直驱式永磁风力发电系统Boost斩波—三电平变换器控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在能源安全问题日趋严峻的形势下,本文阐述了风能利用与风力发电的重要意义及其广阔的发展前景。为适应大容量风电系统的发展趋势,提出了一种适用于直驱式永磁风力发电系统的功率变换器拓扑结构——Boost斩波—三电平变换器。在该结构中,发电机定子端连接二极管整流桥,电网侧采用二极管箝位型三电平变换器,整流桥与网侧变换器之间通过Boost三电平斩波器连接。基于该拓扑结构,并针对网侧三电平变换器直流侧中点电位不平衡的问题,提出了Boost三电平斩波器的相差控制方式,该控制方式通过调节斩波器中两个功率器件开关信号间的相差,达到平衡输出侧中点电位的目的,而在控制中点电位过程中,并不改变斩波器的升压特性。根据该控制方式的基本原理,建立了Boost三电平斩波器的数学模型,该模型为斩波器的控制器设计提供了理论依据。
     鉴于通过Boost三电平斩波器同时实现风电系统MPPT控制与网侧三电平变换器中点电位平衡控制,因此斩波器控制器采用并行双PI调节的控制策略。为验证该控制策略的可行性,将其应用于一个典型的大容量风力发电系统,并进行了仿真研究,结果表明该控制策略能够达到预期的效果。为进一步验证该控制策略的有效性,与两种基于短矢量冗余开关状态选择的中点电位平衡控制策略进行了对比分析,并将这两种控制策略也分别应用于同一风力发电系统中,数字仿真结果表明所提出功率变换器控制策略在中点电位平衡以及网侧功率调节中均可达到满意的效果。同时,由于中点电位不平衡被斩波器所抑制,因此网侧变换器的SVPWM调制算法得到了较大程度的简化。
     在所提出的功率变换器拓扑中,为了保证Boost三电平斩波器的输入—输出电压满足1/(1-d)的升压关系,分析了相差控制方式下影响斩波器工作模式的主要因素,根据不同工作模式间的临界条件,推导了临界电感的计算方法,并且分析了不同工作模式对输出侧电容纹波的影响。仿真与实验结果验证了理论分析的正确性,进而表明该分析方法对Boost三电平斩波器的设计具有一定参考价值,且具有通用性。
     此外,针对网侧变换器矢量定向控制策略中PI控制器参数整定过程繁复的特点,结合内模控制的基本原理,简化了PI参数的整定过程。理论分析结果表明,在受控对象为一阶系统的情况下,当采用闭环PI控制时,该PI参数整定方法具有普遍适用性。
This paper discusses the significance and development prospect of wind energy and wind power generation under the increasingly serious situation of energy security. A novel topology of power converter which is applied to direct driven wind energy conversion systems (WECSs) based permenant magnetic synchronous generators (PMSGs) is proposed to meet the demand of large capacity WECSs. The stator of generator is connected to a diode rectifier, a diode-clamped three level (TL) inverter is connected to the grid, and a boost TL chopper is set between the rectifier and the TL inverter. Based on this topology, the switch-signal phase-delay control (SSPDC) for the boost TL chopper is put forward to balance the neutrual point (NP) potential of the TL inverter. The NP potential is balanced by adjusting the phased delay betweent the two switching signals of the two power switches in the TL chopper, and the boosting feature of the TL chopper is not changed. The boost TL chopper under the SSPDC is modeled for its controller design.
     A parallel dual-PI control strategy is designed for the boost TL chopper, as the maximum power point tracking (MPPT) and NP balancing are achieved both by the TL chopper. This strategy is simulated in a typical large capacity WECS, and its feasibility is verified by simulation results. The validity of the proposed NP balancing method is verified furtherly by comparing with two redundant vector selection NP balancing methods which are both simulated in the same WECS. The modulation algorithm of the grid-side TL inverter is simplified a lot as the NP potential is balanced by the boost TL chopper.
     The main factors on which the operating mode of boost TL choppers depend are ananlyzed for guaranteeing the relationship between the input and output voltage of the TL chopper in the proposed topology. The formulas of critical boosting inductances are deduced according to the critical conditions between different operating modes. The capacitor voltage ripples are also analyzed under different operating modes. The validity of these ananlyses is verified by simulating and experimental results. Furthermore, these ananlyses could be generally used in guiding the design of boost TL choppers.
