长江口富营养化水域营养盐输送通量与低氧区形成特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以长江口富营养化水域为研究对象,综合分析了该水域溶解无机氮、磷和硅等营养盐、化学需氧量、悬浮物和叶绿素的分布特征和富营养化现状;根据陆海相互作用模型,利用箱式模型定量分析了长江口水域溶解无机氮(DIN)、磷(DIP)和溶解硅酸盐(DSi)的输送通量和输送过程,包括径流的营养盐输送量,外海水体的营养盐输送量,大气沉降量,近岸区域水体的营养盐释放量和外海高生产力海区的营养盐消耗量,底层营养盐的释放量,系统生产力和反硝化能力;在多个航次的调查基础上,分析了长江口水域底层溶解氧的季节分布特征和影响因素,探讨了低氧区的的形成机制。主要结果如下:
     长江口水域营养盐、悬浮物、化学需氧量和叶绿素存在着较明显的季节分布特征,其分布主要受到长江冲淡水的影响。长江口水域的特点是高溶解无机氮和硅酸盐,低磷酸盐,口门内和近岸区的营养盐浓度较高,从口门内到外海呈降低趋势,硝酸氮是溶解无机氮的主要形式,N:P和Si:P比值较高,Si:N的比值普遍大于1。硝酸盐和硅酸盐在中低盐度海水中的分布主要受到海水物理混合作用的影响,与盐度呈现一定的保守性。叶绿素a浓度的高值出现在春季和夏季的外海区域,观测到的叶绿素a最大值为26.22 mg m-3。长江口水域丰富的营养盐,浮游藻类的大量繁殖,加重了长江口水域的富营养化。
     长江口水域的营养盐主要来自于径流输送,年平均输送1.53×1011 mmol DIN day-1、2.22×109 mmol DIP day-1和2.97×1011 mmol DSi day-1,外海的输送量分别是9.05×1010 mmol DIN day-1、3.57×109 mmol DIP day-1和1.65×1011 mmol DSi day-1,大气沉降量分别是4.06×108 mmol DIN day-1、6.45×105 mmol DIP day-1和2.52×109 mmol DSi day-1,外海水体输送的无机磷是支持本区域水体生产力的一个重要来源。在从口门到外海的输送过程中,近岸区域年平均释放的DIN、DIP和DSi占输出通量的40%、51%和30%,由于近岸高浑浊度,藻类生长受到光限制,近岸水域属于异养型系统。外海水域消耗大量的营养盐,平均值是894μmol DIN m-3 day-1 ,18.0μmol DIP m-3 day-1和1418μmol DSi m-3 day-1,系统净生产力是38.15 mmol m-2 day-1。在底层低氧水体中,氮的固定作用与反硝化作用的差值是-1.92 mmol m-2 day-1,表明反硝化作用参与到氮的生物地球化学循环过程。
     长江口水域溶解氧的分布有着明显的季节性特征:冬季底层溶解氧浓度普遍比较高,夏季底层溶解氧浓度降至最低,出现大范围的缺氧区,从区域上看,水下河谷底层水体溶解氧浓度低于周围水体。长江口水域底层溶解氧的分布受到温度、地形、分层结构和生物活动的影响。在夏季,底层溶解氧的分布与温度成正相关关系,秋冬季节相反。长江口口门外的水下河谷充满了来自台湾暖流的水体,阻碍了水体的水平交换。春季和夏季的温跃层结构直接影响到溶解氧的垂直输送,阻挡的溶解氧输送通量达到4.08 g m-2?day-1。长江口水域过量的营养盐和高的生产力提供了大量的有机质,这些有机质在底层被分解,消耗了大量的溶解氧,日益严重的富营养化,也加重了低氧现象的发生。
The distribution characteristic of nutrients, chemical oxygen demand, suspended particulate matter and chlorophyll a and status of eutrophication in the Changjiang Estuary were analyzed. A modified box budget approach was adopted to estimate nutrient fluxes and processes in the Changjiang Estuary and its adjacent waters, including the amount from river, the deep open sea, atmosphere, the amount of release in alongshore mixing zone and deep open sea water, and the amount of consuming in outer sea, as well as primary production and denitrification rate. The seasonal distribution characteristics and influencing factors of dissolved oxygen were also analyzed, and the formation mechanism of low oxygen area in the Changjiang Estuary was discussed in this paper.
     The main results are as follows:
     The distribution of nutrients, chemical oxygen demand, suspended particulate matter and chlorophyll a had obvious seasonal characters, and it was affected by dilute water. The Changjiang Estuary was characterized by high dissolved inorganic nitrogen (DIN) and dissolved silicate (DSi) concentrations, with low dissolved inorganic phosphate (DIP) concentrations. The mean concentrations of nutrients were high in inner estuary and Turbidity Maximum zone and they become small with the increasing distance to land. Nitrate was main component of dissolved inorganic nitrogen. The values of N:P and Si:P were high and the value of Si:N was currently above 1. The distribution of nitrate and silicate was conservative in the water of mid and low salinity, since they were influenced by physical mixing. The maximum Chl a concentration existed in the open sea in spring and summer and the observed maximum was 26.22 mg m-3. Excess nutrient and large phytoplankton in spring and summer accelerated the eutrophication in the Changjiang Estuary.
