数据校正和支持向量机的过失误差识别的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息技术的发展,过程数据发挥着越来越重要的作用,它不仅可以执行一系列的监视任务,而且广泛用于过程控制,生产调度,成本控制,以及经营决策等等。然而过程数据往往包含了随机误差和过失误差,这些误差尤其是过失误差对工业生产危害很大。为此我对过失误差识别技术进行深入的研究。另外,随着支持向量机蓬勃发展,训练样本时常包含了过失误差,这也对支持向量机的广泛应用带来了阻碍。
     本文围绕着过失误差,研究了数据校正领域和支持向量回归领域的应对过失误差的方法,主要内容如下:
     1、提出了一种同步识别过失误差和数据校正的混合方法。该方法先用最大支撑树把MT方法和NT方法结合起来用于形成误差怀疑集合,再把前面获得的怀疑集合应用到MILP模型中完成测量值的校正和过失误差的补偿,这种混合方法通过彼此配合可以有效避免MT、NT、MILP方法的缺点发挥它们的优势,并通过仿真可以看到这个混合方法的过失误差识别能力和校正精度都优于其他方法,另外我们的方法更加适用于解决大规模问题。
     2、同时过失误差识别和数据校正的MILP模型在线性系统中取得很好的效果,但由于模型的复杂很难应用到非线性或者动态的对象中。为此,本文采用公式推导的方式证明了数据校正的MILP模型可以等价地表示成非线性规划模型,因而该模型不仅可以用混合整数线性规划算法求解而且可以用非线性迭代算法求解。仿真结果也证明这两种方法求解的结果是一致的。此外本文也对原有的模型进行改进,并将MILP方法成功地应用到CSTR动态系统中。
     3、随着信息技术的发展,工业过程中保留了大量的历史信息,如果能够有效的利用这些历史信息可以有效的提高过失误差的识别概率和数据校正的精度。为此我们提出了一种基于历史先验信息的新方法,该方法包括两个步骤:第一步利用先验信息和空间冗余进行过失误差的识别,第二步采用赋权的方法进行数据协调。为了评价不同信息对我们方法的影响,我们设计了两个标准来区分不同的信息,并将我们的方法应用到一个具有挑战的问题中,蒙特卡洛仿真实验显示了我们的方法的有效性。
     4、提出了一种ε不敏感光滑鲁棒支持向量回归机,这种鲁棒支持向量回归结合了鲁棒估计的概念和光滑技术。本文在Fair估计的基础上提出了一种ε不敏感鲁棒函数,并为了方便求解,我们利用光滑技术对该函数进行光滑处理得到了ε不敏感光滑鲁棒函数,把这种ε不敏感光滑鲁棒函数应用到支持向量机中,就获得了ε不敏感光滑鲁棒支持向量回归机。它具备良好的鲁棒性和稀疏性,而且由于ε不敏感光滑鲁棒函数二次可导,可以利用Newton-Armijo算法进行求解,采用这种算法二次收敛,而且收敛到全局最优解。仿真实验也显示了我们的方法学习速度快,并且无论过失误差存在与否都有很好的性能。
     5、一般说来,由于非凸的鲁棒损失函数的支持向量回归机相对于利用凸鲁棒损失函数的具有更好的鲁棒性,然而非凸规划的问题求解十分困难,为此我们用两个可导的凸函数构成一个鲁棒的非凸函数,并基于这种非凸损失函数形成了我们的平顶的支持向量回归,为了求解的方便,本文利用CCCP技术把非凸问题变成一系列的凸规划问题进行求解。由于该方法中避免了包含过失误差的数据成为支持向量,所以这种方法相对于标准支持向量回归稀疏性更好,而且这种方法也有很好的鲁棒性,最后把我们的方法应用到人工训练集合和真实数据集,试验表明我们提出的方法相对于标准SVR和weightedSVR就有优良的鲁棒性和稀疏性。
     最后,总结全文对未来的工作进行展望。
Plant data are playing a more and more important role with the development of information technology. Plant data are used for not only a series of monitoring tasks but also other plant activities such as process control, process optimization, production scheduling, cost control and so on. However, these data usually contain random error and possibly gross error.These errors, especially gross error,cause great harm to the industrial production. In addition, support vector machine develops rapidlyin recent years in recent years. However, the existence of gross error hindered its widespread application.
     This dissertation focuses on gross error and research the method of dealing with gross error in the field of data recionciliation and support vector regression.
     1、A MT-NT-MILP (MNM)combined method is developed for gross error detection and data reconciliation for industrial application. In our new method,MT method and NT method are combined to generate gross error candidates by maximal spanning tree before data rectification. Then the candidates are used in the MILP model to improve the efficiency by reducing the number of binary variables. This combination is helpful to overcome the defect of MT、NT and MILP method.Simulation results show that our proposed method overcomes other methods and the method is effective especially in a large-scale problem.