     In addition, the PI parameters tuning method for the controllers of the grid-side TL inverter is simplified according to the principle of internal model control (IMC). The ananlysis indicated that the tuning method is generally applicable when controlled plants could be regarded as first-order systems.
引文
[1] British Petroleum . BP statistical review of world energy 2010 [R/OL].www.bp.com,2010.
    [2]中华人民共和国国家统计局.中国统计年鉴2009.北京:中国统计出版社,2009.
    [3]崔民选.中国能源发展报告2009[M].北京:社会科学文献出版社,2009.
    [4] Global Wind Energy Council.Global wind 2009 report[R/OL].www.gwec.net,2010.
    [5]中华人民共和国国家发展改革委员会.可再生能源发展“十一五”规划[Z].北京2008.
    [6]中国可再生能源发展战略研究项目组.中国可再生能源发展战略研究丛书——风能卷[M].北京:中国电力出版社,2008.
    [7]中华人民共和国国家发展改革委员会.可再生能源中长期发展规划[Z].北京,2007.
    [8]叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社,2002.
    [9]中华人民共和国国家电力监管委员会风电发展情况调研组.我国风电发展情况调研报告[R].北京,2009.
    [10]宋海辉.风力发电技术及工程[M].北京:中国水利水电出版社,2009.
    [11] M?nica C,Santiago A,Juan C B.Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid[J].IEEE Transaction on Energy Conversion,2006,21(1):130—135.
    [12] Iulian M, Nicolaos A C, Antoneta I B, et al.Optimal Control of Wind Energy Systems[M].London:Springer,2008.
    [13] Kathryn E J . Adaptive torque control of variable speed wind turbines[R].Golden,Colorado:National Renewable Energy Laboratory,2004.
    [14] Eduard M,Butterfield C P.Pitch-controlled variable-speed wind turbine generation[J].IEEE Transactions on Industry Application,2001,37(1):240—246.
    [15] Müller S,Deicke M,Rik W D.Adjustable speed generators for wind turbines based on doubly-fed induction machines and 4-quadrant IGBT converters linked to the rotor[J].IEEE Industry Applications Conference,2000,2249—2254.
    [16] Zhe C,Josep M G,Frede B.A review of the state of the art of power electronics of wind turbines[J].IEEE Transactions on power electronics,2009,24(8):1859—1875.
    [17] Henk P,Frank F A van der Pijl,Gert-Jan de V,et al.Comparison of direct-drive and geared generator concepts for wind turbines[J] . IEEE Transactions on Energy Conversion,2006,21(3):725—733.
    [18]牛山泉.风能技术(刘薇,李岩译)[M].北京:科学出版社,2009.
    [19] Hansen L H,Helle L,Blaabjerg F,et al.Conceptual survey of generators and power electronics for wind turbines[R].Roskilde,Denmark:Ris? National Labertory,2001.
    [20] Siegfriedsen S,Bohmeke G.Multibrid technology—a significant step to multi-megawatt wind turbines[J].Wind Energy,1998,1(2):89—100.
    [21] Hui L,Zhe C,Henk P.Optimization of multibrid permanent-magnet wind generator systems[J].IEEE Transactions on Energy Conversion,2009,24(1):82—92.
    [22]杨俊华.无刷双馈风力发电系统及其控制研究[D].广州:华南理工大学,2006.
    [23] Hui L,Zhe C.Overview of different wind generator systems and their comparisons[J].IET Renewable Power Generation,2008,2(2):123—138.
    [24] ABB Switzerland Ltd.HiPak? IGBT Modules with SPT & SPT+ chips Setting new standards for SOA[Z/OL].http://www.abb.com.
    [25]丁荣军,黄济荣.现代变流技术与电气传动[M].北京:科学出版社,2009.
    [26] Yifan T,Longya X.Stator field oriented control of doubly-exited induction machine in wind power generating system[C].IEEE symposium on circuits and systems,1992:1446—1449.
    [27] Yifan T,Longya X.A flexible active and reactive power control strategy for a variable speed constant frequency generating system[C].Power Electronics Specialists Conference,IEEE Conference,1993:568—573.
