3GPP LTE下行接收系统的数字信号处理与VLSI实现研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着个人移动通信日新月异的发展,人们已经不满足于简单的语音通信。越来越多的业务如移动互联网,可视通话,流媒体,移动电视等,逐渐成为了市场上新的热点。在这些应用的促使下,移动通信技术正在向更高数据率的方向发展。从目前的发展来看,第三代合作计划(3rd Generation Partnership Project,3GPP)推出的长期演进技术(Long Term Evolution, LTE)以其高数据率、高频谱利用率和灵活性、低延迟、应用设备广泛等的特性在下一代移动通信标准的竞争中脱颖而出,成为准4G技术的主流标准。
     作者在对3GPP LTE系统的发展历史及现状进行分析和调研的基础上,发现在3GPP LTE的推广和普及中存在着以下的挑战:1)移动终端的功耗和成本的降低。与3G的移动终端相比,LTE的移动终端需要进行在更高的工作频率上(LTE标准支持的最大信号带宽为20 MHz)进行更多的数字信号处理(Digital Signal Processing, DSP)操作,如快速傅里叶变换(FFT)和多输入多输出(MIMO)信号检测等。这些操作会导致LTE移动终端在DSP部分消耗更多的能量。对于以手持式设备和消费电子产品为主要应用的技术而言,降低移动终端中DSP部分的功耗和运算复杂度具有重要意义。2)对多模多协议的支持。3 GPP LTE的应用必然面临着与3G协议如WCDMA和TD-SCDMA共存的局面;多模多协议的移动终端正在逐步成为主流。如何从芯片设计的角度对多模多协议进行支持是下一代移动终端设计的难点。其中,数字前端是目前各种多模架构中必不可少的一个部分,并且由于其工作频率高,运算量大,是多模多协议移动终端需要解决的首要问题之一。针对以上两个技术难点,本文研究了3GPP LTE下行接收系统中DSP技术及其VLSI实现的关键技术,设计了低复杂度高性能的关键信号处理模块,并从系统级对性能-运算复杂度可伸缩性的LTE下行接收系统进行了分析和建模。
     数字前端是沟通射频模拟前端和基带处理器的桥梁,能够实现采样率转换(SRC),信道滤波,匹配滤波等功能,其运算量大,支持的模式多,是移动终端DSP部分的重要模块。本文研究了支持3GPP LTE/WCDMA/TD-SCDMA的多模多协议数字前端的低复杂度设计,主要工作包括高效的SRC和信道滤波的设计与实现以及3 GPP LTE主同步信号(PSS)的高效搜索。本文提出了以最低运算复杂度为目标的SRC因子分解算法,与现有算法相比,能节省约40%的运算。本文在数字前端中还研究了PSS信号(频域Zadoff-Chu序列)的冗余特性,并根据该特性设计了高效的PSS信号匹配滤波器。与传统的结构相比,该结构能够节省63.5%的复数乘法运算和46.5%的复数加法运算。
     快速傅里叶变换(FFT)/反变换(IFFT)处理器是MIMO-OFDM系统中的进行OFDM调制解调的关键处理模块,对系统的性能和芯片的功耗和面积具有很大影响。本文设计了基于24和23混合基算法的4路并行延迟反馈型128~2048点流水线FFT/IFFT处理器,并改进了针对多路并行结构的无乘法旋转因子计算方法。借助于计算机辅助的最优搜索,改进后的方法能够以更少的常系数乘法器完成FFT/IFFT处理器中旋转因子的计算。采用了本文提出的无乘法旋转因子计算方法的128点4路并行FFT/IFFT处理器的功耗和面积都要优于已发表的结果。
     MIMO技术是下一代移动通信中的关键技术。本文对MIMO信号检测的低功耗算法和芯片实现方法进行了研究,从算法和硬件架构的角度对MIMO信号检测器进行了分析,明确了制约吞吐率和能量效率的关键因素。本文改进了现有的度量值优先MIMO信号检测算法,为算法增加了预中止的特性,并提出了新型的格点枚举策略。在新型的枚举策略下,部分欧几里得距离的计算可以通过增量累加的方式实现。由于增量计算的复杂度显著低于直接计算,这使得本文提出的MIMO信号检测算法的运算量与传统算法相比节省20%以上。在VLSI设计中,本文设计了基于流水线区间堆的双向有序队列结构,并优化了MIMO检测器的时序控制,使得本文设计的MIMO信号检测器的性能明显优于已发表的结果。
     最后,在3GPP LTE下行接收系统的关键DSP模块有了充分认识的基础上本文研究了具有性能-运算复杂度可伸缩性的LTE下行接收系统。本文从性能认知/运算控制/状态判断三个方面对3GPP LTE下行接收系统进行分析,提出了基于等效噪声贡献的伸缩算法,根据系统当前的性能动态调整数据通路(包括FFT/IFFT处理器、信道估计器和MIMO信号检测器)的运算复杂度。通过动态调整,信道估计和MIMO信号检测的运算量能够节省30%以上
With the advance of mobile communications, voice service is not the only applications. Driven by services such as mobile internet, vedio phone, streaming media, and mobile TV, mobile communication technology advances towards providing a higher and higher data rates. The Long Term Evolution (LTE) released by the 3rd Generation Partnership Project (3GPP) is one of the most potential mainstream standard for next generation mobile communictions. LTE outperforms its competitors beacause it is of high data-rate, more flexible spectrum utilization, low latency and rich applications.
