影像引导下计算机辅助介入手术导航关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
影像引导下介入手术导航是使用多种模态的医学影像协助医生将手术器械直接穿刺到患者体内肿瘤内部进行局部治疗的计算机辅助技术,它是集人工智能、图像处理、图形学和临床技术为一体的交叉学科研究课题,对其关键技术的研究与应用可以有效地提高微创介入手术的临床精度和治疗效果,为患者提供更加有效和低创伤的肿瘤治疗手段。本文以胸腹腔介入手术规划和导航为核心展开研究,主要工作和研究成果包括:
     (1)提出了一种基于图割切的医学影像快速三维分割算法。该算法基于计算统一设备架构,解决了大规模体数据三维网络流图的构造和数据结构设计问题,定义了相应的边界能量函数和区域能量函数,解决了并行最大流算法中的多线程操作冲突的问题。该算法能够有效进行肝脏和肺部的半自动分割,性能相对传统方法有明显的提升。
     (2)提出了一种基于热场模拟的微波热消融介入手术规划方法。该方法基于生物传热学原理对微波热场进行建模,协助医生规划手术路径,设置微波参数,计算微波能量场、组织温度场和热损伤场,进而有效地模拟和显示肿瘤热消融范围。该方法为临床医生提供了可靠的术前指导,降低了手术的难度和风险。
     (3)提出了一种呼吸条件下胸腹腔介入手术导航的方法。该方法可以实时定位手术器械的坐标和方向,并将其和患者的三维影像融合显示,以指导医生按照术前规划路径进行精确的手术穿刺。为了降低呼吸运动对导航精度的影响,该方法对人体位姿及患者呼吸进行综合控制,并通过术中超声CT融合显示来反馈穿刺信息,降低导航误差。
     (4)改进并实现了基于GPU加速的快速体绘制方法。该方法通过GPU并行计算针对大规模医学影像体数据进行实时三维体绘制渲染,并通过实时局部光照计算技术提高渲染的真实感。该方法具有良好的渲染效果和较高的渲染效率,可以满足介入手术规划和导航中对医学影像可视化的实时性要求,并具有良好的人机交互效果。
     (5)研制了一套适用于胸腹腔介入手术治疗的计算机辅助手术导航系统。该系统在离体实验、粒子植入动物实验中均取得了良好的术中导航精度,并且在胸腹腔的微波热消融肺癌治疗中完成多例临床手术,达到良好的疗效。
Image guided intervention surgery navigation is a minimally invasive cancer ther-apy which utilizes multi-model medical image for intra-operative surgery guidance, andit is a cross-discipline research topic involving artificial intelligence, medical image pro-cessing, real-time three-dimensional graphics and its application to surgery could signifi-cantly improve surgical result and reduce surgery trauma. This thesis focus on thoracoab-dominal intervention surgery planning and nagivation, with application to percutaneousmicrowave ablation, and the major work and contributes include:
     (1) A novel graph cat based 3D medical image segmentation algorithm is proposed.The algorithm is based on computer unified device architecture and provided a methodfor the construction of graph data structure of massive 3D medical image data. The en-ergy function for region and boundary is designed for the optimization problem, and theodd-even operation style is introduced to solve the thread con?ict problems in parallelcomputing. Experiments show that this method is well suited for live and lung seg-mentation and the performance of segmentation is significantly improved compared totraditional methods.
     (2) A novel preoperative surgery planning method for percutaneous microwave ab-lation is proposed. An iterative framework for necrosis field simulation and 3D necrosiszone reconstruction is introduced here, and the necrosis model is further superimposedto patient anatomy structures. Experiments have been performed on patient with hepaticand lung cancer and the results show that this method is accurate for surgery plan andcould be used as an assistant to the clinical practice.
     (3) An integrated solution for thoracic cavity and abdominal intervention surgerynavigation is proposed. Human body pose immobilization and dynamic monitoring ofrespiratory status is utilized to reduce the navigation error, and realtime CT/US imagefusion is used to feedback the accurate needle insertion position. Experiments shows thatthe clinical precision of navigation could be improved by this method.
     (4) A GPU based real-time volume rendering method is proposed and implementedto accelerate the rendering speed. Massive medical image volume data is visualized inhigh performance GPU algorithm, and local illumination computation is implemented forhigh quality rendering. The volume rendering method could well fit the requirement for real-time visualization in surgery planning and navigation.
     (5) An intervention surgery planning navigation system is designed and imple-mented for thoracic cavity and abdominal surgery. Experiments shows that this sys-tem could achieve good results in clinical trials through comparison of preoperative andpostoperative CT images. The development of this technique represented a significantadvance from the traditional ways for cancer therapy and significantly extends the indi-cations of minimally invasive cancer therapy technology.
引文
[1] Galloway R L. The process and development of image-guided procedures. Annual Review ofBiomedical Engineering, 2001, 3:83–108.
    [2] Peters T M. Image-guided surgery: From X-rays to virtual reality. Computer Methods inBiomechanics and Biomedical Engineering, 2000, 4(1):27–57.
    [3] Taylor R H, Joskowicz L. Standard Handbook of Biomedical Engineering and Design.McGraw-Hill, 2002: 325–353.
    [4] Yaniv Z, Cleary K. Image-Guided Procedures: A Review. Technical report, Georgetown Uni-versity, Washington, DC, 20007, April, 2006.
    [5] Peters T, Cleary K, (eds.). Image-Guided Interventions Technology and Applications. SpringerScience+Business Media, LLC, 2008.
    [6] Parkin D M, Bray F, Ferlay J, et al. Global Cancer Statistics, 2002. CA: A Cancer Journal forClinicians, 2005. 74–108.
    [7] Zhang S, CZChen, MQQin. The educative expent publication of Chinese clinical oncology.Kunming: Yunan Provincial Publisher, 2004: 51–101.