     2、Mixed integer linear programming (MILP) approach for simultaneous gross error detection and data reconciliation has been proved as an efficient way to adjust process data with material, energy, and other balance constrains for linear system. However, under the MILP framework, it is difficult for model expansion. In this paper, it proves that the MILP model for data reconciliation is equal to a nonlinear programming model, therefore it could be resolved not only by the mixed integer linear programming but also by iterative method. The results obtained by applying the two algorithms are the same. That also verifies the correctness of the conclusion. Under the nonlinear programming framework, an extended model is presented. Besides we successfully apply MILP method for dynamic system (CSTR).
     3、With the information technology applied widely to process industry, a large amount of historical data used for obtaining the prior probabilities of gross error occurrence is stored in database. To use the historical data to enhance the efficiency of gross error detection and data reconciliation, a new strategy which includes two steps is proposed. The first step is that mixed integer program technique is incorporated to use the prior information to find out gross errors. The second step is to eliminate all detected gross errors and adjust process data with material, energy, and other balance constrains. In this step an improved method is proposed to achieve the same effect with traditional method through adjusting the covariance matrix.The new criteria is designed to differentiate different prior information. Performance of this new strategy is compared and discussed by applying the strategy for a challenging test problem. Simulation results show the effectiveness of our method.
     4、A novel support vector machine for regression, which combines robust estimators (Fair estimator is chosen in this paper) and the smoothing technique, is proposed and called as smoothε-insensitive Fair estimator support vector machine for regression (ε-SFSVR). In theε-SFSVR,a new type ofε-insensitive loss function, called asε-insensitive Fair estimator,is proposed by combining Fair estimator. With this loss function robustness could be improved and sparseness property may be remained. To enhance the learning speed,we apply the smoothing techniques that have been used for solving the support vector machine for regression, to replace theε-insensitive Fair estimator by an accurate smooth approximation. This will allow us to solveε-SFSVR as an unconstrained minimization problem directly. We also prescribe a Newton-Armijo algorithm that has been shown to be convergent globally and quadratically to solve ourε-SFSVR. Based on the simulation results, the proposed approach has fast learning speed and better generalization performance whether outliers exist or not.
     5、One robust non-convex loss function is constructed by combining two differentiable convex functions because non-convex loss functions own advantage over convex ones in robustness and generalization performance for support vector regression. With this non-convex loss function, a flatheaded support vector regression (FSVR) is proposed and then the concave-convex procedure is used to solve the FSVR by transforming the non-convex problem into a sequence of convex ones. The FSVR integrates the advantage of standard SVR and weighted SVR, in other words, it can not only obtain better sparseness property but also restrain the outliers of training samples. Experiments have been done on artificial and benchmark datasets and the results show the effectiveness of the proposed FSVR.
     Finally,the dissertation is concluded with a summary and prospect of future researches.
引文
[1]KUEHN D K DAVIDSON H. Computer Control:Mathematics of Control[J]. Chemical Engineering Progress,1961,57(6):44-47.
    [2]C. M. Crowe, Y. A. Garcia Campos and A. HRYMAK. Reconciliation of process flow rates by matrix Projection. I:Linear case[J]. AIChE Journal,1983,29(6):881-888.
    [3]Sanchez M. and J. Romagnoli. Use of orthogonal transformations in data classification and reconciliation[J]. Computers & Chemical Engineering,1996,20(5):484-493.
    [4]Kelly J. D. On Finding the Matrix Projection in the Data Reconciliation Solution[J]. Computers & Chemical Engineering,1998,22(11):1554-1557.
    [5]Kelly J. D. Reconciliation of process data using other projection matrices[J]. Computers & Chemical Engineering,1999,23(6):786-789.
    [6]袁永根.化工过程数据的校正和估算方法[J].计算机与应用化学,1985,2(4):259-270.
    [7]C. M. Crowe. Reconciliation of process flow rates by matrix projection. Ⅱ:The Nonlinear case[J]. AIChE Journal,1986,32(4):616-623.
    [8]Richard S. Mah, Gregory M. Stanley, and Dennis M. Downing. Reconciliation and rectification of process flow and inventory data[J]. Industrial & Engineering Chemistry Process Design and Development,1976,15(1):175-183.
    [9]王旭,荣冈,吕品晶.基于贝叶斯网络的数据校正方法[J].化工学报,2006,57(6),1385-1389.
    [10]KNEPPER J. C., GORMAN J. W. Statistical-analysis of constrained data sets[J]. AIChE Journal,1980,26(2):260-264.
    [11]Veverka, V. V. & Madron, F.. Material and energy balancing in the process industries: From microscopic balances to large plants. (1997) In Computer-aided chemical engineering series (Vol.7). Amsterdam,The Netherlands:Elsevier.
    [12]I.B. Tjoa, L.T. Biegler. Simultaneously strategies for data reconciliation and gross error detection of nonlinear systems[J]. Computers and Chemical Engineering,1991,15(10): 679-690.
    [13]金思毅,刘猛,李宁,陶少辉.基于双权M-估计子的鲁棒数据校正新方法[J].高校化学工程学报,2010,4,676-680.
    [14]Ramamurthi, Y and B. W. Bequette. Data Reconciliation of Systems with Unmeasured Variables Using Nonlinear Programming Techniques[C]. AIChE Spring National Meeting,1990
    [15]Liebman, M. J & Edgar, T. F. Data reconciliation for nonlinear process[C]. AIChE annual meeting.1988, Washington, DC.