     There are some challenges that may slow future application of LTE. One is the power and cost constraints of mobile stations (MS). Compared to its 2G and 3G counterparts, LTE mobile stations are required to do more Digital Signal Processing (DSP) operations in a higher frequency (because the widest bandwidth defined in LTE standard is 20 MHz, and the corresponding sample rate of baseband processing is 30.72 MHz). The DSP operations include but are not restricted to Fast Fourier Transforms (FFT) and Multiple Input Multiple Output (MIMO) Detection. The existence of these DSP operations would consume much more power and require a larger battery. For handheld equipments and consumer electronics products, lowering the power consumption and computational complexity of DSP operations in mobile stations is of significant importance.
     The other chanllenge lies in the support of multiple mode and multiple standards. The applications of LTE cannot prevent the existence of 3G standards such as WCDMA and TD-SCDMA. Thus, supports of both 3G and B3G standards would be requiremtns to next generation mobile stations, and how to enable multiple standards supports is one of the design chanllenges. Digital Front End (DFE) is an essential part in all current multiple standards mobile station architectures, and is one of the most open issues when design a multiple standard mobile station, because it works in the highest rate and comsumes lots of computation.
     In order to solve the above problems, this dissertation studies on the DSP of LTE downlink receivers and investigates its VLSI implementation. This dissertation starts from finding the most computation-harvest bulding blocks in the system, optimizes them and proposes a system approach to enable the Quality-Computational Complexity Scalability to the system.
     DFE is the bridge between RF/Analog Front End and Baseband Processor. It accomplishes the following functions, such as Sample Rate Conversion (SRC), channelization filtering, matched filtering and so on. It is important module in multiple standard mobile stations because of the intensive computation and diversity of operation. A low computational complexity, multiple modes DFE support 3GPP LTE, WCDMA, and TD-SCDMA is studied in this dissertation. The contributions include a computational complexity oriented SRC factorization methods and efficient matched filtering of LTE PSS. Via the improved SRC factorization, the SRC and channelization part saves 40% computations complexity compared with those using a conventional factorization. The abundancy property of PSS (Zadoff-Chu sequence in frequency domain) is proven, and efficient matched filters are proposed which can save more than 63% complex multiplications and 46% complex additions.
     The FFT/IFFT processor is the key block in MIMO-Orthogonal Frequency Division Multiplex (OFDM) systems. It does the OFDM modulation and demodulation, and has effect on the power and cost of the chip. A R23 and R24 mixed radix 4-path parallel Delay Feedback pipline 128-2048-point FFT/IFFT processor is studied. The author also improves the multiplier-less Twiddle Factor multiplication method used in parallel FFT/IFFTs. Using computer aided optimization, the impoved mehod can use less constant mulpliers to complete the twiddle factor mulitplications, and FFT/IFFT processor adopting this method outperforms the published results.