    [28] Bogalecka,E.Power control of a doubly fed induction generator without speed or position sensor[C].EPE 5th European conference on power electronics and application,1993,8:224—228.
    [29] Pena R,Clare J C,Asher G M.Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation[C].IEE proceedings on electronic power application,1996,143(3):231—241.
    [30] Knowles-Spittle C,Al Zahawi B A T,MacIsaac N D.Simulation and analysis of 1.4 MW static Scherbius drive with sinusoidal current converters in the rotor circuit[C].International Conference on Power Electronics and Variable Speed Drives, 1998:617—621.
    [31] Gyugyi L,Pelly B.Static power frequency changers[M].New York:Wiley,1976.
    [32] Venturini M.A new sine wave in sine wave out conversion technique which eliminates reactive elements[C].Proceedings Powercon,1980:1—15.
    [33] Alesina A,Venturini M.The generalized transformer:a new bi-directional sinusoidal waveform frequency converter with continuous variable adjustable input power factor[C].Proceedings IEEE PESC’80,1980:242—252.
    [34] Yaskawa.Models & Ratings for AC7 Matrix Converter [EB/OL].http://www. yaskawa.com
    [35] Cardenas R,Pena R,Tobar G,et al.Stability analysis of a wind energy conversion system based on a doubly fed induction generator fed by a matrix converter[J].IEEE Transactions on Industrial Electronics,2009,56,(10):4194—4206.
    [36] Nikkhajoei H,Lasseter R H.Power quality enhancement of a wind-turbine generator under variable wind speeds using matrix converter[C].Power Electronics Specialists Conference,IEEE Conference,2008:1755—1761.
    [37] Guoliang Y,Huiguang L.Application of a matrix converter for PMSG wind turbine generation system[C].International Conference on Clean Electrical Power,2009:619—623.
    [38] Barakati S M,Kazerani M,Chen X. A new wind turbine generation system based on matrix converter[C].Power Engineering Society General Meeting,IEEE Conference,2005,3:2083—2089.
    [39] Barakati S M,Mehrdad K,Aplevich J D.Maximum power tracking control for a wind turbine system including a matrix converter[J].IEEE Transactions on Energy Conversion,2009,24(3):705—713.
    [40] Khwan-on S,De Lillo L,Empringham L,et al.A fault tolerant matrix converter motor drive under open phase faults[C].International Conference on Power Electronics, Machines and Drives,IET Conference,2010:1—6.
    [41] Lorzadeh I,Farjah E,Lorzadeh O.Fault-tolerant matrix converter topologies and switching function algorithms for AC motor drives with delta connection windings[C].IEEE Conferences on Power Electronics Electrical Drives Automation and Motion,2010:1651—1657.
    [42]孙凯,周大宁,梅杨.矩阵式变换器技术及其应用[M].北京:机械工业出版社,2007.
    [43] Wheeler P W,Clare J C,Katsis D,et al.Design and construction of a 150kVA matrix converter induction motor drive[C].Proceedings PEMD’04,2004:719—723.
    [44] Zhe C,Spooner E.Grid interface options for variable-speed permanent-magnet generators[C].IEE Proc. Electric Power Applications,1998,145(4):273—283.
    [45] Zhe C , Spooner E . Grid power quality with variable speed wind turbines[J].IEEE Transactions on Energy Conversion,2001,16(2):148—154.
    [46] Baroudi J A,Dinavahi V,Knight A M.A review of power converter topologies for wind generators[C].International Conference on Electric Machines and Drivers,IEEE Conference,2005:458—465.
    [47] Kenji A,Yukichi T,Takahisa O,et al.A maximum power control of wind generator system using a permanent magnet synchronous generator and a boost chopper circuit[C].Power Conversion Conference,IEEE Conference,2002,3:1447—1452.
    [48] Seung-Ho S,Shin-il K,Nyeon-Kun H.Implementation and control of grid connected AC-DC-AC power converter for variable speed wind energy conversion system[C].Applied Power Electronics Conference and Exposition,IEEE Conference,2003,l(1):154—158
    [49] R Bharanikumar,M Prabha Maheswari,S.Palanichamy.Boost chopper circuit for low power wind turbine driven PM synchronous generator[C].International Conference on Intelligent and Advanced Systems,2007:859—863.