    [8] Esquivel C, Kee?e E, Garcia G, et al. Hepatic neoplasms: advances in treatment. Journal ofGastroenterology and Hepatology, 1999, 14(38):27–41.
    [9]郑传胜,吴汉平,冯敢生.肝癌的综合介入治疗及研究进展.实用医学进修杂志, 2005,33(3):133–138.
    [10] Lai E, Fan S, Lo C, et al. Hepatic resection for hepatocellular carcinoma: an audit of 343patients. Annals of Surgery, 1995, 221:291–298.
    [11]董宝玮,梁萍.超声导航经皮微波消融治疗早期原发性肝癌的远期疗效.中华医学杂志,2006, 86(12):797–800.
    [12]周良辅,毛颖,吴劲松.神经导航外科学.上海科技教育出版社, 2008.
    [13]董宝玮,梁萍.肿瘤热消融治疗:现状和展望.中华医学杂志, 2006, 86(12):793–796.
    [14] Dong B, Liang P, Yu X. Percutaneous sonographically guided microwave coagulation therapyfor hepatocellular carcinoma: Results in 234 patients. American Journal of Roentgenology,2003, 180:1547–1555.
    [15] Liang P, Dong B, Yu X. Computer-aided dynamic simulation of microwave-induced thermaldistribution in coagulation of liver cancer. IEEE Transactions on Biomedical Engineering,2001. 821–829.
    [16] Liang P, Dong B, Yu X. Prognostic factors for percutaneous microwave coagulation therapy ofhepatic metastases. American Journal of Roentgenology, 2003, 181(5):1319–1329.
    [17]陈敏山,李锦清,梁惠宏.经皮射频消融与手术切除治疗小肝癌的疗效比较.中华医学杂志,2005,85:80–83.
    [18]梁萍,董宝玮.超声导航微波凝固治疗肝癌.北京:人民军医出版社, 2003.
    [19] Livaghi T, Goldberg S, Lazzaroni S. Hepatocellular carcinoma: radio-frequency ablation ofmedium and large lesions. Radiology, 2000, 214:761–768.
    [20] Vogl T, Straub R, Eichler K. Malignant liver tumors treated with MR image-guided laser-induced thermotherapy: experience with complications in 899 patients (2520 lesions). Radiol-ogy, 2002, 225:367–377.
    [21] Goldberg S, Charboneau J, Dodd G. Image-guided tumor ablation: proposal for standardizationof terms and reporting criteria. Radiology, 2003, 228:335–347.
    [22]梁萍,董宝玮.超声引导肝癌介入性治疗进展.中国超声医学杂志, 2000, 16(1).
    [23] Liang P, Wang Y. Microwave Ablation of Hepatocellular Carcinoma. Oncology, 2007, 72(suppl1):124–131.
    [24] Skinner M, Lizuka M, Kolios M, et al. A theoretical comparison of energy sources - microwave,ultrasound and laser - for interstitial thermal therapy. Physics in Medicine and Biology, 1998,43:3535–3547.
    [25] Wright A, Sampson L, Warner T, et al. Radiofrequency versus microwave ablation in a hepaticporcine model. Radiology, 2005, 236:132–139.
    [26] Wright A, Lee F, Mahvi D. Hepatic microwave ablation with multiple antennae results in syn-ergistically larger zones of coagulation necrosis. Annals of Surgical Oncology, 2003, 10:275–283.
    [27]崔璀,江宏,茹海凤.放射性粒子植入放疗及其防护.家庭护士, 2007, 5(12):1672–1888.
    [28] Martinez-Monge R, Garran C, Vivas I, et al. Percutaneous CT-guided 103Pd implantationfor the medically inoperable patient with T1N0M0 non-small cell lung cancer: a case report.Brachytherapy, 2004, 3:179–181.
    [29]王俊杰.放射性粒子近距离治疗肿瘤.北京:北京医科大学、中国协和医科大学联合出版社,2001:152–172.
    [30]申文江.前列腺癌放射治疗进展.肿瘤学杂志, 2002, 8(4):226.
    [31] Ricke J, Wust P, Wieners G. CT-guided interstitial singlefraction brachytherapy of lung tumors.Chest, 2005, 127(6):2237–2242.
    [32] Becker H, Harms W. Navigated bronchoscopy and endobronchial ultrasound for brachtherapyof inoperable peripheral lung cancer: a feasibility study. Chest, 2005, 128(suppl 4):327S.
    [33] O’Connor B, Malhotra H, Cunningham B. Image-guided interstitial brachytherapy of lungtumors. Brachytherapy, 2006. 104–105.
    [34] Bucci M, Bevan A, Roach M. Advances in radiation therapy: conventional to 3D, to IMRT, to4D, and beyond. CA: A Cancer Journal for Clinicians, 2005, 55(2):117–134.
    [35] Brack C, Burgkart R, Czopf A, et al. Accurate X-ray-based navigation in computer-assistedorhopedic surgery. International Journal of Computer Assisted Radiology and Surgery, 1998..
    [36] Fahrig R, Moreau M, Holdsworth D W. Three-dimensional computed tomographic reconstruc-tion using a C-arm mounted XRII: Correction of image intensifier distortion. Medical Physics,1997, 24(7).
    [37] Zamorano L J, Nolte L P, Kadi A M, et al. Interactive intraoperative localization using aninfrared-based system. Stereotactic and Functional Neurosurgery, 1994, 63(1-4):84–88.
    [38] Yaniv Z, Joskowicz L, Simkin A, et al. Fluoroscopic image processing for computer-aidedorthopaedic surgery. Proceedings of In Medical Image Computing and Computer-AssistedIntervention, 1998. 325–334.
    [39] Rampersaud R Y, Foley K T, Shen A C, et al. Radiation exposure to the spine surgeon during?uoroscopically assisted pedicle screw insertion. Spine, 2000, 25(20):2637–2645.