     MIMO is the key technology in next generation wireless communcations. The low power algorithms and chip implementation methods of MIMO detectors are studied. The restricting factors of throughputs and energy efficiency are found. The author improves the Metric-First MIMO detection algorithm by emable pre-termination and a novel enumeration method. Via the novel enumeration, Partial Euclid Distance (PED) is computed by accumulation of PED increments. Because computation of PED increments is much smaller than direction calculation, algorithm propsed by this dissertation save more tha 20% computational complexity than conventional ones. While VLSI implementing, the author designs priority dual queue based on pipeline interval heap and optimize timing of MIMO detection, and obtain a significant results compared with published works.
     Quality-Compuational Complexity (Q-CC) Scalable signal processing is a recently developing technology, which enables system to. get a balance between energy and quality. In the last part of this dissertation, the author researches the Q-CC scalable DSP systems, and develops a Q-CC scalable LTE downlink receiver. This receiver adopts a control method based on evaluation of equivalent noise contribution. Simulation shows that channel estimation and MIMO detection in this receiver can save more than 30% computational complexity.
引文
[I]http://www.3gpp.org/LTE.
    [2]http://www.ask.com/wiki/3GPP_Long_Term_Evolution.
    [3]http://www.radio-electronics.com/info/cellulartelecomms/lte-long-term-evolution/ 3g-lte-basics.php.
    [4]Gardner, W. David. Freescale Semiconductor To Demo LTE In Mobile Handsets [N]. Information Week,2008,2(8).
    [5]Walko, John. NXP powers ahead with programmable LTE modem [N], EETimes, 2008,1(30).
    [6]Walko, John. PicoChip, MimoOn team for LTE ref design [N]. EETimes,2008 2(4).
    [7]Motorola Demonstrates Industry First Over-the-Air LTE Session in 700MHz Spectrum, http://mediacenter.motorola.com/.
    [8]https://netcom.no/mobiltbredband/4g/4Gengelsk.html.
    [9]4G Wireless Evolution-Telefonica and Nokia Siemens Demonstrate Live LTE in a Real Network Environment, http://4g-wirelessevolution.tmcnet.com/.
    [10]MTS and Huawei showcase LTE at Sviaz-Expocomm 2010 (in Russian), http://www.mtsgsm.com/.
    [11]Motorola and CMCC LTE live network at Shanghai Expo 2010, http://mediacenter.motorola.com/.
    [12]J. Salz. Digital transmission over cross-coupled linear channels [J]. AT&T Technical Journal,1985,64(6):1147-1159.
    [13]Increasing capacity in wireless broadcast systems using distributed transmission/directional reception (DTDR) [P], United States Patent,5,345,599, 1994-09-06.
    [14]G. J. Foschini. Layered space-time architecture for wireless communication in a fading environment when using multiple antennas [J]. Bell Labs Syst. Tech. J.,1996, 1:41-59.
    [15]G. D. Golden, G. J. Foschini, R. A. Valenzuela, and P. W. Wolniansky. Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture [J]. Electron. Lett.,1999,1(35):14-16.
    [16]爱立信承建深圳TD-LTE试点网络 同步推动全球化进程http://www.cww.net.cn/manufacture/html/2011/4/11/201141114102037.htm.
    [1]http://www.3gpp.org/LTE.
    [2]3GPP TS 36.211.3rd Generation Partnership Project, Technical Specification Group Radio Access Network:Evolved Universal Terrestrial Radio Access (E-UTRA), Physical Channels and Modulation (. Release 8) [S].
    [3]G. Hueber, L. Maurer, G. Strasser, R. Stuhlberger, K. Chabrak and R. Hagelauer., The design of a multi-mode/multi-system capable software radio receiver [A]. See] IEEE International Symposium on Circuits and Systems [C].2006:3961-3965.
    [4]Di Wu, J. Eilert, Liu Dake, A. Nilsson, E. Tell and E. Alfredsson. System architecture for 3GPP LTE modem using a programmable baseband processor [A]. See International Symposium on System-on-Chip [C].2009:132-137.
    [5]Michael T. Heideman and C. Sidney Burrus. On the number of multiplications necessary to compute a length-2n DFT [J]. IEEE Transactions On Acoustics Speech and Signal Processing,1986 (34):91-95.