    [50]李建林,高志刚,赵斌,等.直驱型风电系统大容量Boost PFC拓扑及控制方法[J].电工技术学报,2008,23(1):104—109.
    [51]李建林,许洪华.风力发电中的电力电子变流技术[M].北京:机械工业出版社,2008.
    [52]许颇,张兴,张崇巍,等.基于BOOST变换器的小型风力机并网逆变控制系统设计[J].太阳能学报,2007,28(3):274—279.
    [53]何海洋,姚刚,邓焰,等.一种三电平交错并联Boost变换器[J].电工技术学报,2006,21(6):23—28,34.
    [54]阮新波,李斌,陈乾宏.一种适用于高压大功率变换器的三电平直流变换器[J].中国电机工程学报,2003,23(5):19—23.
    [55]阮新波.三电平直流变换器及其软开关技术[M].北京:科学性出版社,2006.
    [56]胡书举.直驱型风力发电系统概述[Z/OL].http://www.jdzj.com/bpq/article/ 2009-11-25/9272-1.htm
    [57] Enercon Wind Turbine.Product overview[Z/OL].http://www.enercon.de/en/_ home.htm
    [58] Enercon Wind Turbine.Technology & Services[Z/OL].http://www.enercon.de/ en/ _ home.htm
    [59]刘树林,刘健,杨银玲,等.Boost变换器的能量传输模式及输出纹波电压分析[J].中国电机工程学报,2006,26(5):119—124.
    [60]杨宇,马西奎.输出电压纹波对电流型Boost变换器稳定性的影响[J].2007,27(28):102—106.
    [61] Nabae A,Takahashi I,Akagi H.A new neutral-point-clamped PWM inverter[J].IEEE Transactions on Industry Application,1981,17(5):518—523.
    [62]康劲松,张烨.多电平变流器在风力发电系统中的应用[J].中国电机工程学报,2009,29(24):20—25.
    [63] Ghennam T,Berkouk E M,Francois B.DC-link voltage balancing algorithm using a space-vector hysteresis current control for three-level VSI applied for wind conversion system[C].European Conference on Power Electronics and Applications,2007:1—10.
    [64] Jih-Sheng L,Fang Zheng P.Multilevel converters-a new breed of power converters[J].IEEE Transactions on Industry Applications,1996,32(3):509—517.
    [65] Zhiguo P,Fang Zheng P,Keith A. C,et al.Voltage balancing control of diode-clamped multilevel rectifier/inverter systems[J].IEEE Transactions on Industry Applications,2005,41(6):1698—1706.
    [66] Strachan N P W,Jovcic D.Dynamic Modelling, Simulation and Analysis of an Offshore Variable-Speed Directly-Driven Permanent-Magnet Wind Energy Conversion and Storage System (WECSS)[C].OCEANS 2007—Europe,2007:1—6.
    [67]何湘宁,陈阿莲.多电平变换器理论和应用技术[M].北京:机械工业出版社,2006.
    [68]李永东,肖曦,高跃.大容量多电平变换器——原理·控制·应用[M].北京:科学出版社,2005.
    [69]麻闽政,原熙博,,姜新建,等.基于多绕组永磁发电机的大容量级联型风力发电变换器[J].电气传动,2010,40(3):43—47.
    [70] Xibo Y,Yongdong L,Jianyun C,et al.A modular direct-drive permanent magnet wind generator system eliminating the grid-side transformer[C].European Conference on Power Electronics and Applications,2009:1—7.
    [71] Senturk O S,Helle L,Munk-Nielsen S,et al.Medium voltage three-level converters for the grid connection of a multi-MW wind turbine[C].European Conference on Power Electronics and Applications,2009:1—8.
    [72] Skolthanarat S,Centeno V.Grid interconnection for variable-speed wind farm with multi-level inverter[C].Power and Energy Society General Meeting,IEEE Conference,2008:1—7.
    [73] Wasynczuk O,Man D T,Sullivan J P.Dynamic behavior of a class of wind turbine generators during random wind fluctuations[J].IEEE Transactions on Power Apparatus and Systems,1981,PAS-100(6):2837—2845.