    [16]袁永根,李华生,过程系统测量数据校正技术[M]:中国石化出版社,北京,1996.
    [17]高倩,阎威武,邵惠鹤.双线性约束过程的鲁棒自适应数据校正方法[J].化工学报,2007,58(12):3108-3115.
    [18]S Narasimhan, R S H Mah, A C Tamhane, J W Woodward and J C Hale. A composite statistical test for detecting changes of steady-states [J]. AIChE Journal,1986,32(9): 1409-1418.
    [19]S. Narasimhan, Chen Shan Kao, R. S. H. Mah. Detecting changes of steady-states using the mathematical-theory of evidence[J]. AIChE Journal,1987,33(11):1930-1932.
    [20]Songling Cao, R.Russell Rhinehart. Efficient method for online identification of steady state[J]. Journal of Process Control,1995,5(6):363-374.
    [21]Madron F and Veverka V. Optimal selection of measuring points in complex plants by linear models[J]. AIChE J.,1992,38,227-236.
    [22]Sanehez M, Bandoni A and Romagnoli J. PLADAT: A package for process variable classification[J]. Computers Chern. Engng.,1992,16,499-506.
    [23]Ali Y and Narasimhan S. Sensor network design for maximizing reliability of linear processes[J]. AIChE J.,1993,39(5):820-828.
    [24]Ali Y and Narasimhan S. Redundant sensor network design for linear processes[J]. AIChE J.,1995,41(10):2237-2249.
    [25]Bagajewicz M J. Design and retrofit of sensor networks in process plants[J]. AIchE J., 1997,43(9):2300-2306.
    [26]Wang Y Zhang P M, Rong G and Wang S Q. Sensor networks design for linear systems using genetic algorithm. Korea-China Joint Workshop on Process Systems Engineering, Taejon, Korea,1999,23-26.
    [27]Kretsovalis A and Mah R S H. Effect of redundancy on estimation accuracy in process data reconciliation[J]. Chem. Eng.Sci.,1987,42(9):2115-2121.
    [28]Ali Y and Narasimhan S. Sensor network design for maximizing reliability of bilinear processes[J]. AIChE J.,1996,42(9):2563-2575.
    [29]Estanislao Musulin, Chouaib Benqlilou, Miguel J. Bagajewicz, Luis Puigjaner. Instrumentation design based on optimal Kalman filtering[J]. Journal of process control, 2005,15,629-638.
    [30]Abhay k Singh and Juergen Hahn. Sensor Location for Stable Nonlinear Dynamic System: Multiple Sensor Case[J]. Ind. Eng. Chem. Res.,2006,45(10):3615-3623.
    [31]Ashuraj Sirohi and Kyu Yong Choi. On-line parameter estimation in a continuous polymerization process[J]. Industrial and Engineering Chemistry Research,1996,35(4): 1332-1343.
    [32]Thomas W. Karjala, David M. Himmelblau. Dynamic data rectification by recurrent neural networks versus traditional methods[J]. AIChE Journal,1994,40(11):1865-1875.
    [33]Thomas W. Karjala, David M. Himmelblau. Dynamic rectification of data via recurrent neural nets and the extended Kalman filter[J]. AIChE Journal,1996,42(8):2225-2239.
    [34]Diego Martinez Prata, Marcio Schwaab, Enrique Luis Lima, Jose Carlos, J. C. Pinto. Nonlinear dynamic data reconciliation and parameter estimation through particle swarm optimization:Application for an industrial polypropylene reactor[J]. Chemical Engineering Science,2009,64 (18):3953-3967.
    [35]Jang, S.S., Joseph, B., Mukai, H. Comparison of two approaches to on-line parameter and state estimation of nonlinear systems[J]. Industrial Engineering Chemistry Process Design and Development,1986,25(3):809-814.
    [36]B. Li, B. Chen, J. Whang & S. Cong. Steady-state online data reconciliation in a crude oil distillation unit[J]. Hydrocarbon Processing,2001,61-64.
    [37]Kenneth R. Muske and James B. Rawlings. Nonlinear moving horizon state estimation[J]. Berber, R. (Ed.), Methods of Model Based Process Control, Kluwer Academic Publishers, Antalya,1995,293(3):349-365.
    [38]Romagnoli, J.A., Sanchez, M.C., Data Processing and Reconciliation for Chemical Process Operations. [M].Academic Press,2000.San Diego, CA.
    [39]I. W. Kim, M. J. Liebman and T. F. Edgar. A sequential error-in-variables method for nonlinear dynamic systems[J]. Computers & Chemical Engineering,1991,15(9): 664-670.
    [40]M. J. Liebman, T. F. Edgar and L. S. Lasdon. Efficient data reconciliation and estimation for dynamic process using non-linear programming techniques[J]. Comput. Chem. Eng., 1992,16(10-11):964-986.
