未来移动通信关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线通信系统的设计需要兼顾可靠性和有效性。为了提高传输的可靠性,需要采用先进的信号检测技术来获得好的误码性能,同时采用分集技术克服无线信道的衰落;为了提高传输的有效性,需要采用高效的复用,多址技术来提高系统的频谱效率。本论文从提高传输可靠性与有效性出发,主要从下面几方面进行讨论:数字调制系统的最优检测结构,高效的最优与准最优检测算法;频率选择性衰落信道中的发射分集设计;两种重叠复用技术,包括重叠时分复用(OVTDM)和重叠码分复用(OVCDM);一种重叠多址技术,即重叠码分多址(OVCDMA);最终对干扰对齐技术进行分析。
     本文首先讨论了白化滤波接收机这一数字调制系统的最优检测结构。并对之进行了改进。提出了基于矩阵分解的白化滤波器设计,较之原本的基于多项式分解的白化滤波器结构,可以应用于时变信道,应用范围更广。之后讨论了在通信中具有重要意义的最近格点问题,为了解决这个问题,介绍了球译码算法和概率数据辅助算法这两种算法,并对球译码算法进行了改进,利用恒幅度字符集的特性,使得球译码算法可以适用于过载系统。而给出了另外一种形式的概率数据辅助算法,该算法与之前的概率数据辅助算法完全等价,但避免了对信道相关矩阵的求逆。
     在频率选择性衰落信道中的发射分集设计方面,从空间分集的成因出发进行分析,将平坦衰落信道中的两条空时编码设计准则——差错矩阵满秩准则和差错矩阵最小行列式最大准则——推广到了频率选择性衰落信道。第一条准则使得空时编码获得满空间分集,第二条使空时编码的编码增益最大化。之后以这两条设计准则为指导,将原本适用于平坦衰落的空时编码推广到了频率选择性衰落信道之中。提出了一种利用零相关窗码字的适用于频率选择性衰落信道的空时分组码(STBC)设计,该方案利用零相关窗码字分别对发送数据的各个副本进行扩频,在接收端利用零相关窗码字的窗内理想相关特性分离各个副本,再合并接收获得发射分集增益。该方案与已有的频率选择性衰落信道的空时分组码方案相比复杂度更低。之后又提出了一种适用于频率选择性衰落信道的螺旋分层空时码设计。该设计可以灵活地在分集与复用间进行切换,属于全复用全分集的空时编码。
     在对OVTDM的研究方面,主要侧重于对其理论方面的探讨。在对OVTDM的系统模型与检测方式的基本介绍后,对OVTDM的几个基本理论问题进行了分析。首先分析了OVTDM的功率谱密度,分析证明OVTDM的功率谱与一般的数字调制系统具有相同的形式。消除了对于波形重叠可能会扩展带宽的疑虑。之后分析了OVTDM的信道容量。研究表明,OVTDM通过波形重叠,使得其信道容量超过了奈奎斯特系统的信道容量。并且当重叠重数超过成型脉冲的带宽与无符号间干扰采样周期的乘积后,OVTDM的信道容量最终能够达到波形信道的信道容量。这也是一切数字调制系统的终极信道容量。
     在对OVCDM的研究方面,主要侧重于对OVCDM的简化算法的设计。在对OVCDM的系统模型与检测方式的基本介绍后,介绍了通过将多级OVCDM进行级联而获得更好性能的级联OVCDM后,针对级联OVCDM检测复杂度过高的问题进行了分析,提出了一种并行检测结构,根据OVCDM的结构特点,将原本的OVCDM进行拆分,分割为多个子OVCDM编码结构后分别进行检测,并在这些子OVCDM间进行软信息交换。最终在性能损失极小的情况下降低了检测复杂度两个量级。
     在对OVCDMA的研究方面,侧重于对系统的设计。在对OVCDMA的思想进行介绍后,对OVCDMA系统进行了详细的讨论。OVCDMA将互补正交码及其移位重叠作为地址码分配给各用户。提高了码字利用率。本文中将OVCDMA等效为时变系统,并设计出了对应的最优检测结构。随后又讨论了OVCDMA的小区组网方式。通过将不同的互补正交码分配给相邻小区,使得小区间的信号彼此正交。便将联合检测的范围限制在本小区内。小区间根据四色定理进行组网,实现了重用因子为4的四色组网。
     在对干扰对齐技术的研究方面,主要侧重于在K用户多发多收(MIMO)高斯干扰信道这一最接近实际情况的条件下的干扰对齐机制的研究。干扰对齐由于其能达到干扰信道的自由度上界,一提出便得到了理论界的关注,本文在介绍了干扰对齐的思想之后,介绍了一种在K用户MIMO高斯干扰信道中获得数值近似干扰对齐解的方法,并在时分双工(TDD)系统中,利用上下行信道互易性的特点,将该方法改造成了分布式的算法,大大降低了在收发端对于信道信息的要求。之后还给出了一种3用户时的闭式解。
Spectrum efficiency and reliability are ultimate targets of wireless communication system design. Advanced signal detection technologies are employed to improve error correction performance. Furthermore, because of the channel fading, diversity techniques should be used to improve the reliability of wireless transmission. Effective multiplexing and multi-access techniques should also be used to gain higher spectrum efficiency. In this thesis, several techniques are discussed, including optimal detection structure of digital modulation system, effective optimal and near-optimal detection algorithm, and space transfer diversity in frequency selective channel, overlapped multiplexing implemented by OVTDM, OVCDM, and overlapped multi access implemented by OVCDMA, interference alignment.