    [6]Cooley, James W., and John W. Tukey. An algorithm for the machine calculation of complex Fourier series [J]. Mathematics of Computation,1965,19:297-301.
    [7]S. Winograd. On computing the discrete Fourier transform [J]. Mathematics of Computation,1978,32:175-199.
    [8]M. Speth, S. A. Fechtel, G. Fock and H. Meyr. Optimum receiver design for wireless broad-band systems using OFDM.I [J]. IEEE Transactions on Communications,1999,47:1668-1677.
    [9]M. Speth, S. Fechtel, G. Fock and H. Meyr. Optimum receiver design for OFDM-based broadband transmission.Ⅱ. A case study [J]. IEEE Transactions on Communications,2001,49:571-578.
    [10]J. Berkmann, C. Carbonelli, F. Dietrich, C. Drewes and Xu Wen. On 3G LTE Terminal Implementation-Standard, Algorithms, Complexities and Challenges [A]. See Wireless Communications and Mobile Computing Conference [C].2008: 970-975.
    [11]G. L. Barry J. Stuber. Broadband MIMO-OFDM Wireless Communications [J]. Proceedings Of The IEEE,2004,92(2):271-294.
    [12]P. Hoeher, S. Kaiser, P. Robertson. Pilot-symbol-aided channel estimation in time and frequency [J]. IEEE Transactions On Acoustics Speech and Signal Processing,1997,3:1845-1848.
    [13]Sinem Coleri, Mustafa Ergen, Anuj Puri, Ahmad Bahai. Channel Estimation Techniques Based on Pilot Arrangement in OFDM Systems [J]. IEEE Transactions on Broadcasting,2002,48 (3):223-229.
    [14]Sinem Coleri, Mustafa Ergen, Anuj Puri, Ahmad Bahai. A Study of Channel Estimation in OFDM Systems [A]. See IEEE Vehicular Technology Conference [C], Vancouver, Canada,2002.
    [15]M. Biguesh and A. Gershman. Training-based MIMO channel estimation:a study of estimator tradeoffs and optimal training signals [J]. IEEE Transactions on Signal Processing,2006,54:884-893.
    [16]M. Morelli and U. Mengali. A Comparison of Pilot-aided Channel Estimation Methods for OFDM Systems [J]. IEEE Transactions on Signal Processing,2001,49: 3065-3073.
    [17]Stefania Sesia, Matthew P. J. Baker, Issam Toufik. LTE, the UMTS Long Term Evolution:From Theory to Practice [M]. John Wiley and Sons,2009.
    [18]Channel Estimation for OFDM, http://www.freescale.com/.
    [19]A. Ancora, C. Bona and Slock D. T. M.. Down-Sampled Impulse Response Least-Squares Channel Estimation for LTE OFDMA [A]. See IEEE International Conference on Acoustics, Speech and Signal Processing [C].Honolulu, Hawaii,2007.
    [20]A. Paulraj, Rohit Nabar, Dhananjay Gore. Introduction to space-time wireless communications [M]. Cambridge University Press,2003.
    [21]J. Eilert, D. Wu, D. Liu. Implementation of a Programmable Linear MMSE Detector for MIMO-OFDM [A]. See IEEE International Conference on Acoustics, Speech and Signal Processing [C],2008.
    [22]Melanie Witzke, Stephan Baro, Frank Schreckenbach, Joachim Hagenauer. Iterative Detection of MIMO Signals with Linear Detectors [A]. See Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers [C].2002,1:289-293.
    [23]A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner and H. Bolcskei. VLSI implementation of MIMO detection using the sphere decoding algorithm [J]., IEEE Journal of Solid-Slate Circuits,2005,40:1566-1577.
    [24]M. Shabany and P. G. Gulak. A 0.13um CMOS 655Mb/s 4x4 64-QAM K-Best MIMO detector [A]. See Solid-State Circuits Conference-Digest of Technical Papers [C].2009:256-257.,257a.
    [25]Liao Chun-Hao, Wang To-Ping and Chiueh Tzi-Dar. A 74.8 mW Soft-Output Detector IC for 8x8 Spatial-Multiplexing MIMO Communications [J]. IEEE Journal of Solid-State Circuits,2010,45:411-421.
