液晶透镜式2D/3D可转换显示器的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的发展,人们对显示的要求也越来越高。人们最终的期望是能够模拟现实,实现三维显示。经过多年的研究,三维显示技术已经有了一定的发展。目前主流的两种三维显示技术为眼镜式三维显示技术和裸眼式三维显示技术。眼镜式三维显示技术的效果比较好,发展比较成熟,然而由于其需要人们佩戴附加的设备如眼镜、头盔等,所以其应用受到了限制,比较适合显示技术,所以提高其显示效果是目前研究的主要于电影院。裸眼式三维显示技术由于不需要附加的设备就可以让人体验到立体感,所以是目前研究的热点。虽然裸眼式三维显示技术不需要额外的设备,但是它的显示效果始终不如眼镜式三维课题。
     在裸眼式三维显示技术中,液晶透镜式裸眼三维显示技术通过电控的方式可以轻易的实现2D/3D的可转换显示。除此之外,它还表现出了许多优点,如结构简单、易于制备以及驱动可调等。液晶透镜式裸眼三维显示技术必然成为以后的发展趋势。本文以此为基础研究了影响液晶透镜最后效果的几个参数,包括电场分布以及液晶透镜层的摩擦方向与电极放置方向的关系。如果摩擦方向与电极排布方向平行,由于透镜交界处的电极上的电压差异比较大,所以在这些区域的液晶分子会发生横向和纵向的两个方向的偏转,这使得正常方向和异常方向的光同时存在,最后将影响液晶透镜的显示效果。如果采用垂直方向的摩擦方向,那么不会同时存在正常方向和异常方向的光,但是将会导致在透明交界处存在缺陷区域。另外一个参数是电场,这主要表现在液晶层的盒厚大小。当采用大盒厚的时候将会得到更好的透镜效果,这主要是由于大盒厚可以减小透镜交界处的电极上电压差异的大小。然而大的盒厚也同样会带来其他问题,如响应速度慢、制作工艺复杂以及成本高等。
     液晶透镜式裸眼2D/3D可转换显示器存在一些缺点。液晶透镜的焦距受到许多因素的影响包括半径、双折射率差、盒厚、液晶透镜的周期以及多电极的电压分布。对于大尺寸的显示器来说,由于液晶材料的双折射率差最大也不超过0.5,非常小,所以液晶透镜的周期会非常大,因此只能使用非常大的盒厚来实现这一大的透镜周期。由于大盒厚会带来制备复杂、响应速度慢以及成本高等问题,所以我们进一步提出利用液晶菲涅尔透镜结构,这一结构可以用比较小的盒厚来得到比较大的透镜周期。为了提高液晶菲涅尔透镜的透镜效果,我们还提出两种改善方法,第一种是在液晶透镜层的特定区域加入绝缘聚合物墙以阻挡横向电场的影响。第二种方法是将电极分布在不同高度,这可以形成多层电极结构,这样等效于将不同高度的电极间距减小,用于减小由电极间距带来的透镜效果不够理想的情况。另外由于蓝相材料表现的快速响应特性,已经有人提出利用蓝相代替液晶已形成蓝相透镜用于三维显示,但是文献中一般都采用纵向电场诱导的方法实现透镜效果,这一方法只能利用蓝相材料最大折射率差的三分之一。我们提出利用横向电场诱导的方法实现蓝相液晶透镜,这一方案可以使利用的双折射率差接近于蓝相材料的最大双折射率差。随后为了改善这一结构的显示效果,我们还提出了一些改进结构。
As the development of the science and technology, people are having more and more requirements on display technologies. People are expecting the display can be virtual reality and can give people 3D experience. After study of many years, 3D display technologies have made many progresses. Nowadays there are two main 3D display technologies: Stereoscopic 3D display and autostereoscopic 3D display. The 3D performance of the stereoscopic 3D display is better, but it requires people to wear additional equipments such as 3D glasses, helmets and so on, so it is used for a few places such as cinema. Autostereoscopic 3D display can give people 3D experience without additional equipments, so it is the main study direction of the 3D display. The 3D performance of autostereoscopic 3D display is worse than the stereoscopic 3D display. So how to develop the 3D performance of the autostereoscpic is the main research subject.
     Of the autostereoscopic 3D display technologies, the LC lens type can easily realize 2D/3D switchable through the voltage off or on. Except this, it shows many advantages such as simple structure, easy process and flexible driving. Several factors affect the optical characterization of LC lens for 2D/3D switchable display, such as electric field and alignment direction of the LC layer. If the alignment direction of the LC is parallel to the electrodes, there exists horizontal electric field due to the voltage difference between the joint electrodes, making LC molecules rotate in both vertical and horizontal directions. This causes the coexistence of ordinary and extraordinary lights, which degrades the LC lens effect. If the alignment direction is vertical to the bottom electrodes, the coexistence of ordinary and extraordinary lights disappears, but leads to LC texture defect that appears at the joint area between lenses. Another factor is electric field, which can be reflected by the cell gap. If we use large cell gap LC lens, we can reduce the voltage difference between the joint electrodes. However the large cell gap causes other problems such as slow response time, difficult fabrication process and high costs.