    [41]Pramod Vachhani, Raghunathan Rengaswamy, Vikrant Gangwal & Shankar Narasimhan. Recursive estimation in constrained nonlinear dynamical systems[J]. AIChE Journal, 2005,51(3):946-959.
    [42]P. Vachhani, S.Narasimhan and R. Rengaswamy. Robust and reliable estimation via Unscented Recursive Nonlinear Dynamic Data Reconciliation[J]. Journal of Process Control,2006,16(10):1076—1086.
    [43]H. I. Britt and R. H. Luecke. The estimation of parameters in nonlinear implicit models[J]. Technometrics,1973,15(2):234-247.
    [44]T Binder, Luise Blank, W Dahmen, W Marquardt. Towards multiseale dynamic data reconciliation[J]. Nonlinear Model Based Process Control,1998,353:623-665.
    [45]TONA R V et al. Dynamic data reconciliation based on wavelet trend analysis [J]. Industrial & Engineering Chemistry Research,2005,44(12):323-4335.
    [46]Shuanghua Bai, Jules Thibault, David D. McLean. Dynamic data reconciliation: Altemative to kalman filter[J]. Journal of Process Control,2006,16(5):485-498.
    [47]Hodouin,D. and S.Makni, Real-time reconciliation of mineral processing plant data using bilinear material balance equations couplede to emprical dynamic models [J]. International Journal of Mineral Processing,1996,48(4-4):246-264.
    [48]Ripps D. L. Adjustment of Experimental Data[J].Chem. Eng. Prog. Symp. Ser.,1965,61(55): 8-13.
    [49]Reilly, P. M., & Carpani, R. E. Application of statistical theory of adjustments to material balances.13th Canadian chemical engineering conference. (1963). Montreal, Quebec.
    [50]Mah, R. S., Stanley, G. M., & Downing, D. M.. Reconciliation and rectification of process flow and inventory data[J]. Industrial and Engineering Chemistry Process Design and Development,1976,15:175-183.
    [51]Tamhane, A. C. & Mah, R. S. H.. Data reconciliation and gross error detection in chemical process networks[J]. Technometrics,1985,27:409-422.
    [52]Crowe, C. M.. The maximum power test for gross errors in original constraints in data reconciliation[J]. Can. J. Chem. Eng,1992,70(10):1030-1036.
    [53]Tamhane A.C., Jordache C. and Mah R. S. H.. A Bayesian Approach to Gross Error Detection in Chemical Process Data. Part I:Model Development[J]. Chemometrics and Intel. Lab. Sys.,1988,4:33-45.
    [54]]Tong, H., & Crowe, C. M.. Detection of gross errors in data reconciliation by principal component analysis[J]. AIChE Journal,1995,41:1712-1722.
    [55]Narasimhan.S. & Mah,R.S.H.. Generalized likelihood ratio method for gross error identification[J]. AIChE Journal,1987,33:1514-1521.
    [56]SeahR. W., C. M. Valero and W. A. Heenan. Gross error detection and data reconciliation in steam-metering systems[J]. AIChE Journal,1986,32:734-742.
    [57]KIM I W, et al. Robust data reconciliation and gross error detection:The modified MIMT using NLP[J]. Computers & Chemical Engineering,1997,21(7):775-782.
    [58]杨友麒,藤荣波.过程工业测量数据中过失误差的侦破与校正[J].化工学报,1996,47(92):249-253.
    [59]Wang, F., et al. An improved MT-NT method for gross error detection and data reconciliation[J]. Computers & Chemical Engineering,2004,28(11):2189-2192.
    [60]Mei, C. L., H. Y. Su, and J. Chu. An NT-MT combined method for gross error detection and data reconciliation[J]. Chinese Journal of Chemical Engineering,2006,14(5):593— 596.
    [61]NARASIMHAN S., MAH. R. S. H.. Generalized liklihood ratio method for grosserror identification[J]. AIChE Journal,1987,33(9):1514-1521.
    [62]NARASlMHAN S, MAH R S H. Generalized likelihood ratios for gross error identification in dynamic processes[J]. AIChE Journal,1988,34(8):1321-1331.
    [63]J. Y. KELLER, M. DAROUACH, G. KRZAKALA. Fault-detection of multiple biases or process leaks in linear steadystate systems[J].Computers&Chemical Engineering,1994, 18(10):1001-1004.
    [64]ROLLINS D K, DAVIS J F. Unbiased estimation of gross errors in process measurements[J]. AIChE Journal,1992,38(4):563—572.
    [65]ROLLINS D K, DEVANATHAN S. Unbiased estimation in dynamic data reconciliation[J]. AIChE Journal,1993,39(8):1330-1334.
    [66]SANCHEZ M, et al. Simultaneous estimation of biases and leaks in process plants[J]. Computers & Chemical Engineering,1999,23(7):841-857.
    [67]Jiang,Q.Y and M. J. Bagajewicz. On a strategy of serial identification with collective compensation for multiple gross error estimation in linear steady-state reconciliation[J]. Industrial & Engineering Chemistry Research,1999,38(5):2119-2128.
    [68]Jiang,Q.Y., M. Sanchez, and M. Bagajewicz. On the performance of principal componentanalysis in multiple gross error identification[J]. Industrial & Engineering Chemistry Research,1999,38 (5):2006-2012.
