a binary search space, the dissertation proposed an adaptive binary Differential Evolution algorithm, or ABDE, that improves the mutation strategy and adaptively controls the scaling and crossover factors to obtain a better optimization result. Experiments have been carried out by comparing ABDE with two binary DE variants and the most used Genetic Algorithm on a set of 13 selected benchmark functions and the classical 0-1 knapsack problem. Results show that the ABDE performs better than, or at least comparable to, the other algorithms in terms of search ability, convergence speed, and solution accuracy.
     (3) By analyzing the Very Minimum Chirp Keying (VMCK) modulation signal, the dissertation proposed an optimization scheme that utilizes the sinusoidal basis fitting and differential evolution to modify the spectrum shapes. The theoretical analysis and simulation show that the proposed scheme can remove the harmonic spectral lines successfully and obtain an optimized VMCK waveform with narrower bandwidth, lower spectrum sidebands, and better demodulation performance.
     (4) By transforming the minimization of bit error rate of a Multi-input Multi-output (MIMO) communication system into an optimization problem, the dissertation proposed a new linear MIMO symbol detector that utilizes the memetic differential evolution to optimize the MBER detector’s coefficients. Simulation shows that the proposed detector is superior to MMSE and ZF linear detectors. Further, to save the computation consumption of ML detector under the allowed bit error rate, the dissertation presents a new non-linear MIMO symbol detection method which uses a binary differential evolution optimization to replace the exhaustive search technique.
引文
[1] Ferrante N., Ville T., Recent advances in differential evolution: a survey and experimental analysis, Artificial Intelligence, Vol. 33, No. 1-2, 2010, pp. 61-106
    [2] Das S. and Suganthan P. N., Differential evolution - a survey of the state-of-the-art, IEEE Transactions on Evolutionary Computation (Accepted, 2010).
    [3]肖赤心,高维优化进化算法及其应用研究,中南大学博士学位论文, 2009
    [4]谈家桢等译,遗传学与物种起源,北京,科学出版社, 1982.11
    [5]刘曙光,费佩燕,侯志敏,生物进化论与人工智能中的遗传算法,自然辩证法研究, Vol.15 ,No.12 ,1999, pp. 20-25
    [6]曹道友,基于改进遗传算法的应用研究,安徽大学硕士论文, 2010.04, pp.1-5
    [7]陈伟,进化计算在优化问题中的应用,武汉理工大学硕士论文, 2010, pp.7-14
    [8] Eiben A.E. and Smith J.E., Introduction to Evolutionary Computing, Springer, 2003
    [9] Rechenberg I., Evolutions strategie, Optimierung Technischer Systeme nach Prinzipien der Biologischen Evolution (PhD thesis, 1971), Reprinted by Fromman-Holzboog, 1973.
    [10] Fogel D.B., Chellapilla K., Revisiting evolutionary programming, Proceedings of Applications and Science of Computational Intelligence. Drlando, Florida, 1998, pp. 2-11.
    [11] Fogel D.B., Fogel L.J., An Introduction to evolutionary programming, European Conf. on AE’95.Berlin, Springer, 1996, pp. 21-33.
    [12] Fogel L.J., Owens A.J., and Walsh M.J., Artificial Intelligence through Simulated Evolution, New York, John Wiley, 1966.
    [13]高纬,遗传算法与进化规划的比较研究, Journal of Communication and Computer, Vol. 2, No. 8, Aug. 2005, pp.10-15
    [14] Holland J.H., Adaptation in Natural and Artificial systems. The university of Michigan press, Ann Arbor, 1975.
    [15] Park T., Ryu K.R., A Dual-Population Genetic Algorithm for Adaptive Diversity Control, IEEE Transactions on Evolutionary Computation, Vol. 14, No. 6, 2010, pp. 865-884
    [16] Zhang Z., Koh C.G., Duan W.H., Uniformly sampled genetic algorithm with gradient search for structural identification - Part I: Global Search, Computers & Structures, Vol. 88, No. 15-16, 2010, pp. 949-962
    [17] Sharifian H., Abyaneh H.A., Salman S.K., et al., Determination of the Minimum Break Point Set Using Expert System and Genetic Algorithm, IEEE Transactions on Power Delivery, Vol. 25, No. 3, 2010, pp. 1284-1295
    [18] Devaraj D., Roselyn J.P., Genetic algorithm based reactive power dispatch for voltage stability improvement, International Journal of Electrical Power & Energy System, Vol. 32, No. 10, 2010, pp. 1151-1156,
    [19] Zhou J., Zu Y.X., A parallel immune genetic algorithm in adaptive resource allocation for cognitive radio network, ACTA Physica Sinica, Vol. 59, No. 10, 2010, pp.7508-7515,
    [20] Karaboga, N.; Cetinkaya, B., Performance comparison of genetic and differential evolution algorithms for digital FIR filter design, Advances in Information Systems Proceedings, Vol. 3261, 2004, pp. 482-488
    [21] Srinivas M., Patnaik L.M., Genetic Algorithms: A Survey, IEEE Computer, Vol. 27, No. 6, 1994, pp. 17-26
    [22] Keane A.J., Genetic Algorithm Optimization of Multi-peak Problems: Studies in Convergence and Robustness, Artificial Intelligence in Engineering, Vol. 9, 1995, pp. 75-83.