    [40] Skjeldal S, Backe S. Interlocking medullary nails - radiation doses in distal targeting. Archivesof Orthopaedic Trauma Surgery, 1987, 106(3):179–181.
    [41] Theocharopoulos N, Perisinakis K, Damilakis J, et al. Occupational exposure from common?uoroscopic projections used in orthopaedic surgery. The Journal of Bone and Joint Surgery(American), 2003, 85:1698–1703.
    [42] Lemieux L, Bailey D L, Bell D. Medical Image Registration. CRC Press, 2001.
    [43] Grass M, Koppe R, Klotz E, et al. Three-dimensional reconstruction of high contrast ob-jects using C-arm image intensifier projection data. Comput. Med. Imaging Graph., 1999,23(6):311–321.
    [44] al S W. Computer Assisted Radiology and Surgery. 2001: 408–413.
    [45] Ra?erty M A, Siewerdsen J H, Chan Y, et al. Investigation of C-Arm Cone-Beam CT-GuidedSurgery of the Frontal Recess. The Laryngoscope, 2005, 115(12):2138–2143.
    [46] Dawson P. Patient dose in multislice CT: why is it increasing and does it matter? The BritishJournal of Radiology, 2004, 77:10–13.
    [47] Kalra M K. Strategies for CT radiation dose optimization. Radiology, 2004, 230(3):619–628.
    [48] Rehani M M, Berry M. Radiation doses in computed tomography. the increasing doses ofradiation need to be controlled. British Medical Journal, 2000, 320:593–594.
    [49] Health Risks From Exposure To Low Levels Of Ionizing Radiation. The National AcademiesPress, 2005.
    [50] Sumanaweera T S, Adler J R, Napel S, et al. Characterization of spatial distortion in mag-netic resonance imaging and its implications for stereotactic surgery. Neurosurgery, 1994,35(4):696–704.
    [51] Bednarz G. Evaluation of the spatial accuracy of magnetic resonance imaging-based stereo-tactic target localization for gamma knife radiosurgery of functional disorders. Neurosurgery,1999, 5(5):1156.
    [52] Taylor R H, Funda J, LaRose D, et al. An Experimental System for Computer Assisted Endo-scopic Surgery. Proceedings of in IEEE Satellite Symposium on Neuroscience and Technoloy,Lyons: EEE Press, 1992.
    [53] Taylor R H, Funda J, Eldgridge B. Telerobotic Assistant for Laparoscopic Surgery. IEEE EngMed Biol, 1995, 14(3):279–288.
    [54] Taylor R H, Funda J, Eldridge B. A Telerobotic Assistant for Laparoscopic Surgery. in IEEEEMBS Magazine Special Issue on Robotics in Surgery, 1995..
    [55] Funda J, Gruben K, Eldridge B, et al. Control and Evaluation of a 7-axis Surgical Robot forLaparoscopy. Proceedings of in Proc 1995 IEEE International Conference on Robotics and
    [56]梁伟雄.初探机器人微创手术设备.世界医疗器械, 2001, 7(3):42–45.
    [57] Drebin R A, Carpenter L, Hanrahan P. Volume Rendering. Computer Graphics, 1988,22(4):65–74.
    [58] Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts. IEEETransaction on Pattern Analysis Machine Intelligence, 2001, 23(11):1222–1239.
    [59] Boykov Y, Kolmogorov V. An experimental comparison of min-cut/max-?ow algorithms forenergy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelli-gence, 2004, 26(9):1124–1137.
    [60] Boykov Y, Funka-Lea G. Graph-Cuts and E?cient N-D image segmentation. InternationalJournal of Computer Vision, 2006, 70(2):109–131.
    [61] Shim H, Kwoh C K, Yun I D, et al. Simultaneous 3D segmentation of three bone compartmentson high resolution knee MR images from osteoarthritis initiative (OAI) using graph cuts. Pro-ceedings of Proc. of SPIE Medical Imaging 2009, Vol. 7259 72593P-6, 2009.
    [62] Shiloach Y, Vishkin U. An O(n2 log n) parallel max-?ow algorithm. Journal of Algorithms,1982. 128–146.
    [63] Goldberg A. E?cient graph algorithms for sequential and parallel computers[D]. Boston:Massachusetts Institute of Technology, 1987.
    [64] Anderson R J, Setubal J. On the parallel implementation of Goldberg’s maximum ?ow al-gorithm. Proceedings of Proceedings of 4th Annual Symposium on Parallel Algorithms andArchitectures, 1992. 168–177.
    [65] Dixit N, Keriven R, Paragios N. Gpu-cuts: Combinatorial optimization, graphic processingunits and adaptive object extraction. Technical report, CERTIS, 2005.
    [66] Vineet V, Narayanan P J. CUDA Cuts: Fast Graph Cuts on the GPU. Proceedings of CVPRWorkshop on Visual Computer Vision on GPUs, 2008.
    [67] Hussein M, Varshney A, Davis L. On Implementing Graph Cuts on CUDA. Proceedings ofFirst Workshop on General Purpose Processing on Graphics Processing Units, Boston, MA,2007.
    [68]韦轶群,杨杰.基于自适应Graph Cuts的自动股骨头分割.上海交通大学学报, 2009,43(3):465–469.
    [69] Stoianovici D, Cadeddu J, Demaree R. A novel mechanical transmission applied to percuta-neous renal access. Proceedings of Proc ASME Dynam Syst Control Divn, 1997. 401–406.
    [70] Nag S, Ciezki J, Cormack R. Intraoperative planning and evaluation of permanent prostatebrachytherapy: report of the American Brachytherapy Society. International Journal of Radia-tion Oncology Biology Physics, 2001, 51(5):1422–1430.
    [71] Butz T, Warfield S K, Tuncali K, et al. Pre- and Intra-operative Planning and Simulation ofPercutaneous Tumor Ablation. Proceedings of Proceedings of Medical Image Computing andComputer-Assisted Interventions (MICCAI’2000), volume 1935, Pittsburgh, PA, USA, 2000.317–326.