    [69]Tjoa, I. B.,& Biegler, L. T.. Simultaneous strategies for data reconciliation and gross error detection of nonlinear systems[J]. Computers and Chemical Engineering,1991, 15(10):679-690.
    [70]Moustapha Alhaj-Dibo, Didier Maquin, Jose Ragot. Data reconciliation:A robust approach using a contaminated distribution[J]. Control Engineering Practice,2008,16 159-170.
    [71]Johnston, L. P. M.,& Kramer, M. A.. Maximum likelihood data rectification:Steady-state systems. AIChE Journal,1995,41(11):2415-2426.
    [72]Huber, P. J. Robust statistics. [M] (1981) New York:Wiley.
    [73]Arora, N.,& Biegler, L. T.. Redescending estimators for data reconciliation and parameter estimation [J]. Computers and Chemical Engineering,2001,25:1585-1599.
    [74]Wang, D. and J.A. Romagnoli. Generalized T distribution and its applications to process data reconciliation and process monitoring[J]. Transactions of the Institute of Measurement and Control,2005,27(5):368-390.
    [75]Wang, D. and J. A. Romagnoli. A framework for robust data reconciliation based on a generalized objective function[J]. Industrial & Engineering Chemistry Research,2003, 42(13):3076-3084.
    [76]Derya B. Ozyurt, Ralph W. Pike.. Theory and practice of simultaneous data reconciliation and gross error detection for chemical processes[J]. Computers and Chemical Engineering,2004,28:381-402.
    [77]Diego Martinez Prata, Marcio Schwaab, Enrique Luis Lima, Jose Carlos Pinto. Nonlinear dynamic data reconciliation and parameter estimation through particle swarm optimization:Application for an industrial polypropylene reactor[J]. Chemical Engineering Science,2009,64:3953-3967.
    [78]Chen Jian, Chen Zhen, et al. Two-step method for gross error detection in process data[C]. Proceedings of American control conference, Arlington,2001, VA June 25-27: 2121-2126.
    [79]王秀萍.数据校正技术理论及应用研究[D].杭州:浙江大学,2000.
    [80]王希若.数据协调中的显著误差检测方法[D].杭州:浙江大学,1999.
    [81]Mah,R,S.H., G. M. Stanley, and D.W. Downing. Reconciliation and Rectification of Process. Flow and Inventory Data[J]. Ind.& EC Proc. Des. Dev.,1976,15:176-183.
    [82]Kao,C., A.C. Tamhane, and R.S.H. Mah. Gross error detection in serially correlated processdata 2:Dynamic systems[J]. Industrial Engineering and Chemical Research,1992, 31(1):255-262.
    [83]Narasimhan, S. and R. S. H. Mah. Generalized likelihood ratios for gross error identification in dynamic processes [J]. AIChE Journal,1988,34(8):1321-1331.
    [84]Liebman,M. J., T. F. Edgar, and L. S. Lasdon. Efficient data reconciliation and estimation for dynamic process using non-linear programming techniques [J]. Comput. Chem. Eng.,1992,16:964-986.
    [85]Bagajewicz, M. J. and Q. Y Jiang. Integral approach to plant linear dynamic reconciliation[J]. AIChE Journal,1997,43(10):2547-2558.
    [86]Bagajewicz, M. J. and Q. Y Jiang. Gross error modeling and detection in plant linear dynamic reconciliation[J]. Computers & Chemical Engineering,1998,22(12): 1789-1809.
    [87]Derrick K. Rollins, Sriram Devanathan, Ma.Victoria B. Bascunana. Measurement bias detection in linear dynamic systems[J]. Computers Chem. Engng.,2002,26:1201-1211.
    [88]Kong Mingfang, Chen Bingzhen and Li Bo. Simultaneous gross eror detection and data reconciliation based on the robust estimation principle[J]. Journal of Tsinghua University(Sci & Tech),2000,40(2):46-50.
    [89]Albuquerque.J. S. and L. T. Biegler. Data reconciliation and gross error detection for dynamic Systems[J]. AICHE J.,1996,42:2841-2856.
    [90]Mingfang Kong, Bingzhen Chen, Xiaorong He, Shanying Hu. Gross error identification for dynamic system[J]. Computers and Chemical Engineering,2004,29:191-197.
    [91]MIAO Yu, SU Hong-Ye, CHU Jian. A Support Vector Regression Approach for Recursive Simultaneous Data Reconciliation and Gross Error Detection in Nonlinear Dynamical Systems[J]. Acta Automatica Sinica,2009,35(6):706-716.
    [92]Z. H. Abu-el-zeet, V. M. Becerra, P. D. Roberts. Combined bias and outlier identification in dynamic data reconciliation[J]. Computers and Chemical Engineering,2002,26: 921-935.
    [93]Chen, J. and J.A. Romagnoli. A strategy for simultaneous dynamic data reconciliation and outlier detection [J]. Comput. Chem. Eng.,1998,22(45):559-562.