    [23] http://www.itpub.net/thread-1204578-1-1.html
    [24] De Jong, K.A., An analysis of behavior a class of genetic adaptive systems, Ph.D, Dissertation. University of Michigan, 1975
    [25] Storn R., Price K., Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces, Technical Report TR-95-012, 1995
    [26] Price K., Store R., Lampincn J., Differential Evolution-A practical approach to global optimization. New York, Springer, 2005.
    [27] Storn R. and Price K., Minimizing the real functions of the ICEC’96 contest by differential evolution, Proceedings of IEEE International Conference on Evolutionary Computation, Nagoya, Japan, 1996.
    [28] Vesterstrom J., Thomsen R., A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems, IEEE Congress on Evolutionary Computation, 2004. CEC2004. Vol. 2, 2004, pp. 1980-1987
    [29] Zaharie D., On the explorative power of differential evolution, In Proceedings of 3rd Interantional Workshop on Symbolic Numerical Algorithms and Scientific Computation, Oct. 2001.
    [30] Zaharie D., A Comparative Analysis of Crossover Variants in Differential Evolution, Proceedings of the International Multi conference on Computer Science and Information Technology , 2007, pp. 171–181
    [31] Zaharie D., Influence of crossover on the behavior of differential evolution algorithms, Applied Soft Computing, vol. 9, No. 3, Jun. 2009, pp. 1126–1138
    [32] Anyong Qing, A Study on Base Vector for Differential Evolution, IEEE Congress on Evolutionary Computation, CEC 2008, June 2008, pp. 550-556
    [33] Mezura-Montes E., Vela′zquez-Reyes J., and Coello C.A., A comparative study of differential evolution variants for global optimization, in Proceedings of Conference on Genetic Evolutionary Computation, 2006, pp. 485–492.
    [34] Dasgupta S., Das S., Biswas A., and Abraham A., The population dynamics of differential evolution: A mathematical model, in Proceedings of IEEE Congress on Evolutionary Computation, Jun.2008, pp.1439-1446
    [35] Dasgupta S., Das S., Biswas A., and Abraham A., On stability and convergence of the population dynamics in differential evolution, Artificial Intelligence Communication, Vol.22, No.1, 2009, pp.1-20
    [36] Zielinski K., Peters D., and Laur R., Run time analysis regarding stopping criteria for differential evolution and particle swarm optimization, In Proceedings of 1st Interantional Conference on Expert Process System Modeling Simulation Optimization, 2005
    [37]黄敏,颜学峰,钱锋,差分进化算法的性能分析及其动力学模型参数估计,计算机与应用化学, Vol. 24, No.4, 2007, pp.445-447
    [38] Gamperle R, Muller SD, Koumoutsakos P, A parameter study for differential evolution. In:Proceeding of the conference in neural networks and applications (NNA), fuzzy sets and fuzzy systems (FSFS) and evolutionary computation(EC),WSEAS, 2002, pp293-298
    [39] Liu J., Lampinen J., On setting the control parameter of the differential evolution algorithm. In: Proceedings of the 8th international Mendel conference on soft computing, 2002, pp.11-18
    [40] Mallipeddi R., Suganthan P.N., Empirical study on the effect of population size on differential evolution algorithm. In: Proceedings of the IEEE congress on evolutionary computation, 2008, pp.3663-3670
    [41] Eiben A.E., Smith J.E., Introduction to evolutionary computation. Springer, Berlin, 2003
    [42] Storn R, Price K, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, Vol. 11, 1997, 341-359
    [43] Neri F., Tirronen V., On memetic differential evolution frameworks: a study of advantages and limitations in hybridization. In: Proceedings of the IEEE world congress on computational intelligence, 2008, pp.2135-2142
    [44] Brest J, Mauˇcec M.S., Population size reduction for the differential evolution algorithm. Appligence Intelligence, Vol.29, No.3, 2008, pp.228–247
    [45] Zaharie D, Critical values for control parameters of differential evolution algorithm . In: Matusek R, OsmeraP(eds) Proceedings of 8th international Mendel conference on soft computing, 2002, pp.62-67
    [46] Zielinski K, Weitkemper P, Laur R, Kammeye KD., Parameter study for differential evolution using a power allocation problem including interference cancellation. In: Proceedings of the IEEE congress on evolutionary computation, 2006, pp.1857-1864
    [47] Ronkkonen J., Kukkonen S., and Price K.V., Real parameter optimization with differential evolution, in Proceedings of IEEE Conference on Evolutionary Computation, Vol. 1, 2005, pp. 506–513.
    [48]高岳林,刘军民,差分进化算法的参数研究,黑龙江大学自然科学学报, Vol. 126, No. 11, February 2009, pp. 81-85
    [49] Ronkkonen J., Kukkonen S., and Price K.V., Real parameter optimization with differential evolution, in Proceedings of IEEE Congress on Evolutionary Computation, Vol. 1, 2005, pp. 506–513.