     Whiten filter receiver, the optimal detection structure of digital modulation system, is discussed at first. An improved whiten filter based on matrix decomposition is proposed. Compared with the original whiten filter based on polynomial factorization, the new design can be applied to time-varied channels. Second, closest lattice point question, a very important question in communication, is discussed. To solve this question, sphere decoding algorithm (PDA) and probability data assisted algorithm (PDA) are introduced. An enhanced SDA is proposed. Using constant amplitude property new SDA is applicable to overloaded system. A new form PDA is also proposed. It is equal to the original PDA but do not need inverse of channel correlation matrix.
     Transfer diversity design in frequency-selective channel is next discussed. There are two criterions in space-time coding design. First one shows that full diversity can be obtained if error matrix is always of full rank. Second one shows how to maximize coding gain. Under the guidance of these two criterions, several space-time coding scheme used applied to flat fading channel are modified to frequency-selective channel. A transfer diversity scheme based on zero correlation window (ZCW) code is proposed. It is equivalent to the space-time block coding but with lower complexity. A thread layer space-time coding scheme which is suitable for frequency-selective channel is proposed. It is a full diversity full multiplexing (FDFM) space-time code and can switch between diversity and multiplexing freely.
     Theoretical research of overlapped time division multiplexing (OVTDM) is the next topic. After fundamental introduction of OVTDM, Several theoretical question of OVTDM, like the power spectrum density of OVTDM, channel capacity of OVTDM, is answered. The research of capacity of OVTDM shows that by waveform overlapping OVTDM can achieve higher capacity than Nyquist system. When overlapping factor is greater than the product of shaping pulse bandwidth and shaping pulse ISI-free sampling interval, capacity of OVTDM is equal to the capacity of waveform channel capacity which is the upper bound of all digital modulation channels.
     Fast detection algorithm of overlapped code division multiplexing (OVCDM) is discussed. After fundamental introduction of OVCDM, Concatenate OVCDM is discussed. A parallel detection structure is proposed to reduce complexity of concatenate OVCDM detection. Next topic is the system design of overlapped code division multi-access (OVCDMA). OVCDMA uses ZCW code and its shift as address code. Optimal receiver of OVCDMA and several question of OVCDMA are discussed. At last interference alignment (IA) technology is discussed.
引文
[1]Tuchler, M. and Singer, A. C. "Turbo equalization:an overview", IEEE Trans. Inf. Theory, vol.57(8), pp:920-952, Feb.2011.
    [2]Koetter, R. Singer, A. C. and Tuchler, M. "Turbo equalization", IEEE Signal Proc. Magazine, vol.21(1), pp:67-80,2004.
    [3]Proakis, J. Digital Communications,3rd ed. New York:McGraw-Hill,1995.
    [4]Haykin, S. Communication Systems,3rd ed. Toronto, ON, Canada:Wiley Canada,1994.
    [5]Lin, S. and Costello, J. Error Control Coding. Englewood Cliffs, NJ:Prentice-Hall,1983.
    [6]Viterbi, A. J. "Error bounds for convolutional codes and an asymptotically optimal decoding algorithm," IEEE Trans. Inform. Theory, vol. IT-13, pp:260-269, Apr.1967.
    [7]Jelinek, F. "A fast sequential decoding algorithm using a stack", IBM J. Res. Develop. vol.13, pp:675-685, Nov.1975.