    [94]Zhou,L.K., H.Y. Su, and J. Chu. A modified outlier detection method in dynamic data Reconciliation[J]. Chinese Journal of Chemical Engineering,2005,13(4):543-547.
    [95]S. Joe Qin, Wcihua Li. Detection and Identification of Faulty Sensor in Oynamic Process[J]. AIChE Journal,2001,47(7):1581-1593.
    [96]JIANG Chunyang, QIU Tong, ZHAO Jinsong and CHEN Bingzhen. Gross Error Detection and Identification Based on Parameter Estimation for Dynamic Systems[J]. Chinese Journal of Chemical Engineering,2009,17(3):460-467.
    [97]孔明放,陈丙珍,王健,胡山鹰.基于鲁棒估计的动态数据校正方法[J].计算机与应用化学,2002,19(6):763-767.
    [98]姜春阳,邱彤,陈丙珍,赵劲松.一种改进的基于鲁棒估计的动态数据校正方法[J].计算机与应用化学,2007,24(10):1297-1301.
    [99]Gao Qian,Yan Weiwu, Shao Huihe. A Novel Robust Nonlinear Dynamic Data Reconciliation[J]. Chinese Journal of Chemical Engineering,2007,15(5):698-702.
    [100]朱家元,段宝君,张恒喜.新型SVM对时间序列预测研究[J].计算机科学,2003,30(8):124-125
    [101]陆文聪,杨柳.支持向量机算法用于夜光藻密度建模[J].计算机与应用化学,2002,19(6):705-708
    [102]刘江华,陈佳品.基于支持向量机的非线性系统辨识[J].测控技术,2002,21(11),54-56
    [103]T. Joachims, C. Ndellec, C. Rouveriol, Text categorization with support vector machines:learning with many relevant features, in:European Conference on Machine Learning No.10, Chemnitz, Germany,1998, pp.137-142
    [104]M.P.S. Brown, W.N. Grundy, D. Lin, et al., Knowledge-based analysis ofmicroarray gene expression data by using support vector machine, Proceedings of the National Academy of Sciences of the United States of America 97(1) (2000) 262-267
    [105]H. Ince, T.B. Trafalis, Support vector machine for regression and applicationsto financial forecasting, in:International Joint Conference on Neural Networks (IJCNN02), IEEE-INNS-ENNS, Como, Italy,2002
    [106]V. Vapnik. The Nature of Statistical Learning Theory[M]. New York:Springer,1995.
    [107]V. Vapnik, An overview of statistical learning theory[J]. IEEE Trans. Neural Networks,1999,10(5):988-999.
    [108]C. Cortes, V. Vapnik. Support vector networks[J]. Mach. Learn.,1995,20:273-297.
    [109]J. A. K. Suykens, J. Vandewalle. Least squares support vector machine classifiers[J]. Neural Process. Lett.,1999,9(3):293-300.
    [110]J. A. K.Suykens, T. VanGestel, J. De Brabanter, B.De Moor, J. Vandewalle. Least Squares Support Vector Machines[M]. Singapore:World Scientific,2002.
    [111]T. VanGestel, J. A. K. Suykens, B. Baesens, S. Viaene, J. Vanthienen, G. Dedene, B. De Moor, J. Vandewalle. Benchmarking least squares support vector machine classifiers[J]. Mach. Learn.,2004,16(2):5-32.
    [112]J. A. K. Suykens, L. Lukas, P. Van Dooren, B. De Moor, and J. Vandewalle. Least squares support vector machine classifiers:A large scale algorithm[J]. In Proceedings of European conference of circuit theory design.,1999,839-842.
    [113]W. Chu, C. J. Ong, and S. S. Keerthy. An improved conjugate gradient method scheme to the solution of least squares SVM[J]. IEEE Trans. Neural Netw.,2005,16(2): 498-501.
    [114]E.Osuna, R. Freund, F. Girosi. An improved training algorithm for support vector machines[C]. Proceedings of Neural Networks for Signal Processing,1997,7:276-285.
    [115]Cortes C. Vapnik V. Support vector networks[J]. Machine Learning,1995,20(3): 273-297.
    [116]Osuna E, Freund R, Girosi F. An improved training algofithm for support vector machines[C]. Proceedings of the 1997 IEEE Workshop On Neural Networks for signal Processing. New York:IEEE Press,1997,276-285.
    [117]Osuna E, Fretmd R, Girosi F. Training support vector machines:An appfication to face detection. In Proceedings of 1997 Conference Oil Computer Vision and Pattern Recognition. Puerto Rico:IEEE Press,1997.
    [118]Hsu C W, Lin C J. A simple decomposition method for support Vector machines[J]. Machine Learning,2002,46(1):291-314.
    [119]Joachims T. Making large-acale SVM learning practical. Advances in Kernel Methods:Support Vector Machine. [M]Cmnbfidge,MA:MIT press,1998.
    [120]T. Joachims. Making large-scale SVM learning practical, in:Advances in Kernel Methods-Support Vector Machine, [M]Cambridge, MA, USA,1999.
    [121]J.C. Platt. Fast training of support vector machines using sequential minimal optimization, in:Advances in Kernel Methods-Support Vector Machines,[M] Cambridge, MA, USA,1998.