    [50]杨启文,蔡亮,薛云灿,差分进化算法综述,模式识别与人工智能, Vol. 21, No. 4, 2008, pp.506-514
    [51] Gong T. and Tuson A., Differential Evolution of Binary Encoding, Soft Computing in Industrial Application, Vol. ASC39, 2007, pp.251-262
    [52] Engelbrecht A.P., Pampara G., Binary Differential Evolution Strategies, IEEE Congress on Evolutionary Computation, Singapore, 2007. pp.1942-1947
    [53] Pampara G., Engelbrecht A., and Franken N., Binary Differential Evolution, Proceedings of the IEEE Congress on Evolutionary Computation, 2006
    [54] Pan Q.K.; Tasgetiren M.F.; Liang Y.C., A discrete differential evolution algorithm for the permutation flowshop scheduling problem, Computers & Industrial Engineering, Vol. 55, No. 4, 2008, pp.795-816
    [55] Qu B.Y., Suganthan P.N., Multi-objective differential evolution with diversity enhancement, Journal of Zhejiang University Science C-Computers & electronics, Vol. 11, No. 7, JUL 2010, pp. 538-543,
    [56] Sarker R.; Abbass H.A., Differential evolution for solving multi objective optimization problems, ASIA-PACIFIC Journal of Operational Research, Vol.21, No.2, JUN 2004, pp.225-240,
    [57] Babu B.V., Pallavi G., Chakole J.H., Syed M., Multiobjective differential evolution (MODE) for optimization of adiabatic styrene reactor, Chemical Engineering Science, Vol. 60, 2005, pp. 4822– 4837
    [58] Zaharie D; Petcu D., Adaptive Pareto differential evolution and its parallelization, Parallel Processing and Applied Mathematics, Vol.3019, 2003, pp.261-268
    [59]吴亮红,王耀南,袁小芳,张剑,多目标优化问题的差分进化算法研究,湖南大学学报, Vol. 36 ,No. 2, Feb 2009, pp.53-57
    [60] Wu L.H., Wang Y.N., Yuan X.F., et al., Environmental/economic power dispatch problemusing multi-objective differential evolution algorithm, Electric Power Systems Research, Vol. 80, No. 9, SEP 2010, pp.1171-1181
    [61] Wu C.Y., Tseng K.Y., Topology optimization of structures using modified binary differential evolution, Structural and Multidisciplinary Optimization, Vol. 42, No. 6, DEC 2010, pp. 939-953
    [62] Bhattacharya A., Chattopadhyay P.K., Hybrid Differential Evolution With Biogeography-Based Optimization for Solution of Economic Load Dispatch, IEEE Transactions on Power System, Vol. 25, No. 4, NOV 2010, pp. 1955-1964
    [63] Maulik U., Saha I., Automatic Fuzzy Clustering Using Modified Differential Evolution for Image Classification, IEEE Transactions on Geo science and remote sensing, Vol. 48, No. 9, SEP 2010, pp. 3503-3510
    [64] Almeida-Luz S.M., Vega-Rodriguez M.A., Gomez-Pulido J.A., et al., Differential evolution for solving the mobile location management, Applied Soft Computing, Vol. 11, No. 1, JAN 2011, pp. 410-427
    [65] Subudhi B., Jena D., A differential evolution based neural network approach to nonlinear system identification, Applied Soft Computing, Vol. 11, No. 1, JAN 2011, pp. 861-871
    [66] Bandurski K., Kwedlo W., A Lamarckian Hybrid of Differential Evolution and Conjugate Gradients for Neural Network Training, Neural Processing Letters, Vol. 32, No. 1, AUG 2010, pp. 31-44
    [67] Oh J., Hwang H., Feature Enhancement of Medical Images using Morphology-Based Homomorphic Filter and Differential Evolution Algorithm, International Journal of Control Automation and Systems, Vol. 8, No. 4, AUG 2010, pp. 857-861
    [68] Chang C.S., An Improved Differential Evolution Scheme for the Solution of Large-Scale Unit Commitment Problems, Informatica, Vol. 21, No. 2, pp. 175-190, 2010
    [69] Ho WH, Chou JH, Guo CY, Parameter identification of chaotic systems using improved differential evolution algorithm, Nnolinear Dynamics, Vol. 61, No.1-2, JUL 2010, pp. 29-41
    [70] Al-Obeidat F., Belacel N., Carretero J.A., et al., Differential Evolution for learning the classification method, Proaftn, Knowledge-Based Sysetms, Vol. 23, No. 5, JUL 2010, pp.418-426
    [71] Sun C.H., Chiu C.C., Li C.L., et al., Time Domain Image Reconstruction for Homogenous Dielectric Objects by Dynamic Differential Evolution, Electromagnetics, Vol.30, No. 4, 2010, pp. 309-323
    [72] Basu M., Combined Heat and Power Economic Dispatch by Using Differential Evolution, Electric Power Components and Systems, Vol. 38, No. 8, 2010, pp. 996-1004
    [73] Cuevas E., Zaldivar D., Perez-Cisneros M., A novel multi-threshold segmentation approach based on differential evolution optimization, Expert Systems With Applications, Vol. 37, No. 7, JUL 2010, pp. 5265-5271