    [72] Villard C, Soler L, Gangi A, et al. Towards realistic radiofrequency ablation of hepatic tumors3D simulation and planning. Proceedings of Proceedings of SPIE, volume 5367, 2004. 586–595.
    [73] Villard C, Baegert C, Schreck P, et al. Optimal Trajectories Computation Within Regions ofInterest for Hepatic RFA Planning. Proceedings of Proceedings of Medical Image Computingand Computer-Assisted Interventions, volume 3750, Palm Springs, CA, USA, 2005. 49–56.
    [74] Villard C, Soler L, Gangi A. Radiofrequency ablation of hepatic tumors: simulation, plan-ning, and contribution of virtual reality and haptics. Computer Methods in Biomechanics andBiomedical Engineering, 2005, 8(4):215–227.
    [75] Mundeleer L, Wikler D, Leloup T, et al. Development of a computer assisted system aimed atRFA liver surgery. Computerized Medical Imaging and Graphics, 2008, 32:611–621.
    [76] Garnier C, Lafon C, Dillenseger J. 3-D Modeling of the Thermal Coagulation Necrosis Inducedby an Interstitial Ultrasonic Transducer. IEEE Transactions on Biomedical Engineering, 2008,55:833–837.
    [77] Xu R, Zhang Y, Ma M, et al. Measurement of Specific Absorption Rate and Thermal Simula-tion for Arterial Embolization Hyperthermia in the Maghemite-Gelled Model. IEEE Transac-tions on Magnetics, 2007, 43:1078–1085.
    [78] Zhu L, Xu L, Chencinski N. Quantification of the 3-D Electromagnetic Power AbsorptionRate in Tissue During Transurethral Prostatic Microwave Thermotherapy Using Heat TransferModel. IEEE Transactions on Biomedical Engineering, 1998, 45:1163–1172.
    [79] Liu J, Zhu L, Xu L. Studies on the Three-Dimensional Temperature Transients in the CanineProstate During Transurethral Microwave Thermal Therapy. Transactions of the ASME, 2000,122:372–379.
    [80] Germano I M. The neurostation system for image-guided, frameless stereo-taxy. Neurosurgery,1995, 37(2):348–350.
    [81] Grevera G J, Udupa J K, Odhner D. An order of magnitude faster isosurface rendering insoftware on a PC than using dedicated, general purpose rendering hardware. IEEE Transactionson Visualization and Computer Graphics, 2000, 6(4):335–345.
    [82] Kikinis R. Computer assisted interactive three-dimensional planning for neurosurgical proce-dures. Neurosurgery, 1996, 38(4):640–651.
    [83] Smith K R, Frank K J, Bucholz R D. The NeuroStation - a highly accurate, minimally invasivesolution to frameless stereotactic neurosurgery. Comput Med Imaging Graph, 1994, 18(4):247–256.
    [84] Nolte L P, Ganz R, (eds.). Computer Assisted Orthopaedic Surgery (CAOS). Hogrefe andHuber, 1999.
    [85] DiGioia A, Jaramaz B, Picard F, et al., (eds.). Computer and Robotic Assisted Hip and KneeSurgery. Oxford University Press, 2004.
    [86] Solomon S B, White P, Acker D E, et al. Real-time bronchoscope tip localization enablesthree-dimensional CT image guidance for transbronchial needle aspiration in swine. Chest,1998, 114(5):1405–1410.
    [87] Solomon S B, Magee C, Acker D E, et al. TIPS placement in swine, guided by electromagneticreal-time needle tip localization displayed on previously acquired 3D CT. Cardiovascular andInterventional Radiology, 1999, 22(5):411–414.
    [88] Solomon S B, White P, Wiener C M, et al. Three-dimensional CT-guided bronchoscopy witha real-time electromagnetic position sensor: a comparison of two image registration methods.Chest, 2000, 118(6):1783–1787.
    [89] Schwarz Y, Greif J, Becker H D, et al. Real-time electromagnetic navigation bronchoscopyto peripheral lung lesions using overlaid CT images: the first human study. Chest, 2006,129(4):988–994.
    [90] Bao P, Sinha T K, Chen C C, et al. A prototype ultrasound-guided laparoscopic radiofrequencyablation system. Surgical Endoscopy, 2007, 21(1):74–79.
    [91] Rauth T P, Bao P Q, Galloway R L, et al. Laparoscopic surface scanning and subsurface target-ing: implications for image-guided laparoscopic liver surgery. Surgery, 2007, 142(2):207–214.
    [92] Schwarz Y, Mehta A C, Ernst A, et al. Electromagnetic navigation during ?exible bron-choscopy. Respiration, 2003, 70(5):516–522.
    [93] Hautmann H, Schneider A, Pinkau T, et al. Electromagnetic catheter navigation during bron-choscopy: validation of a novel method by conventional ?uoroscopy. Chest, 2005, 128(1):382–387.
    [94] Yaniv Z, Cheng P, Wilson E, et al. Needle-Based Interventions With the Image-Guided SurgeryToolkit (IGSTK): From Phantoms to Clinical Trials. IEEE TRANSACTIONS ON BIOMED-ICAL ENGINEERING, 2010, 57(4):922–933.
    [95] Levy E B, Zhang H, Lindisch D, et al. Electromagnetic tracking-guided percutaneous intra-hepatic portosystemic shunt creation in a swine model. Journal of Vascular and InterventionalRadiology, 2007, 18(2):303–307.
    [96] Banovac F, Tang J, Xu S, et al. Precision targeting of liver lesions using a novel electromagneticnavigation device in physiologic phantom and swine. Medical Physics, 2005, 32(8):2698–2705.