     The 2D/3D switchable display based on LC lens have some disadvantages. Many factors determine the focal length of the lens, including the radius, the birefringence, the cell gap, the pitch of the LC lens and the voltage distribution of the control electrodes. Since the pitch of the multi-view LC lens for large size display is very large and the birefringence of the LC is relatively small and the maximum birefringence of LC is of less than 0.5, the LC lens thus needs a very large cell gap to obtain an appropriate focal length. The large cell gap can produce other problems such as slow switching speed, difficulty in fabrication and high cost. In order to solve the issues, we propose a Fresnel-type LC lens to achieve the same lens effect with a small cell gap and fast 2D/3D switching speed. To get an ideal Fresnel lens profile, we give two ways: the first one is to laminate a polymer wall between the joint electrodes of different sub-lenses. The polymer wall cuts down the horizontal electric field. Another way is reducing the spacing between the electrodes. We use the multilayer electrode structure which can be equivalent to reduce the spacing. Because of the fast response speed, the blue phase LC is used to replace LC in LC lens. But the traditional way is to use the vertical electric field to induce the phase shift of the blue phase LC which can only use the one third of the birefringence of the blue phase LC. We use the horizontal electric field to induce the phase shift which can almost produce the birefringence of the blue phase LC. And then to get a better 3D performance we raise some other structures.
引文
[1] Phil Surman, Ian Sexton, Klaus Hopf, Edward Buckley, Wing Kai Lee, Richard Bates, Wijnand IJsselsteijn. Multi-user 3D Display. Proceedings of Asia Display. 2007(1): 472~477.
    [2] Neil A Dodgson. Autostereoscopic 3D Displays[J]. the IEEE Computer Society(S0018-9162), 2005: 31~36.
    [3] S. T. Zwart et al. A 20-in. Switchable Auto-Stereoscopic 2D/3D Display. Proceedings of the 11th International Display Workshops, Niigata, Japan, 2004: 1459~1460.
    [4] A. C. Traub. Stereoscopic Display using Rapid Varifocal Mirror Oscillations. Applied Optics, 1967(6): 1085~1087.
    [5] Takanori Okoshi. Three Dimensional Imaging Techniques [M]. New York: Academic Press, 1976.
    [6]冯茂岩,沈春林.立体显示技术及其研究现状[J].电视技术. 2008, 32(11): 42~43.
    [7]丁剑飞,刘永进.三维立体显示技术综述[J].系统仿真学报. 2008, 9(20): 132~135.
    [8] N. Dodgson. 3D without Glasses. Proceedings of the EID, EID97. 1997
    [9] D. Ezra, G. J. Woodgate et al. New Auto-stereoscopic Display System. Proceedings of the SPIE. 1995(2409).
    [10] S. M. Faris. Novel 3D Stereoscopic Imaging Technology. Proceedings of the SPIE. 1994(2177)
    [11] G. J. Woodgate, J. Harrold. Key design issues for autostereoscopic 2D/3D displays [J]. Journal of the SID. 2006(14/5): 421~426.
    [12]王爱红,王琼华.光栅式自由立体显示器概述.现代显示. 2009, 10(105): 12~17.
    [13]李小芳,王琼华,李大海.自由立体显示器观看疲劳[J].液晶与显示. 2008, 23(4): 464~467.
    [14] Cees van Berkel. Image Preparation for 3D LCD [C]. SPIE, Stereoscopic Displays and Applications X. 1999(3639): 84~90.
    [15] Michael Halle. Autostereoscopic displays and computer graphics [C]. Los Angeles, Proceedings of ACM SIGGRAPH. 1997: 58~62.
    [16] Tsai Rung-Ywan, Tsai Chao-Hsu, Lee Kuen, er al. Challenge of 3D LCD diplays [J]. Proc. of SPIE. 2009(7329): 1~8
    [17] Willemsen O H, de Zwart S T, Hiddink M G H, et al. Multi-view 3D Displays [C]. SID 07 Digest, America. 2007: 1154~1157.
    [18] J. B. Eichenlaub. A novel low cost 2D/3D switchable autostereoscopic system for notebook computers and other portable devices. Proc. SPIE. 1995(2409): 113~117.
    [19] J. Eichenlub. A compact, lightweight, 2D/3D autostereoscopic backlight for games, monitor and notebook applications. Proceedings of the SPIE. 1998(3295).
    [20] Cossairt O. S. Aview-sequential 3D Display [D]. Boston, Massachusetts, USA, Massachusetts Institute of Technology. 2003.
    [21]海洋.立体显示革命[J].观察(S1002-2295). 2007(7):62~68..
    [22]王元庆.基于LCD的自由立体显示技术[J].信号处理(S1003-0530). 2007, 23(5), 116~120.
    [23] K. N. Ogle. Researches in Binocular Vision. Hafner Publishing Co. Ltd. 1964.