    [74] Favaron A., Favini A., Maximal time regularity for degenerate evolution integro differential equations, Journal of Evolution Equations, Vol. 10, No. 2, MAY 2010, pp. 377-412
    [75] Fan H.Y., Liu J.H., Lampinen J., Some improvement to the mutation donor of differential evolution, Engineering Computations, Vol. 27, No. 1-2, 2010, pp. 225-242,
    [76] Garlapati V.K., Banerjee R., Optimization of Lipase Production using Differential Evolution, Biotechnology and Bioprocess Engineering, Vol. 15, No. 2, 2010, pp. 254-260
    [77] Georgilakis P.S., Market-based transmission expansion planning by improved differential evolution, International Journal of Electrical Power & Energy Systems, Vol 32, No. 5, JUN 2010, pp. 450-456
    [78] Bang O.Y., Kim G.M., Chung C.S., et al., Differential Pathophysiological Mechanisms of Stroke Evolution between New Lesions and Lesion Growth: Perfusion-Weighted Imaging Study, Cerebrovascular Diserses, Vol. 29, No. 4, 2010, pp. 328-335
    [79] Neri F., Mininno E., Memetic Compact Differential Evolution for Cartesian Robot Control, IEEE Computational Intelligence Magazine, Vol. 5, No. 2, 2010, pp. 54-65
    [80] Storn, R., Differential evolution design of an IIR-filter, Proceedings of IEEE International Conference on Evolutionary Computation, May 1996, pp. 268– 273
    [81] Li X.F.; Xu L.Z.; Wang H.B., et al. A Differential Evolution-Based Routing Algorithm for Environmental Monitoring Wireless Sensor Networks, Sensors, Vol. 10, No.6, 2010, pp.5425-5442
    [82] Goudos S.K.; Zaharis Z.D.; Yioultsis T.V., Application of a differential evolution algorithm with strategy adaptation to the design of multiband microwave filters for wireless communications, Progress in Electromagnetics Research, Vol. 109, 2010, pp.123-137
    [83] Develi I., Determination of optimum antenna number ratio based on differential evolution for MIMO systems under low SNR conditions, Wireless Personal Communications, Vol. 43, No. 4, 2007, pp. 1667-1673
    [84] Wang L.; Shen X.X., Blind Signals separation of a stable distribution based on differential evolution, Journal of East China University of Science and Technology, Dec. 2009, pp.918-921
    [85] Kromer P.; Snasel V.; Platos J., et al, Optimization of turbo codes by differential evolution and genetic algorithms, Ninth International Conference on Hybrid Intelligent Systems (HIS 2009), Shenyang China, 2009, pp.376-381
    [86] Panduro M.A.; del Rio-Bocio C., Beam-forming networks for scannable multi-beam antenna arrays using CORPS and differential evolution, 3rd European Conference on Antennas and Propagation. Berlin Germany European Conference on Antennas and Propagation. 2009, pp. 3109-3113,
    [87] Lin C.A., Qing A.Y., Feng Q.Y., Synthesis of Unequally Spaced Antenna Arrays by Using Differential Evolution, IEEE Transaction on Antennas and Propagation, Vol. 58, No. 8, AUG 2010, pp. 2553-2561
    [88] Zhifeng W.; Houkuan H.; Xiong Z., et al, Adaptive equalization using differential evolution, IEEE Congress on Evolutionary Computation (CEC), Hong Kong, 2008, pp.1962-1967
    [89] Salman A.A., Ahmad I., Omran M.G.H., et al., Frequency assignment problem in satellite communications using differential evolution, Computers & Operations Research, Vol. 37, No. 12, DEC 2010, pp. 2152-2163
    [90] Yigit, N.; Karaboga, N, Noise cancellation in adaptive filters with differential evolution algorithm, Eskisehir Turkey, 2007 15th IEEE Signal Processing and Communications Applications, 2007, pp. 119-122
    [91]林川,粒子群优化与差分进化算法研究及其应用,西南交通大学博士论文, 2009
    [92]贾向东,傅海阳,欧阳玉花, Optimization of Degree Distributions for Irregular LDPC Codes Base on Differential Evolution,无线电工程, Vol. 39, No.3, 2009, pp.24-40
    [93] Zaharie D., Statistical properties of differential evolution and related random search algorithms, in Proceedings of International Conference. Computation Statistics, Aug. 2008, pp. 473–485.
    [94] Lampinen J, Zelinka I, On stagnation of the differential evolution algorithm In: Osmera P(ed) Proceedings of 6th international Mendel conference on soft computing, 2000, pp76-83
    [95] R. Storn, Differential evolution research—Trends and open questions, Study in Computational Intelligence Vol. 143, 2008, pp.1–31.