    [8]Bahl, L. Cocke, J. Jelinek, F. and Raviv, J. "Optimal decoding of linear codes for minimizing symbol error rate", IEEE Trans. Inf. Theory, vol. IT-20, pp:284-287, Mar.1974.
    [9]Nyquist, H. "Certain topics in telegraph transmission theory", Trans. American Inst. of Electrical Engineers, vol.47(2), pp:617-644, Apr.1928.
    [10]Rappaport, T. S. Wireless Communications:Principles and Practice, Upper Saddle River, NJ:Prentice Hall,1996.
    [11]郭梯云,邬国扬,李建东.移动通信.西安:西安电子科技大学出版社,2000.
    [12]Rusek, F. and Anderson, J. B. "Constrained capacities for faster-than-Nyquist signaling", vol.55(2), pp:764-775, Feb.2009.
    [13]李道本.信号的统计检测与估计理论,第2版.北京:科学出版社,2004.
    [14]Tse, D. and Viswanath, P. Fundamentals of Wireless Communication. Cambridge:Cambridge University Press,2005.
    [15]Lender, A. "Correlative digital communication techniques", IEEE Trans. Comm. Tech. vol.12(4), pp:128, Dec.1964.
    [16]Lucky, R. W. "Decision feedback and faster-than-Nyquist transmission", In Proc. International Symposium on Information Theory, Jun.1970.
    [17]李道本,一种时间分割复用传输方法与技术.国际专利,申请号PCT/CN2006/001585.
    [18]李道本.一种频率分割复用传输方法与技术.国际专利,申请号PCT/CN2006/002012.
    [19]王竞,李道本.“时频二维重叠复用系统”,电子与信息学报,vol.30(5),pp:1176-1179,2008.
    [20]李道本,一种编码复用(多址)编码方法.国际专利,申请号PCT/CN2007/000536.
    [21]孙宇昊.广义多入多出系统关键技术研究——符号重叠复用、并行分组地址码与多码检测[学位论文].北京:北京邮电大学,2006.
    [22]缪德山.广义重叠复用系统若干技术的研究[学位论文].北京:北京邮电大学,2007.
    [23]Welch, L. "Lower bounds on the maximum cross correlation of signals", IEEE Trans. Inf. Theory, vol.20(3), pp:397, May 1974.
    [24]Sarwate, D. "Bounds on crosscorrelation and autocorrelation of sequences", IEEE Trans. Inf. Theory, vol.25(6), pp:720, Nov.1979.
    [25]Verdu, S. Multiuser Detection. Cambridge, UK:Cambridge University Press, 1998.
    [26]Tang, Y. and Ge W. "Symbol synchronization algorithm based on pseudo-superimposed Zadoff-Chu in advanced-LTE", In APCIP 2009, vol.1, pp: 140, Jul.2009.
    [27]Golay, M. J. "Complementary series", IRE Trans. Inf. Theory, vol.7(2), pp:82, Apr.1961.
    [28]Schweitzer, B. P. "Generalized complementary code sets", [Dissertation], Los Angeles, University of California, USA, pp:87.
    [29]李道本.一种具有零相关窗的扩频多址编码方法.中国,专利号:CN1321374A,申请号:00801970.3(国际申请:PCT/CN00/00028),2001年11月.
    [30]程佩青.数字信号处理教程,第2版.北京:清华大学出版社,2001.
    [31]G. Forney. "Maximum-likelihood estimation of digital sequences in the presence of intersymbol interference", IEEE Trans. Inf. Theory, vol. IT-18(3), pp: 363-378, May 1972.
    [32]方保镕,周继东,李医民.矩阵论.北京:清华大学出版社,2004.
    [33]Hassibi, B. and Vikalo, H. "On the expected complexity of sphere decoding", In Conference Record of the Thirty-Fifth Asilomar Conference on Signals, Systems and Computers 2001, vol.2, pp:1051,2001.
    [34]Damen, M.O. El Gamal, H. and Caire, G. "On maximum-likelihood detection and the search for the closest lattice point", IEEE Trans. Inf. Theory, vol.49(10), pp: 2389, Oct.2003.
    [35]Hassibi, B. and Vikalo, H. "On the sphere-decoding algorithm I. expected complexity", IEEE Trans. Signal Proc. vol.53(8), pp:2806, Aug.2005.
    [36]Hassibi, B. and Vikalo, "On the sphere-decoding algorithm II. Generalizations, second-order statistics, and applications to communications", IEEE Trans. Signal Proc. vol.53(8), pp:2819, Aug.2005.