    [26]Qin Y, Hui B, Chang K. Performance and complexity evaluation of pilot-based channel estimation algorithms for 3GPP LTE downlink[A]. See Second International Conference on Ubiquitous and Future Networks (ICUFN) [C].2010.
    [27]http://www.nt.tuwien.ac.at/about-us/staff/josep-colom-ikuno/lte-simulators/.
    [28]3GPP LTE Wireless Design Library, http://www.agilent.com/.
    [29]D. Cescato, M. Borgmann, H. Bolcskei, J. Hansen and A. Burg. Interpolation-based QR decomposition in MIMO-OFDM systems [A]. See IEEE 6th Workshop on Signal Processing Advances in Wireless Communications [C].2005: 945-949.
    [30]Moray Rumney. LTE and the Evolution to 4G Wireless:Design and Measurement Challenges [M]. John Wiley and Sons,2009
    [1]软件无线电,http://zh.wikipedia.org/.
    [2]Wally H. W. Tuttlebee. Software defined radio:enabling technologies [M]. John Wiley and Sons,2003.
    [3]杨小牛,邹少丞,楼才义,赖兰剑[译],Walter Tuttlebee软件无线电:技术与实现[M].北京:电子工业出版社,2004.
    [4]TS 36.101 v840.3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception (Release 8) [S].
    [5]TS 25101 v851.3rd Generation Partnership Project; Technical Specification Group Radio Access Network; User Equipment (UE) radio transmission and reception (FDD) (Release 8) [S].
    [6]TS 25102-851.3rd Generation Partnership Project; Technical Specification Group Radio Access Network; User Equipment (UE) radio transmission and reception (TDD) (Release 8) [S].
    [7]王肖3GPP LTE射频接收机研究[D]复旦大学,2011
    [8]MARSALEK. Analytical EVM Calculation for OFDM Systems with NonLinear Power Amplifiers [D]. FEEC BUT
    [9]Jussi Vesma and Tapio Saramaki. Polynomial-Based Interpolation Filters-Part I: Filter Synthesis [J]. Circuits Systems Singal Processing,2007.
    [10]G. Hueber, Yaning Zou, K. Dufrene, R. Stuhlberger and M. Valkama. Smart Front-End Signal Processing for Advanced Wireless Receivers [J]. IEEE Journal of Selected Topics in Signal Processing,2009,3:472-487.
    [11]G. Hueber, R. Stuhlberger and A. Springer. Concept for an adaptive digital front-end for multi-mode wireless receivers [A]. See IEEE International Symposium on Circuits and Systems [C].2008:89-92.
    [12]C. Martelli, R. Reutemann, C. Benkeser and Huang Qiuting. A 50mW HSDPA Baseband Receiver ASIC with Multimode Digital Front-End [A]. See IEEE International Solid-State Circuits Conference. Digest of Technical Papers [C].2007: 260-261.
    [13]V. Mocanu, C. Anghel, A.A. Enescu. FPGA implementation of a Digital Front End block for a Multi-Carrier Multi-Antenna system [A]. See Internatioanl Semiconductor Conference CAS [C].2009:431-434.
    [14]Gernot Hueber, Rainer Stuhlberger and Andreas Springer. An Adaptive Digital Front-End for Multi-mode Wireless Receivers [J]. Circuits and Systems for Future Generations of Wireless Communications,2009:249-270.
    [15]K. G. Smitha, R. Mahesh and A. P. Vinod. A reconfigurable multi-stage frequency response masking filter bank architecture for software defined radio receivers [A]. See IEEE International Symposium on Circuits and Systems [C].2008:85-88.
    [16]Hueber G, Zou Y, Dufrene K, et al. Smart Front-End Signal Processing for Advanced Wireless Receivers [J]. IEEE Journal of Selected Topics in Signal Processing,2009,3(3):472-487.
    [17]N. Michael and A. P. Vinod. Reconfigurable architecture for arbitrary sample rate conversion in software defined radios [A]. See IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications [C].2008:1-6.
    [18]D. M. Pham, A. B. Premkumar and A. S. Madhukumar. Efficient Sample Rate Conversion in Software Radio Employing Folding Number System [A]. See IEEE International Conference on Communications [C].2009:1-5.
    [19]WCDMA标准[S].
    [20]LTE标准[S].