    [97] Banovac F, Wilson E, Zhang H, et al. Needle biopsy of anatomically unfavorable liver lesionswith an electromagnetic navigation assist device in a computed tomography environment. Jour-nal of Vascular and Interventional Radiology, 2006, 17(10):1671–1675.
    [98] Howard M H, Nelson R C, Paulson E K, et al. An electronic device for needle placementduring sonographically guided percutaneous intervention. Radiology, 2001, 218(3):905–911.
    [99] Birth M, Iblher P, Hildebrand P, et al. Ultrasoundguided interventions using magnetic fieldnavigation: First experiences with Ultra-Guide 2000 under operative conditions. UltraschallMed, 2003, 2:90–95.
    [100] Krombach G A, Mahnken A, Tacke J, et al. US-guided nephrostomy with the aid of a magneticfield-based navigation device in the porcine pelvicaliceal system. Journal of Vascular andInterventional Radiology, 2001, 12(5):623–628.
    [101] Wallace M J, Gupta S, Hicks M E. Out-of-plane computedtomography guided biopsy using amagnetic-field-based navigation system. Cardiovascular and Interventional Radiology, 2006,29(1):108–113.
    [102] Krucker J, Viswanathan A, Borgert J, et al. An electro-magnetically tracked laparoscopicultrasound for multimodality minimally invasive surgery. Int. Congr. Ser., 2005, 1281:746–751.
    [103] Ellsmere J, Stoll J, Wells W, et al. A new visualization technique for laparoscopic ultrasonog-raphy. Surgery, 2004, 136(1):84–92.
    [104] Hadwiger M, Kniss J M, Rezk-salama C, et al. Real-time Volume Graphics. 1 edition ed., AK Peters, July 24, 2006.
    [105] Preim B, Bartz D. Visualization in Medicine: Theory, Algorithms, and Applications. Includedin series The Morgan Kaufmann Series in Computer Graphics, Elsevier, June, 2007.
    [106] Ibanez L, Schroeder W, Ng L, et al. The ITK Software Guide: The Insight Segmentation andRegistration Toolkit. Kitware Inc., September 11, 2003.
    [107] Terry S Y, (eds.). Insight into Images: Principles and Practice for Segmentation, Registration,and Image Analysis. AK Peters, July 29, 2004.
    [108] Hege H, Hollerer T, Stalling D. Volume Rendering - Mathematical Models and AlgorithmicAspects. Technial report, ZIB Konrad-Zuse-Zentrum, Berlin, 1993.
    [109] Max N. Optical Models for Direct Volume Rendering. IEEE Transaction on Visualization andComputer Graphics, 1995, 1(2):99–108.
    [110] Olano M, Hart J C, Heidrich W, et al. Real-Time Shading. Natick, MA: AK Peters Ltd., 2002.
    [111] Levoy M. Display of Surfaces From Volume Data. IEEE Computer Graphics and Applications,1988, 8(3):29–37.
    [112] Scharsach H. Advanced GPU Raycasting. Proceedings of In Proceedings of CESCG 2005,2005.
    [113] Rottger S, Guthe S, Weiskopf D, et al. Smart Hardware-Accelerated Volume Rendering. Pro-ceedings of In Procceedings of EG/IEEE TCVG Symposium on Visualization VisSym’03,2003. 231–238.
    [114] Kruger J, Westermann R. Acceleration Techniques for GPU-based Volume Rendering. Pro-ceedings of In Proceedings of IEEE Visualization 2003, Los Alamitos, CA: IEEE Press, 2003.287–292.
    [115] Stegmaier S, Strengert M, Klein T, et al. A Simple and Flexible Volume Rendering Frame-work for Graphics-Hardware-based Raycasting. Proceedings of In Proceedings of the Interna-tional Workshop on Volume Graphics’05, Aire-la-Ville, Switzerland: Eurographics Associa-tion, 2005. 187–195.
    [116]林瑶,田捷.医学图像分割方法综述.模式识别与人工智能, 2002, 15(2):192–204.
    [117] Corporation N. NVIDIA CUDA C Programming Guide. Version 3.1.1 ed., Santa Clara, CA:NVIDIA, July 2010.
    [118] Corporation N. NVIDIA CUDA C Best Practices Guide. Version 3.1 ed., Santa Clara, CA:NVIDIA, May 2010.
    [119] Goldberg A V, Tarjan R. A new approach to the maximum-?ow problem. Journal of the ACM,1988, 35(4):921–940.
    [120] Greig D, Porteous B, Seheult A. Exact maximum a posteriori estimation for binary images.Journal of the Royal Statistical Society Series B, 1989, 51:271–279.
    [121] Rother C, Kolmogorov V, Blake A. Grabcut: Interactive foreground extraction using iteratedgraph cuts. Proceedings of ACM SIGGRAPH, 2004. 309–314.
    [122] Yin L, Jian S, Chi-Keung T, et al. Lazy Snapping. ACM Transaction on Graphics, 2004, 23(3).
    [123] Ford L R, Fulkerson D R. Flows in Networks. NJ: Princeton University Press, 1962.
    [124] Edmonds J, Karp R M. Theoretical improvements in algorithmic e?ciency for network ?owproblems. Journal of the ACM, 1972, 19(2):248–264.
    [125] Cormen T H, Leiserson C E, Rivest R L, et al. Introduction to Algorithms. Third edition ed.,The MIT Press, September, 2009.
    [126] Kruse R. Data Structures and Program Design, volume 150. second edition ed., EnglewoodCli?s, New Jersey 07632: Prentice-Hall, Inc. div. of Simon Schuster, 1987.
    [127] Sleator D, Tarjan R. A data structure for dynamic trees. Journal of Computer and SystemSciences, 1983, 26(3):362–391.
    [128] Lorensen W, Cline H. Marching cubes: A high resolution 3D surface construction algorithm.Computer Graphics, 1987, 21(3):163–168.