    [96] Das S., Konar A. and Chakraborty U.K., Two improved differential evolution schemes for faster global search, Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, H. Beyer, Ed. GECCO '05, June 2005, pp. 991 - 998
    [97] Das S., Konar A., Chakraborty U., Improved differential evolution algorithms for handling noisy optimization problems. In: Proceedings of the IEEE congress on evolutionary computation, Vol2, 2005, pp.1691-1698
    [98] Storn, R.: Digital Filter Design Program FIWIZ (2000), http://www.icsi.berkeley.edu/~storn/fiwiz.html
    [99]张航,王伟,郑玲,李丹丹,熊富强,一种基于密度聚类的小生境差分进化算法,计算机工程与应用, Vol. 44, No. 23, 2008, pp.42-45
    [100] Musrrat A., Millie P., and Singh V.P., An Improved Differential Evolution Algorithm for Real Parameter Optimization Problems, International Journal of Recent Trends in Engineering, Vol. 1, No. 5, May 2009, pp.63-65
    [101] Qin A.K., Suganthan P.N., Self-adaptive differential evolution algorithm for numerical optimization.In: Proceedings of the IEEE Congress on Evolutionary Computation, Vol 2, 2005, pp.1785–1791
    [102] Qin A.K., Huang V.L., Suganthan P.N. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Transaction on Evolutionary Computation, Vol.13, No.2, 2009, pp.398–417
    [103] Brest J., Greiner S., Bo?kovi′c B., Mernik M., ?umer V., Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Transaction on Evolutionary Computation, Vol. 10, No.6, 2006, pp. 646–657
    [104] Brest J., ?umer V., Maucec M., Self-adaptive differential evolution algorithm in constrained real-parameter optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, 2006, pp. 215–222
    [105] Brest J., Bo?kovi′c B., Greiner S., ?umer V., Mauˇcec M.S., Performance comparison of self-adaptive and adaptive differential evolution algorithms. Soft Computation, Vol.11, No.7, 2007, pp.617–629
    [106] Brest J., Zamuda A., Boskovic B., Maucec M.S., Zumer V., High-dimensional Real-parameter Optimization Using Self-adaptive Differential Evolution Algorithm with Population Size Reduction, 2008 IEEE World Congress on Computational Intelligence, 2008, pp. 2032-2039.
    [107]颜学峰,余娟,钱锋,自适应变异差分进化算法估计软测量参数,控制理论与应用, Vol. 23, No. 5, 2006.10, pp.744-749
    [108] Liu J. and Lampinen J., A fuzzy adaptive differential evolution algorithm, Soft Comput.: Fusion Found., Methodologies Applicat., Vol. 9, No.6, 2005, pp. 448–462.
    [109] Zhang J.Q., Sanderson A.C., JADE: Adaptive Differential Evolution with Optional External Archive, IEEE Transactions on Evolutionary Computation, Vol. 13, No.5, 2009, pp. 945-958.
    [110] Das S., Abraham A., Chakraborty U.K., and Konar A., Differential evolution using a neighborhood-based mutation operator, IEEE Transactions on Evolutionary Computation, Vol. 13, No.3, 2009, pp. 526-553
    [111] Nasimul Noman and Hitoshi Iba, Accelerating Differential Evolution Using an Adaptive Local Search, IEEE Transactions on Evolutionary Computation, Vol.12, No.1, 2008, pp.107-125
    [112] Rahnamayan S., Tizhoosh H., Salama M.M, Opposition-based differential evolution for optimization of noisy problems. In: Proceedings of the IEEE Congress on EvolutionaryComputation, 2006, pp. 1865–1872
    [113] Rahnamayan S., Tizhoosh H.R., Salama M.M. Opposition-based differential evolution. IEEE Transaction Evolutionary Computation, Vol.12, No.1, 2008, pp.64–79
    [114] Muelas S., LaTorre A., and Pena J.M., A memetic differential evolution algorithm for continuous optimization, in Proceedings of the 2009 Ninth International Conference on Intelligent Systems Design and Applications. IEEE Computer Society, 2009, pp.1080-1084
    [115] Wang H.; Wu Z.J., Rahnamayan S., and Kang L., A Scalability Test for Accelerated DE Using Generalized Opposition-Based Learning, in Proceedings of the 2009 Ninth International Conference on Intelligent Systems Design and Applications. IEEE Computer Society, 2009, pp.1090-1095
    [116] Kim P.; Lee J., An integrated method of particle swarm optimization and differential evolution, Journal of Mechanical Science and Technology, Vol. 23, No. 2, 2009, pp.426-434
    [117] Chiou J.P.; Chang C.F.; Su C.T., Ant direction hybrid differential evolution for solving large capacitor placement problems, IEEE Transaction on Power Systems, Vol. 19, No. 4, Nov 2004, pp.1794-1800
    [118] He D.K, Wang F.L.; Mao Z.Z., A hybrid genetic algorithm approach based on differential evolution for economic dispatch with valve-point effect, International Journal of Electrical Power and Energy System, Vol. 30, No. 1, 2008, pp.31-38,
    [119]吴燕玲,卢建刚,孙优贤,基于免疫原理的差分进化,控制与决策, Vol. 22, No. 11, Nov. 2007, pp.1309-1312
    [120] Changkyu Choi and Ju-Jang Lee, Chaotic local search algorithm, Artificial Life and Robotics, Vol. 2, No. 1, 1998, pp. 41-47
    [121]王凌,郑大钟,李清生,混沌优化方法的研究进展,计算技术与自动化, Vol. 20, No. 1, 2001, pp.1-5
    [122] Moscato P..On Evolution, Search, Optimization Genetic Algorithms and Martial Arts: Towards Memetic Algorithms. Pasadena, California, USA: Tech. Rep. Caltech Concurrent Computation Program, Report 826, California Institute of Technology,1989.