    [74] Anderson P M , Bose A . Stability Simulation Of Wind Turbine Systems[J].IEEE Transactions on Power Apparatus and Systems,1983,PAS-102(12):3791—3795.
    [75] L Tang,R Zavadil.Shunt capacitor failures due to wind farm induction generator self-excitation phenomenon[J] . IEEE Transactions on Energy Conversion,1993,8(3):513—519.
    [76] Murdoch A,Winkelman J R,Javid S H,et al.Control design and performance analysis of a 6 MW wind turbine-generator[J].IEEE Transactions on Power Apparatus and Systems,1983,PAS-102(5):1340—1347.
    [77] S Kim,E Kim.PSCAD/EMTDC-based modeling and analysis of a gearless variable speed wind turbine[J].IEEE Transactions on Energy Conversion,2007,22(2):421—430.
    [78] S Heier.Grid integration of wind energy conversion systems[M].Chicester,UK:Wiley, 1998.
    [79] Slootweg J G,Polinder H,Kling W L.Dynamic modeling of a wind turbine with doubly fed induction generator[C].Power Engineering Society Summer Meeting,IEEE Conference,2001,1:644—649.
    [80] Slootweg J G.,de Haan S W H,Polinder H,et al.General model for representing variable speed wind turbines in power system dynamics simulations[J].IEEE Transactions on Power Systems,2003,18,(1):144—151.
    [81] Xing Z,Zheng Q,Yao X,et al.Integration of large doubly-fed wind power generator system into grid[C].International Conference on Electrical Machines and Systems, 2005,2:1000—1004.
    [82] Monroy A,Alvarez-Icaza L.Passivity based control of a DFIG wind turbine[C].American Control Conference,2006:1050—1055.
    [83] Y. Lei,Mullane A,Lightbody G.,et al.Modeling of the wind turbine with a doubly fed induction generator for grid integration studies[J] . IEEE Transactions on Energy Conversion,2006,21(1):257—264.
    [84]唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,2006.
    [85] Frizgerald A E,Charles K Jr,Stephen D U,et al.电机学(刘新正,苏少平,高琳,等译)[M].北京:电子工业出版社,2004.
    [86]汤蕴璆,史乃.电机学[M].北京:机械工业出版社,2001.
    [87]王成元,夏加宽,杨俊友,等.电机现代控制技术[M].北京:机械工业出版社,2007.
    [88]黄俊,王兆安.电力电子变流技术[M].北京:机械工业出版社,2002.
    [89]李柯平,周继华,高丁丁.Boost三电平变换器在大功率UPS中的应用[J].电力电子技术,2006,40(6):115—117.
    [90]张占松,蔡宣三.开关电源的原理与设计[M].北京:电子工业出版社,2004.
    [91] Krishnamurthi V.Correlation between Routh's stability criterion and relative stability of linear systems[J].IEEE Transactions on Automatic Control,1972,17(1):144—145.
    [92] Krishnamurthi V.Implications of Routh stability criteria[J].IEEE Transactions on Automatic Control,1980,25(3):554—555.
    [93] Hesmondhalgh D E,Tipping D.Relating instability in synchronous motors to steady-state theory using the Hurwitz-Routh criterion[C].IEE Proceedings B of Electric Power Applications,1987,134(2):79—90.
    [94] C F Yung,Y W Tsai,K K Shyu.Applications of Routh-Hurwitz criterion to evaluation of phase margin and phase lead compensation[J].IEEE Electronics Letter,1991,27(11):1000—1001.
    [95]胡寿松.自动控制原理[M].北京:国防工业出版社,1994.
    [96] D Zhou.A self-balancing space vector switching modulator for three-level motor drives[J].IEEE Transactions on Power Electronics,2002,17(6):1024—1031.
    [97] du Toit Mouton H.Natural balancing of three-level neutral-point-clamped PWM inverters[J].IEEE Transactions on Industrial Electronics,2002,49(5):1017—1025.
    [98] Pou J,Pindado R,Boroyevich D.Voltage-balance limits in four-level diode-clamped converters with passive front ends[J].IEEE Transactions on Industrial Electronics,2005,52(1):190—196.