    [129] Altrogge I, Kroger T, Preusser T, et al. Towards Optimization of Probe Placement for Radio-Frequency Ablation. Proceedings of Proceedings of Medical Image Computing and Computer-Assisted Interventions (MICCAI’2006), volume 4190, Copenhagen, Denmark, 2006. 486–493.
    [130] Berjano E J. Theoretical modeling for radiofrequency ablation: state-of-the-art and challengesfor the future. BioMedical Engineering OnLine, 2006, 5(24).
    [131] Baegert C, Villard C, Schreck P, et al. Multi-criteria Trajectory Planning for Hepatic Radiofre-quency Ablation. Proceedings of Proceedings of Medical Image Computing and Computer-Assisted Interventions(MICCAI’2007), volume 4792, Brisbane, Australia, 2007. 676–684.
    [132]南群,夏雅琴,刘有军, et al.微波消融治疗肝癌中的若干热学问题.北京工业大学学报,2008, 34(5).
    [133] Pennes H. Analysis of tissue and arterial blood temperatures in the resting human forearm.Journal of Applied Physiology, 1948, 1:93–122.
    [134] Diller K. The mechanisms and kinetics of heat injury accumulation. In In Electrical Injury: AMultidisciplinary Approach to Therapy, Prevention, volume 720. New York: The New YorkAcademy of Sciences, 1994: 38–55.
    [135] Bhowmick S, Swanlund D, Bischof J. Supraphysiological thermal injury in Dunning AT-1prostate tumor cells. Journal of Biomechanical Engineering, 2000, 122:51–59.
    [136] Wissler E. Pennes’1948 paper revisited. Journal of Applied Physiology, 1998, 85:35–41.
    [137] Wul? W. The energy conservation equation for living tissues. IEEE transactions on biomedicalengineering, 1974, 21:494–495.
    [138] Klinger H G. Heat transfer in perfused biological tissue I: General theory. Bulletin of mathe-matical biology, 1974, 36:403–415.
    [139] Chen M M, Holmes K R. Microvascular contributions in tissue heat transfer. Annals of theNew York academy of sciences, 1980, 335:137–150.
    [140] Weinbaum S, Jiji L, Lemons D E. Theory and experiment for the e?ect of vascular microstruc-ture on surface tissue heat transfer-Part I: Anatomical foundation and model conceptualization.ASME journal of biomechanical engineering, 1984, 106:321–330.
    [141] Jiji L M, Weinbaum S, Lemons D E. Theory and experiment for the e?ect of vascular mi-crostructure on surface tissue heat transfer-Part II: Model formulation and solution. ASMEjournal of biomechanical engineering, 1984, 106:331–341.
    [142] Lang J, Erdmann B, Seebass M. Impact of nonlinear heat transfer on temperature control inregional hyperthermia. IEEE Transactions on Biomedical Engineering, 1999, 46:1129–1138.
    [143] Muller G, Roggan A. Laser-induced interstitial thermotherapy. Bellingham: SPIE OpticalEngineering Press, 1995: 83–189.
    [144] Jiang S, Zhang X. E?ects of dynamic changes of tissue properties during laser-induced inter-stitial thermotherapy (LITT). Lasers in Medical Science, 2005, 19:197–202.
    [145] Henriques F C. Studies of thermal injuries V: The predictability and the significance of ther-mally induced rate processes leading to irreversible epidermal injury. Archives of pathology,1947, 43:489–502.
    [146] Bookstein F L. Principal Warps: Thin Plate Splines and the Decomposition of Deformations.IEEE Transaction on Pattern Analysis Machine Intelligence, 1989, 11:567–585.
    [147] Meinguet J. Multivariate Interpolation at Arbitrary Points Made Simple. Journal of AppliedMathematics and Physics, 1979, 30:292–304.
    [148] Wahba G. Spline Models for Observational Data. Philadelphia, PA: SIAM, 1990.
    [149] Goldberg S N, Gazelle G S, Mueller P R. Thermal ablation therapy for focal malignancy: aunified approach to underlying principles, techniques, and diagnostic imaging guidance. Amer-ican Journal of Roentgenology, 2000, 174:323–331.
    [150] Lu M, Xu H, Xie X, et al. Percutaneous microwave and radiofrequency ablation for hep-atocellular carcinoma: a retrospective comparative study. Journal of Gastroenterology andHepatology, 2005, 40:1054–1060.
    [151] Kuang M, Lu M, Xie X, et al. Liver cancer: increased microwave delivery to ablation zonewith cooled-shaft antenna: experimental and clinical studies. Radiology, 2007, 242:914–924.
    [152] Sato M, Watanabe Y, Kashu Y, et al. Sequential percutaneous microwave coagulation therapyfor liver tumors. American Journal of Surgery, 1998, 175:322–324.
    [153] Welch G, Foxlin E. Motion tracking: No silver bullet, but a respectable arsenal. IEEE ComputerGraphics and Applications, 2002, 22(6):24–38.
    [154] Reinhardt H, Meyer H, Amrein E. A computer-assisted device for the intra-operative CT-correlated localization of brain tumors. European Surgical Research, 1988, 20(1):51–58.
    [155] Reinhardt H, Landolt H. CT-guided“real time”stereotaxy. Acta Neurochirurgica Supple-mentum, 1989, 46:107–108.
    [156] Reinhardt H, Zweifel H. Interactive sonar-operated device for stereotactic and open surgery.Stereotactic and Functional Neurosurgery, 1990, 93(7):54–55.
    [157] Watanabe E, Watanabe T, Manaka S, et al. Threedimensional digitizer (neuronavigator): newequipment for computed tomography-guided stereotaxic surgery. Surgical Neurology, 1987,27(6):543–547.
    [158] Sipos E P, Tebo S A, Zinreich S J, et al. In vivo accuracy testing and clinical experience withthe ISG viewing wand. Neurosurgery, 1996, 39(1):194–202.