    [123]刘漫丹,文化基因算法(Memetic Algorithm)研究进展,控制理论与应用, Vol 26, No 21,2007, pp.1-5
    [124] Kapitaniak T., Continuous control and synchronization in chaotic systems, Chaos, Solitons and Fractals, Vol.6, 1995, pp.237-44.
    [125]李兵,蒋慰孙,混沌优化方法及其应用,控制理论与应用, Vol. 14, No.4, 1997 , pp.613~615
    [126] Jia D.L., Jiao Y.M., Zhang J.D., Satisfactory design of IIR digital filter based on chaotic mutation particle swarm optimization, Third International Conference on Genetic and Evolutionary Computing, 2009, pp.48-51.
    [127] Liao G.C., Tsao T.P., Application of a fuzzy neural network combined with a chaos genetic algorithm and simulated annealing to short-term load forecasting, IEEE Transaction on Evolutionary Computation, Vol.10, No.3, 2006, pp.330-340.
    [128] LüQ.Z., Shen G.L., Yu R.Q., A chaotic approach to maintain the population diversity of genetic algorithm in network training, Computational Biology and Chemistry, Vol. 27, No.3, 2003, pp.363-371.
    [129] Bailey D.H., Multiprecision Translation and Execution of Fortran Programs, ACM Trans. Math. Software, Vol. 19, 1993, pp.288-319
    [130] Carson Jeffries, Jose Perez, Observation of a Pomeau–Manneville intermittent route to chaos in a nonlinear oscillator, Physical Review A, Vol. 26, No.4, 1982, pp.2117–2122.
    [131] Baumol W., and Benhabib J., Chaos: Significance, mechanism, and economic applications, Journal of Economic Perspectives, Vol. 3, 1989, pp. 77-106.
    [132] Jia D.L., Zhang J.S., Niche particle swarm optimization combined with chaotic mutation, Control and Desion, Vol.22, No.1, 2007, pp.117-120.
    [133] Zhang J.D., Jia D.L., Li K., FIR digital filters design based on Chaotic Mutation Particle Swarm Optimization, IEEE International Conference on Audio, Language and Image Processing, July 2008, pp.418– 422.
    [134] Yao X., Liu Y., and Lin G., Evolutionary programming made faster, IEEE Transactions on Evolutionary Computation., Vol.3, No.2, 1999, pp.82–102.
    [135] Suganthan P. N., Hansen N., Liang J.J., Deb K., Chen Y.P., Auger A., and Tiwari S., Problemdefinitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization, Nanyang Technol. Univ., Singapore, Tech. Report and IIT, Kanpur, India, KanGAL Report #2005005, May 2005.
    [136] Shang Y.W. and Qiu Y.H., A note on the extended rosenbrock function, Evolutionary Computation, Vol. 14, No. 1, 2006, pp.119–126
    [137] Garcia S., Molina D., Lozano M., Herrera F., A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: a case study on the CEC'2005 Special Session on Real Parameter Optimization. Journal of Heuristics 15, 2009, pp.617-644
    [138] Ghosh S., Das S., and Das S., On the Asymptotic Convergence of Differential Evolution in Continuous Spaces– A Control Theoretic Approach, Genetic and Evolutionary Computing Conference (GECCO), Portland, Oregon, USA, 2010, pp.2073-2074.
    [139] Godfrey Onwubolu, Donald Davendra, Scheduling flow shops using differential evolutional gorithm, European Journal of Operational Research, Vol.171, 2006, pp.674-692
    [140] Lampinen J., Zelinka I., Mechanical engineering design optimization by differential evolution, New Ideas in Optimization, McGraw Hill, International(UK), 1999, pp.127-146
    [141] Kennedy J. and Eberhart R., A Discrete Binary Version of the Particle Swarm Algorithm, Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics, 1997, pp.4104-4109
    [142] Dejong K.A., Spears W.M., An analysis of the interacting roles of population size and crossover in Genetic Algorithms. Proceedings of the first workshop on parallel problem solving from nature. Springer-Verlag, Berlin, 1990, pp.38-47
    [143] Caccetta L., Kulanoot A., Computational Aspects of Hard Knapsack Problems, Nonlinear Analysis, Vol. 47, 2001, pp. 5547–5558.