    [99] Beig A R,Narayanan G,Ranganathan V T.Modified SVPWM algorithm for three level VSI with synchronized and symmetrical waveforms[J].IEEE Transactions on Industrial Electronics,2007,54(1):486—494.
    [100] Busquets-Monge S,Somavilla S,Bordonau J,et al.Capacitor voltage balance for the neutral-point-clamped converter using the virtual space vector concept with optimized spectral performance[J] . IEEE Transactions on Power Electronics,2007,22(4):1128—1135.
    [101] Busquets-Monge S,Ortega J D,Bordonau J,et al.Closed-loop Control of a three-phase neutral-point-clamped inverter using an optimized virtual- vector-based pulsewidth modulation[J] . IEEE Transactions on Industrial Electronics,2008,55(5):2061—2071.
    [102] H Zhang,Jon Finney S,Massoud A,et al.An SVM algorithm to balance the capacitor vltages of the three-level NPC active power filter[J] . IEEE Transactions on Power Electronics,2008,23(6):2694—2702.
    [103] Dalessandro L,Round S D,Kolar J W.Center-point voltage balancing of hysteresis current controlled three-level PWM rectifiers[J].IEEE Transactions on Power Electronics,2008,23(5):2477—2488.
    [104] Barros J D,Silva J F.Optimal predictive control of three-phase NPC multilevel converter for power quality applications[J].IEEE Transactions on Industrial Electronics,2008,55(10):3670—3681.
    [105] Ben-Brahim L.A discontinuous PWM method for balancing the neutral point voltage in three-level inverter-fed variable frequency drives[J] . IEEE Transactions on Energy Conversion,2008,23(4):1057—1063.
    [106] Akagi H,Hatada T.Voltage balancing control for a three-level diode-clamped converter in a medium-voltage transformerless hybrid active filter[J].IEEE Transactions on Power Electronics,2009,24(3):571—579.
    [107]王广柱.二极管箝位式多电平逆变器直流侧电容电压不平衡机理的研究[J].中国电机工程学报,2002,22(12):111—117.
    [108]翁海清,孙旭东,刘丛伟,等.三电平逆变器直流侧电压平衡控制方法的改进[J].中国电机工程学报,2002,22(9):94—97.
    [109]姚文熙,吕征宇,费万民,钱照明.一种新的三电平中点电位滞环控制法[J].中国电机工程学报,2005,25(7):92—96.
    [110]金红元,邹云屏,林磊,等.三电平PWM整流器双环控制技术及中点电压平衡控制技术的研究[J].中国电机工程学报,2006,26(20):64—68.
    [111]宋文祥,陈国呈,束满堂,等.中点箝位式三电平逆变器空间矢量调制及其中点控制研究[J].中国电机工程学报,2006,26(5):105—109.
    [112]姜卫东,王群京,李争,等.中点电压偏移对SVM控制的三电平逆变器的影响及补偿措施[J].电工技术学报,2006,21(9):76—80,98.
    [113]陈鑫兵,何礼高.基于模糊控制的三电平逆变器中点电位平衡策略[J].电工技术学报,2007,22(10):103—108.
    [114]宋文祥,陈国呈,陈陈.基于矢量合成的三电平空间电压矢量调制方法[J].2007,22(10):91—96.
    [115] Celanovic N,Boroyevich D.A comprehensive study of neutral-point voltage balancing problem in three-level neutral-point-clamped voltage source PWM inverters[J].IEEE Transactions on Power Electronics,2000,15(2):242—249.
    [116] Pinto J O,Bose B K,da Silva L E B.A stator-flux-oriented vector-controlled induction motor drive with space-vector PWM and flux-vector synthesis by neural networks[J].IEEE Transactions on Industry Applications,2001,37(5):1308—1318.
    [117] Erika T,Holmes D G.Grid current regulation of a three-phase voltage source inverter with an LCL input filter[J].IEEE Transactions on Power Electronics,2003,18(3):888—895.
    [118] Amin M M N,Mohammed O A.Vector oriented control of voltage source PWM inverter as a dynamic VAR compensator for wind energy conversion system connected to utility grid[C].Applied Power Electronics Conference and Exposition,IEEE Conference,2010:1640—1650.