    [21]Chi-Fang L, Yuan-Sun C, Wern-Ho S, et al. A low-power ASIC design for cell search in the W-CDMA system [J]. IEEE Journal of Solid-State Circuits,2004,39(5): 852-857.
    [22]Darbel N, Rasse Y, Jubelin B, et al. A UMTS-FDD Cell Search Engine [J]. The Journal of VLSI Signal Processing,2004,38(1):73-84.
    [23]Faheem Sheikh and Shahid Masud. Sample rate conversion filter design for multi-standard software radios [J]. Digital Signal Processing,2010,20:3-12.
    [24]F. Sheikh and S. Masud. Efficient Sample Rate Conversion for Multi-Standard Software Defined Radios [A]. See IEEE International Conference on Acoustics, Speech and Signal Processing [C].2007:329-332.
    [25]F. Sheikh and S. Masud. Improved Factorization for Sample Rate Conversion In Software Defined Radios [A]. See IEEE International Symposium on Circuits and Systems [C].2007:2526-2529.
    [26]Yong Ching Lim. Frequency-response masking approach for the synthesis of sharp linear phase digital filters [J]. IEEE Transactions on Circuits and Systems,1986, 33(4):357-364.
    [27]K. G. Smitha. R. Mahesh and A. P. Vinod. A reconfigurable multi-stage frequency response masking filter bank architecture for software defined radio receivers [A]. See IEEE International Symposium on Circuits and Systems [C].2008:85-88.
    [28]B. M. Popovic and F. Berggren. Primary Synchronization Signal in E-UTRA [A]. See IEEE 10th International Symposium on Spread Spectrum Techniques and Applications [C].2008:426-430.
    [29]S. Beyme and C. Leung. Efficient computation of DFT of Zadoff-Chu sequences [J]. Electronics Letters,2009,45:461-463.
    [30]B. M. Popovic. Efficient DFT of Zadoff-Chu sequences [J]. Electronics Letters, 2010,46:502-503.
    [31]刘树棠,黄建国[译],奥本海姆,谢弗,巴克.离散时间信号处理[M].西安:西安交通大学出版社,2001.
    [32]LIN Feiyu, QIAO Weiming, et. al. Programmable Digital Front-End Design for Software Defined Radio [A]. See International Conerence on Networks Security, Wireless Communications and Trusted Computing. [C].2010
    [1]3GPP TR 25.814, Physical layer aspects for evolved Universal Terrestrial Radio Access (UTRA) (Release 7) [S]. FRANCE:3rd Generation Partnership Project,2006.
    [2]Shousheng H. Torkelson M. Design and implementation of a 1024-point pipeline FFT processor [A]. See Custom Integrated Circuits Conference. Proceedings of the IEEE [C].1998.
    [3]Yuan C, Yu-Wei L, Yu-Chi T, et al. A 2.4-Gsample/s DVFS FFT Processor for MIMO OFDM Communication Systems [J]. IEEE Journal of Solid-State Circuits, 2008,43(5):1260-1273.
    [4]Hang L, Hanho L. A high performance four-parallel 128/64-point radix-24 FFT/IFFT processor for MIMO-OFDM systems [A]. See IEEE Asia Pacific Conference on Circuits and Systems [C].2008.
    [5]Liang L, Junyan R, Xuejing W, et al. Design of Low-Power, 1GS/s Throughput FFT Processor for MIMO-OFDM UWB Communication System [A]. See IEEE International Symposium on Circuits and Systems [C].2007.
    [6]Sansaloni T, Perez-Pascual A, Torres V, et al. Efficient pipeline FFT processors for WLAN MIMO-OFDM systems [J]. Electronics Letters,2005,41(19):1043-1044.
    [7]Fang-Li Y, Yi-Hsien L, Chih-Feng W, et al. A 256-point dataflow scheduling 2x2 MIMO FFT/IFFT processor for IEEE 802.16 WMAN [A]. See IEEE Asian Solid-State Circuits Conference [C].2008.
    [8]Yu-Wei L, Chen-Yi L. Design of an FFT/IFFT Processor for MIMO OFDM Systems [J]. IEEE Transactions on Circuits and Systems Ⅰ:Regular Papers,2007, 54(4):807-815.