    [159]王子罡.计算机辅助立体定向神经外科手术系统及关键技术研究[D].清华大学计算机科学与技术系,2000.
    [160] Wang Z, Tang Z, Wang T, et al. A Computer Assisted Stereotactic Neurosurgery Sys-tem based on Robot and Virtual Reality. Proceedings of Computer Assisted Radiology andSurgery(CARS 2000), San Francisco, USA, 2000.
    [161]王子罡,唐泽圣.基于虚拟现实的计算机辅助立体定向脑外科手术系统.计算机学报,2000..
    [162] Tebo S A, Leopold D A, Long D M, et al. An optical 3D digitizer for frameless stereotacticsurgery. IEEE Computer Graphics and Applications, 1996, 16(1):55–64.
    [163] Nolte L, Zamorano L, Visarius H, et al. Clinical evaluation of a system for precision enhance-ment in spine surgery. Clinical Biomechanics, 1995, 10(6):293–303.
    [164] Rohling R, Munger P, Hollerbach J, et al. Comparison of relative accuracy between a mechan-ical and an optical position tracker for image guided neurosurgery. Journal of Image GuidedSurgery, 1995, 1(1):30–34.
    [165] Khadem R, Yeh C, Sadeghi-Tehrani M, et al. Comparative tracking error analysis of fivedi?erent optical tracking systems. Computer Aided Surgery, 2000, 5(2):98–107.
    [166] Schmerber S, Chassat F. Accuracy evaluation of a CAS system: laboratory protocol and resultswith 6D localizers, and clinical experiences in otorhinolaryngology. Computer Aided Surgery,2001, 6(1):1–13.
    [167] Anon J. Computer-aided endoscopic sinus surgery. Laryngoscope, 1998, 108(7):949–961.
    [168] Eljamel M. Accuracy, e?cacy, and clinical applications of the Radionics Operating Arm Sys-tem. Computer Aided Surgery, 1997, 2(5):292–297.
    [169] Li Q, Zamorano L, Jiang Z, et al. E?ect of optical digitizer selection on the application accu-racy of a surgical localization system-a quantitative comparison between the OPTOTRAK and?ashpoint tracking systems. Computer Aided Surgery, 1999, 4(6):314–321.
    [170] Watzinger F, Birkfellner W, Wanschitz F, et al. Positioning of dental implants using computer-aided navigation and an optical tracking system: case report and presentation of a new method.Journal of Cranio-Maxillofacial Surgery, 1999, 27(2):77–81.
    [171] Becker H, Herth F, Ernst A, et al. Bronchoscopic biopsy of peripheral lung lesions underelectromagnetic guidance: A pilot study. Journal of Bronchology, 2005, 12(1):9–13.
    [172] Birkfellner W. Calibration of tracking systems in a surgical environment. IEEE Transactionson Medical Imaging, 1998, 17(5):737–742.
    [173] Meskers C, Fraterman H, Helm F, et al. Calibration of the“Flock of Birds”electromagnetictracking device and its application in shoulder motion studies. Journal of Biomechanics, 1999,32(6):629–633.
    [174] Milne A, Chess D, Johnson J, et al. Accuracy of an electromagnetic tracking device: a studyof the optimal range and metal interference. Journal of Biomechanics, 1996, 29(6):791–793.
    [175] Ruijven L, Beek M, Donker E, et al. The accuracy of joint surface models constructed from dataobtained with an electromagnetic tracking device. Journal of Biomechanics, 2000, 33(8):1023–1028.
    [176] Wagner A, Ploder O, Zuniga J, et al. Augmented reality environment for temporomandibularjoint motion analysis. International Journal of Adult Orthodontics and Orthognathic Surgery,1996, 11(2):127–136.
    [177] Kirsch S, Boksberger H, Greuter U, et al. Real-time tracking of tumor positions for precisionirradiation. In Advances in Hadron-therapy, Excerpta Medica International Congress Series1144. Elsevier, 1997: 269–274.
    [178] Litzenberg D, Balter J, Hadley S, et al. In?uence of intrafraction motion on margins for prostateradiotherapy. International Journal of Radiation Oncology Biology Physics, 2006, 62(5):548–553.
    [179] Wood B J, Zhang H, Durrani A, et al. Navigation with electromagnetic tracking for inter-ventional radiology procedures: a feasibility study. Journal of Vascular and InterventionalRadiology, 2005, 16(4):493–505.
    [180] Khan M, Dogan S, Maataoui A, et al. Accuracy of biopsy needle navigation using the Medarpasystem– computed tomography reality superimposed on the site of intervention. EuropeanRadiology, 2005, 15(11):2366–2374.
    [181] Khan M, Dogan S, Maataoui A, et al. Navigation-based needle puncture of a cadaver using ahybrid tracking navigational system. Investigative Radiology, 2006, 41(10):713–720.
    [182] Deguchi D, Akiyama K, Mori K, et al. A method for bronchoscope tracking by combining aposition sensor and image registration. Computer Aided Surgery, 2006, 11(3):109–117.
    [183] Barratt D, Davies A, Hughes A, et al. Accuracy of an electromagnetic three-dimensionalultrasound system for carotid artery imaging. Ultrasound in Medicine and Biology, 2001,27(10):1421–1425.
    [184] Fristrup C, Pless T, Durup J, et al. A new method for three-dimensional laparoscopic ultrasoundmodel reconstruction. Surgical Endoscopy, 2004, 18(11):1601–1604.
    [185] Sumiyama K, Suzuki N, Kakutani H, et al. A novel 3-dimensional EUS technique for real-timevisualization of the volume data reconstruction process. Gastrointestinal Endoscopy, 2002,55(6):723–728.
    [186] Birkfellner W. Systematic distortions in magnetic position digitizers. Medical Physics, 1998,25(11):2242–2248.