    [122]S.K.Shevade, S.S.Keerthi, C.Bhattacharyya, K.R.K.Murthy, Improvements to the SMO algorithm for SVM regression,IEEE Trans. Neural Networks (2000) 11(5):1188-1193.
    [123]Keerthi S. S., Shevade S. K., Bhattacharyya C., et al. Improvements to Platt's SMO algorithm for SVM classier design[J]. Neural Compumfion,2001,13(3):637-649.
    [124]Keerthi S.S., Gilbert E.. Convergence of a generalized SMO algorithm for SVM classifier design[J]. Machine learning,2002,46(1-3):351-360.
    [125]R. Collobert, S. Bengio, SVMTorch:support vector machines for large-scale regression problems[J]. J.Mach.Learn.1,2001.2(1):143-160.
    [126]C.C.Chang, C.J.Lin, LIBSVM:alibrary for support vector machines, available from http://www.csie.ntu.edu.tw/-cjlin_
    [127]Y. J. Lee, O.L. Mangasarian,2001. SSVM:a smooth support vector machine for classification[J]. Computation Optimization,2001,20 (1):5-22.
    [128]Shevade, S. K., Keerthi, S. S., Bhattacharyya, C., et al. Improvements to the SMO algorithm for SVM regression. IEEE Transactions on Neural Networks,2001,11(5): 1188-193. Suykens,J. A. K.,
    [129]Yuh-Jye Lee, Wen-Feng Hsieh, and Chien-Ming Huang, ε-SSVR:A Smooth Support Vector Machine for ε-Insensitive Regression[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,2005,17(5):678-685.
    [130]熊金志,胡金莲,袁华强,等.支持向量回归机的光滑函数研究[J].模式识别与人工智能,2008,35(3):366-370.
    [131]熊金志,胡金莲,袁华强,等.一类光滑支持向量机新函数的研究[J].电子学报,2007,35(2):366-370.
    [132]熊金志,袁华强,彭宏.多项式光滑的支持向量机一般模型研究[J].计算机研究与发展,2008,45(8):1346-1353.
    [133]Peng Xinjun. TSVR:An efficient Twin Support Vector Machine for regression [J]. Neural Networks,2010,23:365-372.
    [134]Peng Xinjun. Primal twin support vector regression and its sparse approximation[J]. Neurocomputing,2010,73:2846-2858.
    [135]侯振雨,蔡文生,邵学广.主成分分析支持向量回归建模方法及应用研究[J].分析化学(FENXI HUAXUE)研究报告,2006,34(5):617-620.
    [136]Enzhe Yu, Sungzoon Cho. GA-SVM wrapper approach for feature subset selection in keystroke dynamics ideatity verification. In Proceedings of the International Joint Conference On Neural Networks,3:2253-2257.
    [137]Huang Jing-Tao, Ma Long-Hua, Qian Ji-Xin. Improved support vecor machine for multi-class classification problems[J]. Journal of Zhejiang University(Engineering Science),2004,38(12):1633-1636.
    [138]Dong Senng Kim, Ha Nam Nguyen, Jong Sou Park. Genetic Algorithm to Improve SVM Based Network Intrusion Detection System. In Proceedings of AINA 2005, 155-158.
    [139]卢志刚,周凌,杨丽君.基于人工免疫加权支持向量机的电力负荷预测[J].继电器,2005,33(24):42-44.
    [140]宋雪梅,李兵.蚁群算法及其应用[J].河北理工学院学报,2006,28(1):42-45.
    [141]王静,蒋珉.若干优化算法的运行分析比较[J].计算机仿真,2006,23(3):149-153.
    [142]Xia X. I., et.Nonlinear Spatial-Temporal Prediction Based on opthnal Fusion[J]. IEEE Transactions Neural Networks,2006,17(4):975-988.
    [143]Xiaohua Bao, Qunjing wang, Youyuan Ni, Zhang Li. Research on the mathematics model and parameter optimization of the claw-pole alternator[J]. Proceedings of(ICEMS 2005)the Eighth International Conference 011 Electrical Machines and Systems,2005, 27-29(3):2005-2008.
    [144]Quinonero-Candela J., Hansen L. K.. Time series prediction based 011 the relevance vector machine with adaptive kernels. In Proceedings of (ICASSP'02) IEEE International Conference on Acoustics, Speech and Signal,2002,1:985-988.
    [145]江田汉,束炯.基于LSSVM的混沌时间序列的多步预测[J].控制与决策,2006,21(1):77-80.
    [146]P. J. Rousseeuw, M. A. Leroy. Robust Regression and Outlier Detection[M]. New York:Wiley,1987.
    [147]F.R. Hampel, E.M. Ronchetti, P. J. Rousseeuw, W. A. Stahel, Robust Statistics. The Approach Based on Influence Functions[M]. New York:Wiley,1986.
    [148]J. A. K. Suykens, J. De Brabanter, L. Lukas, J. Vandewalle. Weighted least squares support vector machines:robustness and sparse approximation[J]. Neurocomputing, 2002,48(1-4):85-105.