    [37]Huang, C. Liu, D. and Fu, L. "Visual tracking in cluttered environments using the visual probabilistic data association Filter", IEEE Trans. Robotics, vol.22(6), pp: 1292, Dec.2006.
    [38]Musicki, D. Evans, R. and Stankovic, S. "Integrated probabilistic data association", IEEE Trans. Auto. Control, vol.39(6),1237, Jun.1994.
    [39]Luo, J. Pattipati, K. R. Willett, P. K. et al. "Near-optimal multiuser detection in synchronous CDMA using probabilistic data association", IEEE Comm. Letters, vol. 5(9), pp:361, Sep.2001.
    [40]Pham, D. Pattipati, K. R. Willett, P. K. et al. "A generalized probabilistic data association detector for multiple antenna systems", IEEE Comm. Letters, vol.8(4), pp:205, Apr.2004.
    [41]Pham, D. Luo, J. Pattipati, K. R. et al. "A PDA-Kalman approach to multiuser detection in asynchronous CDMA", IEEE Comm. Letters, vol.6(11), pp:475, Nov. 2002.
    [42]Luo, J. "Improved multiuser detection in code-division multiple access communications", [Dissertation], Storrs, University of Connecticut, USA,2002
    [43]Hager, W. W. "Updating the inverse of a matrix", SIAM Review, vol.31, pp: 221-239,1989.
    [44]Diggavi, S. N. Al-Dhahir, N. Stamoulis, A. et al. "Great expectations:the value of spatial diversity in wireless networks", Proceedings of the IEEE, vol.92(2), pp:219-270, Feb.2004.
    [45]Wittneben, A. "A New bandwidth efficient transmit antenna modulation diversity scheme for linear digital modulation", In Proc. IEEE International Conference on Communications (ICC), pp:1630-1634, May 1993.
    [46]Dammann, A. and Kaiser, S. "Standard conformable antenna diversity techniques for OFDM and its application to the DVB-T system", In Proc. IEEE Global Telecommunications Conference (GLOBECOM), pp:3100-3105, Nov.2001.
    [47]Zheng, L. and Tse, D. N. "Communication on the Grassmann manifold:a geometric approach to the noncoherent multiple-antenna channel". IEEE Trans. Inf. Theory, vol.48(2), pp:359-383, Feb.2002.
    [48]Zheng, L. and Tse, D. N. "Diversity and multiplexing:a fundamental tradeoff in multiple-antenna channels", IEEE Trans. Inf. Theory, vol.49(5), pp:1073-1096, May 2003.
    [49]Bingham, J. A. "Multicarrier modulation for data transmission:an idea whose time has come", IEEE Comm. Magazine, vol.28(5), pp:5-14, May 1990.
    [50]Nee, R. and Prasad, R. OFDM for Wireless Multimedia Communications, Boston:Artech House Publishers,2000.
    [51]Plass, S. Dammann, A. Richter, et al. "Resulting channel characteristics from time-varying cyclic delay diversity in OFDM", In Vehicular Technology Conference (VTC),pp:1336, Oct.2007.
    [52]Tarokh, V. Naguib, A. Seshadri, N. et al. "Space-time codes for high data rate wireless communication:performance criteria in the presence of channel estimation errors, mobility, and multiple paths. IEEE Trans. Comm. vol.47(2), pp:199-207, Feb.1999.
    [53]Tarokh, V. Seshadri, N. and Calderbank, A. R. "Space-time codes for high data rate wireless communication:performance criterion and code construction", IEEE Trans. Inf. Theory, vol.44(2), pp:744-765, Mar.1998.
    [54]Giannakis, G. B. Liu, Z. Ma, X. et al.王刚,等.译 Space-Time Coding for Broadband Wireless Communications.北京:机械工业出版社,2009.
    [55]Alamouti, S. M. "A simple transmit diversity technique for wireless communications". IEEE Journal on Selected Areas in Comm. vol.16(8), pp: 1451-1458, Oct.1998.
    [56]Tarokh, V. Jafarkhani, H. and Calderbank, A. R. "Space-time block codes from orthogonal designs", IEEE Trans. Inf. Theory, vol.45(5), pp:1456-1467, Jul.1999.
    [57]Tarokh, V. Jafarkhani, H. and Calderbank, A. R. "Space-time block coding for wireless communications:performance results", IEEE Journal on Selected Areas in Communications, vol.17(3), pp:451-460, Mar.1999.