    [24] E. B. Goldstein. Sensation and Perception sixth edition, published by Wadsworth, 2002.
    [25] L. Gooding, M. E. Miller, J. Moore, S. Kim. The effect of viewing distance and disparity on perceived depth. Proceedings of the SPIE. 1991(1457).
    [26] D. B. Diner, D. H. Fender. Human Engineering in Stereoscopic Display Devices. Plenum Press, 1993.
    [27] C. Blakemore. The range and scope of binocluar depth discrimination in man. Physiology. 1970(211): 599~622.
    [28] Y. Yeh. Visual and perceptual issues in stereoscopic colour displays. Stereo computer graphics and other true 3D technologies, Ed. D. McAllister, Princeton University Press. 1993.
    [29] G. J. Woodgate, et al. High efficiency reconfigurable 2D/3D autostereoscopic displays. Symposium Digest of SID. 2004.
    [30] S. T. Kowel, D. S. Cleverly and P. G. Korniech. Focusing by electrical modulation of refraction in a liquid crystal cell. Applied Optics. 1984(23).
    [31] G. J. Woodgate, et al. Flat panel autostereoscopic displays characterisations and enhancement. Proceedings of SPIE. 2000(3957).
    [32]赵悟翔,王琼华,李大海等.阶梯光栅多视点自由立体显示的子像素排列.四川大学学报. 2009, 41(6): 216~218.
    [33] Lee CM G, Travis A R L, Lin R. Flat panel autostereoscopic 3D display [J]. Optoelectronics, IET. 2008(2): 24~28.
    [34] Son J Y, Savejev V V, Kim J S, et al. Viewing zones in three dimensional imaging systems based on lenticular, parallax barrier, and microlens array plates [J]. Applied Optics. 2004, 43(26): 4985~4992.
    [35] Lee H J, Nam H, Lee J D, et al. A high resolution autostereoscopic display employing a time division parallax barrier. SID Symposium Digest. 2006: 81~84.
    [36] Son J Y, Savejev V V, Chung S Y, et al. Full parallax image generation with a single viewing zone forming optics. Proc of Information Display Workshop, AsiaDisplay. 2005: 1781~1784.
    [37]孔令胜,南敬实,荀闲超.平面三维显示技术的研究现状[J].中国光学与应用光学. 2009, 2(2): 112~118..
    [38] Leung M S, Beach R. Three dimensional real image volumetric display system and method [P]. US Paten: US005745197, 1998.Ng C. T. K., and Goldsmith A. J., The impact of CSI and power allocation on relay channel capacity and cooperation [J], IEEE Transaction on Wireless Communication , 2008 , 7(12):5380-5389.
    [39] Penciu C, MacFarlane D L. Fabrication and characterization of a volumetric three dimensional display using ion-exchanged integrated waveguides [J]. Optical Engineering. 2000, 39(2): 565~571.Brennan D. G., Linear diversity combining techniques[C],//Proceedings of the IEEE, vol. 91, no. 2, pp.331-356, Feb. 2003.
    [40] MacFarlane D L. Volumetric three dimensional display [J]. Applied Optics. 1994, 33(31): 7453~7457.
    [41] Blundell B G, Schwarz A J, Horrell D K. Cathode ray sphere: A prototype system to display volumetric three dimensional images [J]. Optical Engineering. 1994, 33(1): 180~186.
    [42] Little G R, Gustafson S C, Nikolau Vasiliki E. Multi-perspective autostereoscopic display [A]. Proceedings of SPIE, Orlando, FL, USA. 1994: 388~394.
    [43] Eichenlaub J B. A multi-perspective look around autostereoscopic projection display using ICFLCD [A]. Proceedings of SPIE, San Jose, CA, USA.1999:110~121.
    [44] 3D Holographic Display with optically addressed spatial light modulator. 3DTV Conference.
    [45] T. Jarvenpaa, M. Salmimaa. Optical characterization methods for autostereoscopic 3D displays. Proc of Euro Display. 2007: 1220~1223.
    [46] M. Salmimaa, T. Jarvenpaa. Optical characterization and measurements ofautostereoscopic 3D displays. Photonics Europe 08, SPIE Europe, Strasbourg, France. 2008, 7001(700102): 1~9.
    [47] Marja Salmimaa, Toni Jarvenpaa. Objective Evaluation OF Multi-View Autostereoscopic 3D Displays. SID 08 Digest. 2008: 267~270.
    [48] M. Salmimaa, T. Jarvenpaa. 3D自由立体显示的性能表征.现代显示. 2009(106): 5~8.
    [49]张宝砚.蓝相聚合物.中国材料进展. 2009, 28(6): 45~50.
    [50] Yi-Hsin Lin, Hung-Shan Chen, et al. Polarizer free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals. Applied Physics Letters. 2010, 96(113505): 1~3.
    [51] Yan Li, Shin-Tson Wu. Polarization independent adaptive microlens with a blue phase liquid crystal. Optics Express. 2011, 19(9): 8045~8050.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700