    [9]Yu-Wei L, Hsuan-Yu L, Chen-Yi L. A 1-GS/s FFT/IFFT processor for UWB applications [J]. IEEE Journal of Solid-State Circuits,2005,40(8):1726-1735.
    [10]Mathew J, Maharatna K, Pradhan D. K. A low power 128-pt implementation of FFT/IFFT for high performance wireless personal area networks [A]. See Research in Microelectronics and Electronics [C].2006:377-380
    [11]Tang S N, Tsai J W, Chang T Y. A 2.4-GS/s FFT Processor for OFDM-Based WPAN Applications [J]. IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs,2010,57(6):451-455.
    [12]Kim D, Choi H W. Advanced constant multiplier for multipath pipelined FFT processor [J]. Electronics Letters,2008,44(8):518-519.
    [13]刘凌[译],Meyeer Baese数字信号处理的FPGA实现(第2版)[M].北京:清华大学出版社,2006.
    [14]J. W. Cooley and J. W. Tukey. An algorithm for the Machine Calculation of Complex Fourier Series [J]. Mathematics of Computation,1965.19:297-301.
    [15]S. Yoshizawa and Y. Miyanaga. Use of a Variable Wordlength Technique in an OFDM Receiver to Reduce Energy Dissipation [J]. IEEE Transactions on Circuits and Systems Ⅰ:Regular Papers,2008,55:2848-2859.
    [16]Sunil K. San Diego Kandukuri Narayan. BIT-WIDTH MINIMIZATION SCHEME FOR WIRELESS COMMUNICATION [P]. WO/2009/120456, 2009-10-01.
    [17]Markus Puschel, Jose M. F. Moura, Jeremy Johnson, David Padua, Manuela Veloso, Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, Kang Chen, Robert W. Johnson, and Nick Rizzolo. SPIRAL:Code Generation for DSP Transforms [A]. See the IEEE special issue on Program Generation, Optimization and Adaptation [C].2005,93(2):232-275.
    [18]Multiplierless Constant Multiplication, http://www.spiral.net/.
    [19]D. Kim and H. W. Choi. Advanced constant multiplier for multipath pipelined FFT processor [J]. Electronics Letters,2008,44:518-519.
    [20]VeriSilicon SMIC 0.13um Low-Leakage High-Density Standard Cell Library DataBook.
    [21]SMIC 130nm Logic013G Process 1.2-Volt SAGE-XTM v2.0 Standard Cell Library DataBook.
    [1]M. Shabany and P. G. Gulak. A 0.13um CMOS 655Mb/s 4x4 64-QAM K-Best MIMO detector [A]. See IEEE International Solid-State Circuits Conference-Digest of Technical Papers [C].2009:256-257,257a.
    [2]Murugan A D, Gamal H E,Damen M O, et al. A Unified Framework for Tree Search Decoding:Rediscovering the Sequential Decoder [J]. IEEE Transactions on Information Theory,2006,52(3):933-953.
    [3]T.P. Wang, T.-H. Lee, C.H. Liao, and T.D. Chiueh. Low-complexity soft-output MIMO detection for iterative decoding using modified best first tree search [J]. IEEE Transactions on Wireless Communication, submitted.
    [4]Chen Chi-Yun and T. D. Chiueh. Iterative Receiver for Mobile MIMO-OFDM Systems Using ICI-Aware List-Update MIMO Detection [A]. See IEEE International Conference on Communications (ICC) [C].2010:1-5.
    [5]Liao Chun-Hao, Wang To-Ping and Chiueh Tzi-Dar. A 74.8 mW Soft-Output Detector IC for 8x8 Spatial-Multiplexing MIMO Communications [J]. IEEE Journal of Solid-State Circuits,2010,45:411-421.
    [6]C. Schnorr and M. Euchner. Lattice basis reduction:Improving practical lattice basis reduction and solving subset sum problems [J]. Mathematical Programming, 1997,66:181-199.
    [7]M. Damen, H. El Gamal, and G. Caire. On maximum-likelihood detection and the search for the closest lattice point [J]. IEEE transactions on Information Theory, 2003,49(10):2389-2402.