    [58]Ganesan, G. and Stoica, P. "Space-time diversity", in Signal Proc. Adv. In Wireless and Mobile Comm.2000.
    [59]Telatar, E. "Capacity of multiantenna gaussian channels", Bell Labs Technical Memorandum,1995.
    [60]Foschini, G. J. and Gans, M. J. "On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, vol.6, pp:311-335,1998.
    [61]Chuah, C. N. Tse, D. N. Kahn, J. M. et al. "Capacity scaling in MIMO wireless systems under correlated fading", IEEE Trans. Inf. Theory, vol.48(3), pp:637-650, Mar.2002.
    [62]Shiu, D. S. Foschini, G. J. Gans, M. J. et al. "Fading correlation and its effect on the capacity of multielement antenna systems", IEEE Transactions on Communications, vol.48(3), pp:502-513, Mar.2000.
    [63]Foschini, G. J. "Layered space-time architecture for wireless communication in a fading environment when using multielement antennas", Bell Labs Technical Journal, pp:41-59,1996.
    [64]Shiu, D. S. and Kahn, M. "Layered Space-time Codes for Wireless Communications using Multiple Transmit Antennas", In Proc. IEEE International Conference on Communications (ICC), pp:436-440, May 1999.
    [65]Wolniansky, P. W. Foschini, G. J. Golden, G. D. et al. "V-BLAST:an architecture for realizing very high data rates over the rch-scattering wireless channel", In Proc. URSI International Symposium on Signals, Systems, and Electronics (ISSSE), pp:295-300,1998.
    [66]Richter, G. Bossert, M. Costa, E. et al. "On time-varying cyclic delay diversity", Euro. Trans. Telecomm. vol.17(3), pp:361-370.2001.
    [67]Lindskog, E. and Paulraj, A. "A transmit diversity scheme for channels with intersymbol interference", In IEEE ICC'2000, pp:307-311,2000.
    [68]El Gamal, H. Damen, M. O. "Universal space-time coding", IEEE Trans. Inf. Theory, vol.49(5), pp:1097, May 2003.
    [69]Wolf, J. and Ungerboeck, G. "Trellis coding for partial-response channels". IEEE Trans. Comm. vol.34(8), pp:765-773,1986.
    [70]Mazo, J. E. and Landau, H. J. "On the minimum distance problem for faster-than-Nyquist signaling", IEEE Trans. Inf. Theory, vol.34(6), pp:1420-1427, 1988.
    [71]Hajela, D. "On computing the minimum distance for faster than Nyquist signaling". IEEE Trans. Inf. Theory, vol.36(2), pp:289-295,1990.
    [72]Liveris, A. D. and Georghiades, C. N. "Exploiting faster-than-Nyquist signaling", IEEE Trans. Comm. vol.51(9), pp:1502-1511,2003.
    [73]Rusek, F. and Anderson, J. B. "On information rates for faster-than-Nyquist signaling", In Proc. IEEE Global Telecommunications Conference (GLOBECOM), pp:1-5,2006.
    [74]Gallager, R. G. Information Theory and Reliable Communication, New York: John Wiley & Sons,1968.
    [75]Shannon, C. E. "A mathmatical theory of communication", Bell Syst. Tech. J. vol.27, pp:379-423,623-656,1948.
    [76]Shamai (Shitz), S. Ozarow, L. H. and Wyner, A. D. "Information rates for a discrete-time Gaussian channel with intersymbol interference and stationary inputs", IEEE Trans. Inf. Theory, vol.37(6), pp:1527-1539, Nov.1991.
    [77]Viterbi, A. J. and Omura, J. K. Principles of Digital Communication and Coding. New York:McGraw-Hill, Inc.1979.
    [78]Gallager, R. G. "Low-density parity-check codes", IRE Trans. Inf. Theory, vol. 8(1), pp:21-28, Jan.1962.
    [79]Berrou, C. Glavieux, A. and Thitimajshima, P. "Near Shannon limit error-correcting coding and decoding:Turbo-codes", In Proc. IEEE International Conference on Communication (ICC), pp:1064-1070, May 1993.
    [80]Chung, S. Forney, G. D. Jr. Richardson, T. J. et al. "On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit", IEEE Comm. Letters, vol.5(2), pp:58-60, Feb.2001.
    [81]Forney, G. D. Jr. Ungerboeck, G. "Modulation and coding for linear Gaussian channels", IEEE Trans. Inf. Theory, vol.44(6), pp:2384, Oct.1998.