    [144] Martello S., Pisinger D., Toth P., Dynamic programming and strong bounds for the 0-1 knapsack problem , Management Science, Vol. 45, 1999, pp.414-424
    [145] Paolo Toth, Optimization engineering techniques for the exact solution of NP-hard combinatorial optimization problems, European Journal of Operational Research, Vol.125, 2000, pp. 222-238
    [146] Marthllo S., Pisinger D., Toth P., New trends in exact algorithm for 0-1 knapsack problem. European journal of operation research, 123(2), (2000) 325-332
    [147] Zheng Guo-xin, Feng Jin-zhen, Jia Minghua. Very Minimum Chirp Keying as a Novel Ultra Narrow Band Communication Scheme. IEEE International Conference on Information, Communications & Signal Processing, Dec. 2007, pp.1-3
    [148] Zheng Guo-xin, Yang Wei-ying. The Orthogonal Very Minimum Chirp Keying (OVMCK) modulations with very high bandwidth efficiency, IEEE International Symposium on Antennas and Propagation Society, July 2008, pp.1-4
    [149] Zheng, Guo-xin, Yang Wei-ying, etc. Non DC offset Very Minimum Chirp Keying Modulation as a novel ultra narrow band communication scheme, IET Conference on Wireless, Mobile and Sensor Networks, Dec. 2007, pp.755-758
    [150]郑国莘,杨卫英,甚小线性调频键控调制的超窄带通信方法, 2010年09月22日,专利号, 200710047472
    [151] Ji Wenli, Zheng Guoxin, Bao Minqi.Ultra-Narrowband Wireless Communication Technology Based on QVMCK Modulation, 2008 China-Japan Joint Microwave Conference Proceeding, 2008.9, pp. 185-188
    [152] Bao Minqi, Zheng Guoxin, Ji Wenli, BER Performance Analysis of Ultra-Narrowband Wireless Communication Technology Based on VMCK Modulation, China-Japan Joint Microwave Conference Proceeding, 2008.9, pp. 193-196.
    [153]赵幸,郑国莘,邱志易,过冰,曾凯伦,甚小线性调频键控信号的正交性分析,上海大学学报, Vol. 16, No. 4, 2010, pp.355-360
    [154]樊昌信,张甫诩,徐炳祥,吴成柯,通信原理,第5版,国防工业出版社, 2005.8
    [155]乐美龙,基于正交正弦基的数值拟合方法,上海交通大学学报, Vol. 35, No.4, 2001, pp.522-526
    [156] Foschini G.J., Layered space–time architecture for wireless communication in a fading environment when using multiple antennas, Bell Labs Syst. Tech. J., Vol. 1, 1996, pp. 41–59,
    [157] Hassibi B., Vikalo H., On the sphere decoding algorithm. PartI: the expected complexity. IEEE Transactions on Signal Processing, Vol.53, 2005, pp.2806-2818
    [158] San Jose-Revuelta LM, Entropy-guided micro-genetic algorithm for multiuser detection in CDMA communications, Signal Processing, Vol. 85, No. 8, AUG 2005, pp.1572-1587,
    [159] Yen K., Hanzo L., Genetic-algorithm-assisted multiuser detection in asynchronous CDMA communications, IEEE Transactions on Vehicular Technology, Vol. 53, No. 5, SEP 2004, pp.1413-1422
    [160] Sacchi C., Donelli M., D'Orazio L., et a, Genetic algorithm-based MMSE receiver for MC-CDMA systems transmitting over time-varying mobile channels, IEEE Electronics Letters, Vol. 43, No. 3, FEB 2007, pp.172-173
    [161] Tan T.H., Huang Y.F., Liu F.T., Multi-User Detection in DS-CDMA Systems Using a Genetic Algorithm with Redundancy Saving Strategy, International Journal of Innovative Computing Information and Control, Vol. 6, No. 8, AUG 2010, pp.3347-3364
    [162] Salz J., Digital transmission over cross-coupled linear channels,”At&T Technical Journal, Vol. 64, No. 6, July-August 1985, pp. 1147-1159
    [163] Wolniansky P.W., Foschini G..J., Golden G.D., Valenzuela R.A., V-BLAST: An Architecture for Realizing Very High Data Rates Over the Rich-Scattering Wireless Channel, Proc. URSI ISSSE, September 1998, pp.295–300.
    [164] Telatar I.E., Capacity of multi-antenna Gaussian channels. Europe Transaction on Telecommunication, Vol.10, 1999, pp.585-595
    [165] Foschini G.J., Gans M.J., On limits of wireless communications in fading environment when using multiple antennas, wireless personal communications, Vol. 6, No. 3, 1998, pp. 311-335
    [166] Schneider, K.S., Optimum detection of code division multiplexed signals, IEEE Transactions on Aerospace and Electronic Systems, Vol. 15, No.1, 1979, pp.181–185
    [167] Honig M., Madhow U., Verdu S., Blind adaptive multiuser detection, IEEE Transaction on Information Theory, Vol. 41, No.4, 1995, pp.944–960
    [168] Gerard. J., Foschini, Layered Space-Time Architecture for Wireless Communication in a Fading Environment When Using Multi-Element Antennas, Bell Laboratories TechnicalJournal, October 1996, pp.41–59.