    [119] Malinowski M,Jasinski M,Kazmierkowski M P.Simple direct power control of three-phase PWM rectifier using space-vector modulation (DPC-SVM) [J].IEEE Transactions on Industrial Electronics,2004,51(2):447—454.
    [120] Serpa L A,Kolar J W.Virtual-flux direct power control for mains connected three-level NPC inverter systems[C].Power Conversion Conference,IEEE Conference,2007:130—136.
    [121] Eloy-Garcia J,Arnaltes S,Rodriguez-Amenedo.Extended direct power control for multilevel inverters including DC link middle point voltage control[J].IET Electric Power Applications,2007,1(4):571—580.
    [122] Eloy-Garcia J,Arnaltes S,Rodriguez-Amenedo J L.Extended direct power control of a three-level neutral point clamped voltage source inverter with unbalanced voltages[C].Power Electronics Specialists Conference,IEEE Conference,2008:3396—3400.
    [123] Larrinaga S A,Vidal, M A R,Oyarbide E,et al.Predictive control strategy for DC/AC converters based on direct power control[J].IEEE Transactions on Industrial Electronics,2007,54(3):1261—1271.
    [124] Abad G.,Rodriguez M A,Poza J.Three-level NPC converter-based predictive direct power control of the doubly fed induction machine at low constant switching frequency[J].IEEE Transactions on Industrial Electronics,2008,55(12):4417—4429.
    [125] Abad G.,Rodriguez M A,PozaJ.Two-level VSC-based predictive direct power control of the doubly fed induction machine with reduced power ripple at low constant switching frequency[J].IEEE Transactions on Energy Conversion,2008,23(2):570—580.
    [126] Blasko V,Kaura V.A new mathematical model and control of a three-phase AC-DC voltage source converter[J].IEEE Transactions on Power Electronics,1997,12(1):116—123.
    [127]陶新华,尹怡欣,葛芦生.新型PID控制及其应用[M].北京:机械工业出版社,1998.
    [128] Harnefors L,Nee H P.Model-based current control of AC machines using the internal model control method[J].IEEE Transactions on Industry Applications,1998,34(1):133—141.
    [129] Ho W K,Lee T H,Han, H P,et al.Self-tuning IMC-PID control with interval gain and phase margins assignment[J].IEEE Transactions on Control Systems Technology,2001,9(3):535—541.
    [130] Rolf O.Contol of back-to-back converters and sensorless induction machine drivers[D].G?teborg:Chalmers University of Technology,2003.
    [131] Arulselvi S,Uma G,Chidambaram M.Design of PID controller for boost converter with RHS zero[C] . Power Electronics and Motion Control Conference,IEEE Conference,2004,2:532—537.
    [132] Wen T.Unified tuning of PID load frequency controller for power systems via IMC[J].IEEE Transactions on Power Systems,2010,25(1):341—350.
    [133] Bai H,Zhao Z,Yuan L,et al.A high voltage and high power adjustable speed drive system using the integrated and step-up transforming filter[J].IEEE Transactions on Power Electronics,2006,21(5):1336—1346.
    [134] Laczynski T,Werner T,Mertens A.Active damping of LC-filters for high power drives using synchronous optimal pulsewidth modulation[C].Power Electronics Specialists Conference,IEEE Conference,2008:1033—1040.
    [135] Awad H,Svensson J.Compensation of unbalanced voltage dips using vector-controlled static series compensator with LC-filter[C] . Industry Applications Conference,IEEE Conference,2002,2:904—910.
    [136] Habetler T G,Naik R,Nondahl T A.Design and implementation of an inverter output LC filter used for dv/dt reduction[J].IEEE Transactions on Power Electronics,2002,17(3):327—331.
    [137] Cortes P,Ortiz G,Yuz J I,et al.Model predictive cControl of an inverter with output filter for UPS applications[J] . IEEE Transactions on Industrial Electronics,2009,56(6):1875– 1883.
    [138] Steinke J K.Use of an LC filter to achieve a motor-friendly performance of the PWM voltage source inverter[J].IEEE Transactions on Energy Conversion,1999,14(3):649– 654.
    [139]陈瑶.直驱型风力发电系统全功率并网变流技术的研究[D].北京:北京交通大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700