    [82]Ungerboeck, G. "Adaptive maximum-likelihood receiver for carrier-modulated data transmission systems", IEEE Trans. Comm. vol.22(5), pp:624-636, May 1974.
    [83]Forney, G. D. "The Viterbi algorithm", Proceedings of the IEEE, vol.61(3), pp: 268-278,1973.
    [84]Ryan, W. E. "Concatenated convolutional codes and iterative decoding", In Proakis J G. Wiley Encyclopedia of Telecommunications. New York:John Wiley and Sons,2003.
    [85]Bauch, G. Khorram, H. and Hagenauer, J. "Iterative equalization and decoding in mobile communications systems", In Proc. Euro. Personal Mobile Comm. Conf. (EPMCC), pp:307-312,1997
    [86]Douillard, C. Jezequel, M. Berrou, C. et al. "Iterative correction of intersymbol interference:Turbo-equalization", Euro. Trans. Telecomm. vol.6(5), pp:507-511, 1995.
    [87]Robertson, P. Hoeher, P. and Villebrun, E. "Optimal and sub-optimal maximum a posteriori algorithms suitable for turbo decoding", Euro. Trans. Telecomm. vol.8(2), pp:119-125,1997.
    [88]Bauch, G. and Franz, V. "A comparison of soft-in/soft-out algorithms for turbo-detection", In Proc. International Conference on Telecommunications (ICT), 1998.
    [89]Hagenauer J, Hoeher P. "A Viterbi algorithm with soft-decision outputs and its applications", In Proc. IEEE Global Telecommunications Conference (GLOBECOM), 1989:1680-1686.
    [90]Berrou, C. Adde, P. Angui, E. et al. "A low complexity soft-output Viterbi decoder architecture", In Proc. IEEE International Conference on Communications (ICC), pp:737-740,1993.
    [91]Woodard, J. P. and Hanzo, L. "Comparative study of turbo decoding techniques:an overview", IEEE Trans. Vehicular Tech. vol.49(6), pp:2208-2233, 2000.
    [92]Eyuboglu, M. V. and Qureshi, S. U. "Reduced-state sequence estimation with set partitioning and decision feedback", IEEE Trans. Comm. vol.36(1), pp:13-20, 1988.
    [93]Ungerboeck, G. "Channel coding with multilevel/phase signals", IEEE Trans. Inf. Theory, vol. IT-28(1), pp:55-67,1982.
    [94]Anderson, J. and Mohan, S. "Sequential coding algorithms:a survey and cost analysis", IEEE Trans. Comm. vol.32(2), pp:169-176,1984.
    [95]Hagenauer, J. and Kuhn, C. "The list-sequential (LISS) algorithm and its application", IEEE Trans. Comm. vol.55(5), pp:918-928,2007.
    [96]Rouanne, M. and Costello, D. J. "An algorithm for computing the distance spectrum of trellis codes", IEEE Journal on Selected Areas in Communications, vol. 7(6), pp:929-940,1989.
    [97]Viterbi, A. J著,李世鹤,鲍刚,彭容译CDMA扩频通信原理.北京:人民邮电出版社,1997.
    [98]DaSilva, V. and Sousa, E. S. "Performance of orthogonal CDMA codes for quasi-synchronous communication systems". In Proc.2nd International Conference on Universal Personal Communications, pp:995-999,1993.
    [99]Weinstein, S. and Ebert, P. "Data transmission by frequency-division multiplexing using the discrete Fourier transform". IEEE Trans. Comm. vol.19(5), pp:628-634,1971.
    [100]Nee, R and Prasad, R. OFDM for Wireless Multimedia Communications. Boston:Artech House Publishers,2000.
    [101]Van Ouderaa, E. Schoukens, J. and Renneboog, J. "Peak factor minimization of input and output signals of linear systems", IEEE Trans. Instru. And Measur. vol.37(2), pp:207-212,1988.
    [102]So, D. K. and Lan, Y. "Virtual receive antennas for spatial multiplexing system", In Proc. IEEE Wireless Communications and Networking Conference (WCNC),2007.
    [103]Lan, Y. and So, D. K. "Virtual receive antenna system with frequency domain equalization", In Proc. IEEE Wireless Communications and Networking Conference (WCNC),2007.
    [104]Schneider, K. S. "Optimum detection of code division multiplexed signals" IEEE Trans. Aeros. Electron. Syst. vol. AES-15(1), pp:181-185, Jan.1979.