    [187] Hummel J, Figl M, Kollmann C, et al. Evaluation of a miniature electromagnetic positiontracker. Medical Physics, 2002, 29(10):2205–2212.
    [188] Johann B H, Michael R B, Michael L F, et al. Design and application of an assessment protocolfor electromagnetic tracking systems. Medical Physics, 2005, 32(7):2371–2379.
    [189] Schicho K, Figl M, Donat M, et al. Stability of miniature electromagnetic tracking systems.Physics in Medicine and Biology, 2005, 50(9):2089–2098.
    [190] Pagoulatos N, Rohling R, Edwards W, et al. A new spatial localizer based on fiber opticswith applications in 3D ultrasound imaging. Proceedings of In SPIE Medical Imaging: ImageDisplay and Visualization, volume 3976, San Diego CA, USA, 2000. 595–602.
    [191] Davey B, Munger P, Comeau R, et al. Three-dimensional Multimodal Image-guidance forNeurosurgery. IEEE Transactions on Medical Imaging, 1996, 15:121–128.
    [192] Maurer C R, Jr J M F, Wang M Y, et al. Registration of head volume images using implantablefiducial markers. IEEE Transaction on Medical Imaging, 1997, 16(4):447–462.
    [193] Schad L, Beosecke R, Schlegel W. Three-dimensional Image Correlation of CT, MR and PETStudies in Radiotherapy Treatment Planning of Brain Tumors. Journal of Computer AssistedTomography, 1987, 11(6):948–954.
    [194] Vinas F C, Zamorano L, Buciuc R, et al. Application Accuracy Study of a SemipermanentFiducial System for Frameless Stereotaxis. Computer Aided Surgery, 1997, 2:257–263.
    [195] Hawkes P J, Hill D J, Jewell D L, et al. Augmented Reality in the Stereo Operating Micro-scope Forotolaryngology and Neurosurgical Guidance. Proceedings of In Medical Roboticsand Computer Assisted Surgery, New York: Wiley, 1995. 8–15.
    [196] Ault T, Siegel M W. Frameless Patient Registration using Ultrasonic Imaging: a PreliminaryStudy. Journal of Image Guided Surgery, 1995, 1:94–102.
    [197] Jarvis C S. 3D free-form surface registration and object recognition. International Journal ofComputer Vision, 1996, 17:77–99.
    [198] Liu A, Pizer S, Eberly D, et al. Volume Registration using the 3D core. Proceedings of In Robb,R. A.(ed.), Visualization in Biomedical Computing, Bellingham, WA: SPIE Press, 1994. 217–226.
    [199] Jain A K, Zhong Y, Lakshmanan S. Object Matching using Deformable Templates. IEEETransaction on Pattern Analysis Machine Intelligence, 1996, 18:267–277.
    [200] Wang G, Volkow N D, Levy A V, et al. MR-PET Image Coregistration for Quantitation ofStriatal Dopamine D2 receptors. Journal of Computer Assisted Tomography, 1996, 20:423–428.
    [201] Chen Q. Image Registration and its Applications in Medical Imaging[D]. Brussels, Belgium:Vrije Universiteit Brussel, 1993.
    [202] Viola P A. Alignment by Maximization of Mutual Information[D]. MA: Massachusetts Insti-tute of Technology, Artificial Intelligence Laboratory, 1995.
    [203] Sibson R. Studies in the Robustness of Multidimensional Scaling: Perturbational Analysis ofClassical Scaling. Journal of the Royal Statistical Society: Series B, 1979, 41:217–229.
    [204] Fitzpatrick J M, West J, Jr C R M. Derivation of Expected Registration Error for Rigid-body,Point- based Image Registration. Proceedings of Proc. SPIE Medical Imaging 1998: ImageProcessing, volume 3338, 1998. 16–27.
    [205] Fitzpatrick J M, West J, Jr C R M. Predicting Error in Rigidbody, Point-based registration.IEEE Transactions on Medical Imaging, 1998, 17:694–702.
    [206] Pennec X, Thirion J. Validation of 3D Registration Methods based on Points and Frames. Pro-ceedings of Proceedings of the 5th International Conference on Computer Vision (ICCV’95),1995. 557–562.
    [207] Pennec X. Registration of Uncertain Geometric Features: Estimating the Pose and its Accuracy.Proceedings of Proc of the First Image Registration Workshop, CESDIS, NASA-Goddard,Greenbelt, Md., USA, 1997.
    [208] Pennec X, Thirion J. A Framework for Uncertainty and Validation of 3D Registration Methodsbased on Points and Frames. International Journal of Computer Vision, 1997, 25(3):203–229.
    [209]杜固宏,周良辅,毛颖.神经导航注册准确性的实验研究.中国微侵袭神经外科杂志,2002, 7(2):65–68.
    [210] Tuthill T, Krucker J, Fowlkes J. Automated three-dimensional US frame positioning computedfrom elevational speckle decorrelation. Radiology, 1998, 209:575–582.
    [211] Comeau R, Fenster A, Peters T. Integrated MR and ultrasound imaging for improved imageguidance in neurosurgery. Proceedings of SPIE Medical Imaging, volume 3338, 1998. 747–754.
    [212] Pagoulatos N, Haynor D, Kim Y. A fast calibration method for 3-D tracking of ultrasoundimages using a spatial localizer. Ultrasound in Medicine and Biology, 2001, 27:1219–1229.
    [213] Brendel B, Winter S, Rick A. Registration of 3D CT and ultrasound datasets of the spine usingbone structures. Computer Aided Surgery, 2002, 7:146–155.
    [214] Li P, Li C, Yeh W. Tissue motion and elevational speckle decorrelation in freehand 3D ultra-sound. Ultrasonic Imaging, 2002, 24:1–12.
    [215]鲁通.计算机集成技术在影像引导消融治疗中应用的研究[D].中国人民解放军军医进修学院博士论文,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700