    [149]C. C. Chuang, S. F. Su, J. T. Jeng, C. C. Hsiao. Robust support vector regression networks for function approximation with outliers[J]. IEEE Transactions on Neural Networks,2002,13(6):1322-1330.
    [150]Chen-Chia Chuang, Zne-Jung Lee. Hybrid robust support vector machines for regression with outliers[J]. Applied Soft Computing,2011,11:64-72.
    [151]Wentong Cui, Xuefeng Yan. Adaptive weighted least square support vector machine regression integrated with outlier detection and its application in QSAR[J]. Chemometrics and Intelligent Laboratory Systems,2009,98:130-135.
    [152]胡根生,邓飞其.具有多分段损失函数的多输出支持向量机回归[J].控制理论与应用,2007,24(5):711-714.
    [153]Wen Wen, Zhifeng Hao, Xiaowei Yang. A heuristic weight-setting strategy and iteratively updating algorithm for weighted least-squares support vector regression[J]. Neurocomputing 2008,71:3096-3103.
    [154]吴奇,严洪森.基于鲁棒v-支持向量机的产品销售预测模型[J].计算机集成制造系统,15(6):1081-1087
    [155]J. A. K. Suykens, L. Lukas, and J. Vandewalle. Sparse approximationusing least square vector machines. in IEEE Proc. Int. Symp. Circuits Syst., Genvea, Switzerland, 2000, pp.757-760.
    [156]B. J. de Kruif and T. J. A. de Vries. Pruning error minimization in least squares support vector machines[J]. IEEE Trans. Neural Netw.,2004,14(3):696-702.
    [157]X. Y. Zeng and X. W. Chen. SMO-based pruning methods for sparse least squares support vector machines[J]. IEEE Trans. Neural Netw.,2005,16(6):1541-1546.
    [158]J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle. Least Squares Support Vector Machines[M]. Singapore:World Scientific,2002.
    [159]Licheng Jiao, Senior Member, Liefeng Bo, and Ling Wang. Fast Sparse Approximation for Least Squares Support Vector Machine[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS,2007,18(3):685-697.
    [160]Yongping Zhao, Jianguo Sun. Robust support vector regression in the primal[J]. Neural Networks,2008,21:1548-1555.
    [161]Yongping Zhao, Jianguo Sun. Robust truncated support vector regression [J] Expert Systems with Applications,2010,37(7):5126-5133.
    [162]Soderstrom, T. A., Himmelblau, D. M., Edgar, T. F.. A mixed integer optimization approach for simultaneous data reconciliation and identification of measurement bias[J]. Control Engineering Practice,2001,9(8):869-876.
    [163]LI Jianlie, RONG Gang. Improved Mixed Integer Optimization Approach for Data Rectification with Gross Error Candidates[J]. Chinese Journal of Chemical Engineering, 2009,17(2):226-231.
    [164]Tamhane, A.C., Iordache, C., Mah, R.S.H.. A Bayesian approach to gross error detection in chemical process data (Ⅱ) Simulation results[J]. Chemometrics and Intelligent Laboratory Systems,1988,4 (2):131-146.
    [165]Ragot J, Chadli M, Maquin D.. Mass balance equilibration:a robust approach using contaminated distribution[J]. AIChE J.,2005,51 (5):569-1575.
    [166]Maronna, R., Martin, D., Yohai, V.. Robust statistics - Theory and methods[M]. New York:John Wiley,2006.
    [167]Diego Martinez Prata, Marcio Schwaab, Enrique Luis Lima. Simultaneous robust data reconciliation and gross error detection through particle swarm optimization for an industrial polypropylene reactor[J]. Chemical Engineering Science,2010,65(17): 4943-4954.
    [168]Hampel, E R. Influence curve and its role in robust estimation[J]. JASA,1974,69: 1179-1186.
    [169]Arora, N., Biegler, L. T.. Redescending estimators for data reconciliation and parameter estimation[J]. Computers and Chemical Engineering,2001,25:1585-1599.
    [170]D. P. Bertsekas. Nonlinear Programming[M]. Belmont, Mass:Athena Scientific, 1995.
    [171]V. Cherkarsky, Y. Ma. Practical selection of SVM parameters and noise estimation for SVM regression[J]. Neural Networks,2004,17 (1):113-126.
    [172]Jin-Tsong Jeng, Chen-ChiaChuang, Chin-WangTao. Hybrid SVMR-GPR for modeling of chaotic time series systems with noise and outliers[J]. Neurocomputing, 2010,73:1686-1693.
    [173]P. J. Rousseeuw, A. Leroy. Robust Regression and Outlier Detection[M]. New York: Wiley,1987.
    [174]Cherkassky V, Mulier F. Learning from Data:Concepts, Theory and Methods[M]. New York:John Viley & Sons,1997.
    [175]Yuille, A. L.,& Rangarajan, A.. The concave-convex procedure[J]. Neural Computation,2003,15(4):915-936.
    [176]http://www.csie.ntu.edu.tw/-cjlin/libsvmtools/datasets/regression.html

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700