    [105]Vandendorpe, L. "Multi to one spread spectrum multiple access communications system in a multipath Rician fading channel". IEEE Trans. Vehicular Tech. vol.44(2), pp:327-337,1995.
    [106]Van Etten, W. "Maximum likelihood receiver for multiple channel transmission systems", IEEE Trans. Comm, vol. COM-24(2), pp:276-283,1976.
    [107]R. Ahlswede, "Multi-way communication channels," In Proc.2nd Int. Symp. Inf. Theory, pp:23-52,1973.
    [108]H. Liao, "A coding theorem for multiple access communications," presented at the Int. Symp. Inform. Theory,1972.
    [109]Bottomley, G. E. and Chennakeshu, S. "Unification of MLSE receivers and extension to time-varying channels", IEEE Trans. Comm. vol.46(4), pp:464-472, 1998.
    [110]Rusek, F. Loncar, M. and Prlja, A. "A comparison of Ungerboeck and Forney models for reduced-complexity ISI equalization", In Proc. IEEE Global Telecommunications Conference (GLOBECOM), pp:1431-1436,2007.
    [111]Ungerboeck, G. "Adaptive maximum-likelihood receiver for carrier-modulated data transmission Systems". IEEE Trans. Comm. vol.22(5), pp: 624-636,1974.
    [112]Divsalar, D. and Simon, M. K. "The design of trellis coded MPSK for fading channels:performance criteria", IEEE Trans. Comm. vol.36(9), pp: 1004-1012,1988.
    [113]Tarasak, P. and Rajatheva, N. "Upper bound on the bit error probability of TCM over frequency-selective Rayleigh fading channel". Electronics Letters, vol. 35(21), pp:1820-1821,1999.
    [114]Sundberg, C. E. and Seshadri, N. "Coded modulation for fading channels: an overview", Euro. Trans. Telecomm. vol.4(3), pp:309-323,1993.
    [115]樊昌信,詹道庸,徐炳祥,等.通信原理,第4版.北京:国防工业出版社,1995.
    [116]Li, D. "The perspectives of large area synchronous CDMA technology for the fourth-generation mobile radio". IEEE Comm. Magazine, vol.41(3), pp:114-118, 2003.
    [117]Chen, H. Yeh, J. and Suehiro, N. "A multicarrier CDMA architecture based on orthogonal complementary codes for new generations of wideband wireless communications". IEEE Comm. Magazine, vol.39(10), pp:126-135,2001.
    [118]Budisin, S. Z. "New multilevel complementary pairs of sequences". Electronics Letters, vol.26(22), pp:1861-1863,1990.
    [119]Budisin, S. Z. "New complementary pairs of sequences", Electronics Letters, vol.26(13), pp:881-883,1990.
    [120]Fan, P. and Darnell, M. Sequence Design for Communications Applications. London:Research Studies Press, John Wiley & Sons,1996.
    [121]杨星,李道本,邹永忠,等.一类新的LS码及其构造方法.北京邮电大学学报,vol.29(03),pp:103-106,2006.
    [122]3GPP TS 36.211. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8).2007.
    [123]ITU-R M.1225. Guidelines for Evaluation of Radio Transmission Technologies for IMT-2000.1998.
    [124]3GPP TS 36.212. Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release 8).2007.
    [125]Xia, X. G. Fan, P. and Xie, Q. "A new coding scheme for ISI channels: modulated codes", In Proc. IEEE International Conference on Communications (ICC), pp:828-832,1999.
    [126]Maddah-Ali, M. Motahari, A. and Khandani, A. "Signaling over MIMO multi-base systems —Combination of multi-access and broadcast schemes", In Proc. ISIT, pp:2104-2108,2006.
    [127]Maddah-Ali, M. Motahari, A. and Khandani, A. "Communication over MIMO X channels:Interference alignment, decomposition, and performance analysis," IEEE Trans. Inf. Theory, vol.54(8), pp:3457-3470, Aug.2008.
    [128]Cadambe, V. R. and Jafar, S. A. "Interference alignment and degrees of freedom of the K-user interference channel," IEEE Trans. Inf. Theory, vol.54(8), pp:3425-3441,2008.
    [129]Carleial, A. B. "A case where interference does not reduce capacity", IEEE Trans. Inf. Theory, vol.21, pp.569-570,1975.
    [130]Carleial, A. B. "Interference channels", IEEE Trans. Inf. Theory, vol.24(1), pp:60-70,1978.