    [8]Burg, A. and M. Borgmann, et al. VLSI implementation of MIMO detection using the sphere decoding algorithm [J]. IEEE Journal of Solid-State Circuits,2005, 40(7):1566-1577.
    [9]M. Shabany, K. Su, and P. Gulak. A pipelined scalable high-throughput implementation of a near-ml k-best complex lattice decoder [A]. See IEEE International Conference on Acoustics, Speech and Signal Processing [C].2008,31: 3173-3176.
    [10]B. Mennenga and G. Fettweis. Search sequence determination for tree search based detection algorithms [A]. See Sarnoff Symposium [C].2009:1-6.
    [11]A. Carlsson. The DEAP:A double-ended heap to implement double-ended priority queues [J]. Information Processing Letters,1987,26:33-36.
    [12]J. van Leeuwen and D. Wood. Interval heaps [J]. The Computer Journal,1993, 36(3):209-216.
    [13]Sartaj Sahni. Data Structures, Algorithms, and Applications in C++[M]. The McGraw Hill Companies,2004.
    [14]R. Bhagwan and B. Lin. Fast and scalable priority queue architecture for high-speed network switches [A]. See Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings of the IEEE [C].2000: 538-547.
    [15]Aggelos Ioannou and Manolis G. H. Katevenis. Pipelined heap (priority queue) management for advanced scheduling in high-speed networks [J]. IEEE/ACM Transactions on Networks,2007,15:450-461.
    [1]J. Ankeny, The Assault on Batteries [J], Wireless Review.2005
    [2]A. Dejonghe, B. Bougard, S. Pollin, J. Craninckx, A. Bourdoux and L. Ven Der Perre, et al..Green Reconfigurable Radio Systems [J]. Signal Processing Magazine, IEEE,2007,24:90-101.
    [3]Scalable Multi-tasking Baseband for Mobile Communications, http://www.multibase-project.eu/.
    [4]Li Min, D. Novo, B. Bougard, C. Desset, A. Dejonghe and L. Van Der Perre, et al. A System Level Algorithmic Approach toward Energy-Aware SDR Baseband Implementations [A]. See IEEE International Conference on Communications [C]. 2009:1-6.
    [5]Min Li, David Novo, Bruno Bougard, et al. Algorithm-Architecture Co-Design for Energy Efficient Software Defined Radio Baseband [A]. See SDR Forum [C].2008.
    [6]S. Yoshizawa and Y. Miyanaga. Use of a Variable Wordlength Technique in an OFDM Receiver to Reduce Energy Dissipation [A]. See IEEE International Symposium on Circuits and Systems [C].2007:3175-3178.
    [7]S. Yoshizawa and Y. Miyanaga. Use of a Variable Wordlength Technique in an OFDM Receiver to Reduce Energy Dissipation [J]. IEEE Transactions on Circuits and Systems Ⅰ:Regular Papers,2008,55:2848-2859.
    [8]Sunil K. San Diego Kandukuri Narayan. BIT-WIDTH MINIMIZATION SCHEME FOR WIRELESS COMMUNICATION [P]. WO/2009/120456, 2009-10-01.
    [9]Nagendra NAGARAJA. LOW POWER QUALITY-ENERGY SCALABLE OFDMA BASEBAND DESIGN [P]. WO/2010/141344,2010-12-09.
    [10]M. Morelli and U. Mengali. A comparison of pilot-aided channel estimation methods for OFDM systems [J]. IEEE Transactions on Signal Processing,2001,49: 3065-3073.
    [11]Branislav M. Popovic and Fredrik Berggren. Primary Synchronization Signal in E-UTRA [A]. See 10th International Symposium on Spread Spectrum Techniques and Applications [C].2008:426-430.
    [12]J. J. van de Beek, M. Sandell and P. O. Borjesson. ML estimation of time and frequency offset in OFDM systems [J]. IEEE Transactions on Signal Processing,1997, 45:1800-1805.
    [13]刘树棠,黄建国[译],奥本海姆,谢弗,巴克.离散时间信号处理[M].西安:西安交通大学出版社,2001.
    [14]Huilin Xu, Guo Wei, Jinkang Zhu. A Novel SNR Estimation Algorithm for OFDM [A]. See IEEE 61st Vehicular Technology Conference, VTC [C].2005,5: 3068.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700