    [169] Golden G D., Foschini G.J., Valenzuela R.A., and Wolniansky P.W., Detection algorithm and initial laboratory results using V-BLAST space–time communication architecture, IEEE Electronics Letter, Vol. 35, No. 1, Jan. 1999, pp.14–16
    [170] Sajid Bashir, Muhammad Naeem, Syed Ismail Shah, A comparative study of heuristic algorithms: GA and UMDA in spatially multiplexed communication systems, Engineering Applications of Artificial Intelligence, Vol. 23, 2010, pp.95–101
    [171] Alias M.Y., Chen S. and Hanzo L., Multiple Antenna Aided OFDM Employing Genetic Algorithm Assisted Minimum Bit Error Rate Multiuser Detection, IEEE Transactions on Vehicular Technology, Vol. 54, Issu. 5, 2005, pp.1713–1721
    [172] Isik Y., Taspjmar N., Multiuser detection with neural network and PIC in CDMA systems for AWGN and Rayleigh fading asynchronous channels, Wireless Personal Communications, Vol. 43, No. 4, DEC 2007, pp. 1185-1194,
    [173] Fantacci R., Tarchi D., Marini M., et al., A neural network approach to MMSE receivers in a DS-CDMA multipath fading environment, IEEE Transactions on Communications, Vol. 54, No. 5, MAY 2006, pp. 778-782
    [174] Sacchi C., Gera G., Regazzoni C.S., Neural network-based techniques for efficient detection of variable-bit-rate signals in MC-CDMA systems working over LEO satellite networks, Signal Processing, Vol. 85, No.3, MAR 2005, pp.505-522
    [175] Isik Y., Taspinar N., Parallel interference cancellation based on neural network in CDMA systems, IEICE Transactions on Communications, Vol. E88B, No. 2, FEB 2005, pp.800-806
    [176] Wen J.H., Chang C.W., Hung H.L., Blind Multiuser Detection in Frequency Domain for MC-CDMA Systems Using Particle Swarm Optimization, Wireless Personal Communications, Vol. 54, No. 3, AUG 2010, pp. 447-466
    [177] Soo K.K., Siu Y.M., Chan W.S., et al., Particle swarm optimization based multiuser detector for CDMA communications, IEEE Transactions on Vehicular Technology, Vol. 56, No. 5, SEP 2007, pp. 3006-3013
    [178] El Morra H.H., Sheikh A.U., Zerguine A., Optimum Multiuser Detection in CDMA UsingParticle Swarm Algorithm, Arabian Journal For Science and Engineering, Vol.34 , No. 1B, APR 2009, pp.197-202
    [179] Liu J., Cai Z.X., Liu J.Q., A novel genetic algorithm preventing premature convergence by chaos operator, Journal of Central South University of Technology, Vol. 7, No. 2, JUN 2000, pp.100-103
    [180] Andre J., Siarry P., Dognon T., An improvement of the standard genetic algorithm fighting premature convergence in continuous optimization, Advances in Engineering Software, Vol. 32, No. 1, DEC 2000, pp.49-60
    [181] Yao W., Chen S., Tan S., et al., Minimum Bit Error Rate Multiuser Transmission Designs Using Particle Swarm Optimisation, IEEE Transactions on Wireless Communications, Vol. 8, No.10, OCT 2009, pp. 5012-5017
    [182] Alias, M. Y., Chen, S. and Hanzo, L. Genetic Algorithm Assisted Minimum Bit Error Rate Multiuser Detection in Multiple Antenna Aided OFDM. In: VTC'04, 26-29 September 2004, Los Angeles, USA.2004, pp. 548-552.
    [183] Lu H.Y., Fang W.H., Huang K.C., Joint generalized antenna combination and symbol detection based on minimum bit error rate: A particle swarm optimization approach, IEICE Transactions on Communications, Vol. E91B, No. 9, SEP 2008, pp.3009-3012
    [184] Chen S., Livingstone A., Hanzo L., Minimum bit-error rate design for space-time equalization-based multiuser detection, IEEE Transactions on Communications, Vol. 54, No. 5, MAY 2006, pp. 824-832
    [185] Chen S., Samingan A.K., Mulgrew B., and Hanzo L., Adaptive minimum BER linear multiuser detection for DS-CDMA signals in multipath channels, IEEE Transactions on Signal Processing, Vol. 49, No. 6, Jun.2001, pp.1240–1247
    [186]毕晓君,李金凤,基于免疫算法的球形译码算法研究,哈尔滨工程大学学报, Vol. 30, No. 11, 2009, pp.1301-1305
    [187] Adnan A.K., Sajid B., Muhammad N., Syed I.S. and Li X.D., Symbol detection in spatial multiplexing system using particle swarm optimization meta-heuristics, International Journal of Communication Systems Vol. 21, Issue 12, 2008, pp.1239-1257

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700