    [131]Han, T. and Kobayashi, K. "A new achievable rate region for the interference channel", IEEE Trans. Inf. Theory, vol.27, pp:49-60, Jan.1981.
    [132]Sato, H. "The capacity of the Gaussian interference channel under strong interference," IEEE Trans. Inf. Theory, vol.27, pp:786-788, Nov.1981.
    [133]Costa, M. "On the Gaussian interference channel", IEEE Trans. Inf. Theory, vol.31, pp:607-615, Sep.1985.
    [134]Kramer, G. "Feedback strategies for white Gaussian interference networks", IEEE Trans. Inf. Theory, vol.48, pp:1423-1438, Jun.2002.
    [135]Sason. I. "On the achievable rate regions for the Gaussian interference channel", IEEE Trans. Inf. Theory, vol.50, pp:1345-1356, Jun.2004.
    [136]Vishwanath, S. and Jafar, S. "On the capacity of vector Gaussian interference channels", in Proc. IEEE Inf. Theory Workshop, pp:365-369, Oct.2004.
    [137]Chong, H. Motani, M. Garg, H. et al. "On the Han-Kobayashi region for the interference channel", IEEE Trans. Inf. Theory, vol.54(7), pp:3188, Jul.2008.
    [138]Etkin, R. Tse, D. and Wang, H. "Gaussian interference channel capacity to within one bit", IEEE Trans. Inf. Theory, vol.54(12), pp:5534, Dec.2008.
    [139]Charafeddine, M. Sezgin, A. and Paulraj, A. "Rate region frontiers for n user interference channel with interference as noise", in Proc.45th Annu. Allerton Conf. Commun., Contr. Comput. Oct.2007.
    [140]Rao, C. and Hassibi, B. "Gaussian interference channel at low SNR", in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul.2004.
    [141]Motahari, A. and Khandani, A. "Capacity bounds for the Gaussian interference channel", IEEE Trans. Inf. Theory, vol.55(2), pp:620, Feb.2009.
    [142]Shang, X. Kramer, G. and Chen, B. "A new outer bound and the noisy-interference sum-rate capacity for Gaussian interference channels", IEEE Trans. Inf. Theory, vol.55(2), pp:689, Feb.2009.
    [143]Tuninetti, D. "Progresses on Gaussian interference channels with and without generalized feedback", in Proc.2008 Inf. Theory Appl. Workshop, Jan.2008.
    [144]Yang, S. and Tuninetti, D. "A new achievable region for interference channel with generalized feedback", in Proc.42nd Annu. Conf. Inf. Sci. Syst. (CISS), Mar.2008.
    [145]Annapureddy, V. and Veeravalli, V. "Gaussian interference networks:Sum capacity in the low interference regime and new outer bounds on the capacity region", IEEE Trans. Inf. Theory, vol.55(7), pp:3032, Jul.2009.
    [146]Host-Madsen, A. and Nosratinia, A. "The multiplexing gain of wireless networks", in Proc. ISIT, pp:2065,2005.
    [147]Jafar, S. and Shamai, S. "Degrees of freedom region for the MIMO X channel", vol.54(1), pp:151, Jan.2008.
    [148]Cadambe. V. and Jafar, S. "Multiple access outerbounds and the inseparability of parallel interference channels", In Global Telecommunications Conference (GIOBECOM), pp:1, Dec.2008.
    [149]Bresler,G. Parekh, A. and Tse, D. "Approximate capacity of the many-to-one interference channel", In Proc. Allerton Conf. Sep.2007.
    [150]Cadambe, V. Jafar, S. and Shamai, S. "Interference Alignment on the Deterministic Channel and Application to Fully Connected Gaussian Interference Networks", vol.55(1), pp:269, Jan.2009.
    [151]Weingarten, H. Shamai, S. and Kramer, G. "On the compound MIMO broadcast channel", In Proc. Annu. Inf. Theory Appl. Workshop, Jan.2007.
    [152]Jafar, S. and Fakhereddin, M. "Degrees of freedom for the MIMO interference channel", IEEE Trans. Inf. Theory, vol.53, pp:2637-2642, Jul.2007.
    [153]Gomadam, K. Cadambe, V. and Jafar, S. "Approaching the capacity of wireless networks through distributed interference alignment", In GLOBECOM, Mar. 2008.
    [154]Nazer, B. and Gastpar, M. "The case for structured random codes in network communication theorems", In Proc. IEEE Inf. Theory Workshop, Sep.2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700