     The majority of the nutrient input to the estuary came from the river, for annual 1.53×1011 mmol DIN day-1, 2.22×109 mmol DIP day-1 and 2.97×1011 mmol DSi day-1. The budgets from the open sea were 9.05×1010 mmol DIN day-1, 3.57×109 mmol DIP day-1 and 1.65×1011 mmol DSi day-1, while the budgets from atmosphere were 4.06×108 mmol DIN day-1, 6.45×105 mmol DIP day-1 and 2.52×109 mmol DSi day-1 respectively. The dissolved inorganic phosphorus from the deep open sea served as a major source of support for primary production over the outer sea area. The alongshore mixing zone served as a source that supplies 40% of DIN, 51% of DIP and 30%of DSi for the amount of export during their transport along the estuary to the coastal water. The alongshore water system was heterotrophic for light-limited turbid condition and low phytoplankton biomass. The outer sea zone served as nutrient trap and the rate of consumption was about 894μmol DIN m-3 day-1, 18.0μmol DIP m-3 day-1 and 1418μmol DSi m-3 day-1. The net ecosystem metabolism was 38.15 mmol m-2 day-1. In the bottom oxygen-deficient water, the denitrification process was significant.
     The distribution of dissolved oxygen (DO) in the bottom water had obvious seasonal characters. The values of DO were high in winter and low in summer. Low values of DO might appear in spring and autumn for the temporal physical and biological status. The concentrations of DO in the bottom water in the trough were lower than those in the surrounding water. The low values of DO might appear in the north water tongue of the Changjiang Estuary in the summer of some years. The distribution of DO was influenced by temperature, topography, stratification and biological factors. In the summer, it was found that there was positive correlation between DO concentration and temperature, which was contrary in the autumn and winter. The trough obstructed the horizontal transport of DO and was filled by the TWC water. Strong halocline and thermocline appeared in spring and summer. Strong stratification obstructed the vertical transport of DO and the vertical transport of DO flux, which was obstructed by stratification, was calculated and reached 4.70 g m-2 day-1. Hypoxia was seasonal and occurred in summer. Large nutrient loading led to enhanced phytoplankton production, and more organic matter was decomposed, which could result in oxygen depletion. These special physical conditions and biochemical factors might result in the occurrence of hypoxia in the Changjiang Estuary.
引文
1. Alexander R.B., Boyer E.W., Smith R.A., Schwarz G.E., and Moore R.B. The role of headwater streams in downstream water quality. Journal of the American Water Resources Association, 2007, 43(1): 41-59
    2. Amon R.M.W. and Benner R. Seasonal patterns of bacterial abundance and production in the Mississippi River plume and their importance for the fate of enhanced primary production. Microbial Ecology, 1998, 35: 289-300
    3. Anderson D.M., J.M. Burkholder, W. Cochlan, P.M. Glibert, C.J. Gobler, C.A. Heil, R.M. Kudela, M.L. Parsons, J.E.J. Rensel, D.W. Townsend, V.L. Trainer, G. A. Vargo. Harmful algal blooms and eutrophication: Examining linkages from selected coastal regions of the United States. Harmful Algae, 2008, 8: 39-53
    4. Andersen J.H., Louise Schlüter and Gunni ?rtebjerg. Coastal eutrophication: recent developments in definitions and implications for monitoring strategies. Journal of Plankton Research, 2006, 28(7): 621-628
    5. Anderson T.H., Taylor G.T. Nutrient pulse, plankton blooms, and seasonal hypoxia in western Long Island Sound. Estuaries, 2001, 24(2): 228-243
    6. Armstrong F.A.J., C.R.Stearns and J.D.H.Strickland. The measurement of upwelling and subsequent biological processes by means of the Technicon Autoanalyzer? and associated equipment. Deep Sea Research and Oceanographic Abstracts, 1967, 14 (3): 381-389
    7. Baeta A., Pinto R., Ivan V., Pierre R., Nathalie N., Marques J.C.δ15N andδ13C in the Mondego estuary food web: Seasonal variation in producers and consumers. Marine Environmental Research, 2009, 67: 109-116
    8. Bencs L., Krata A., Horemans B., Buczyńska A.J., A.C. Dirtu, A.F.L. Godoi, R.H.M. Godoi, S.P. Vermaak, R.V. Grieken. Atmospheric nitrogen fluxes at the Belgian coast: 2004–2006. Atmospheric Environment, 2009, 43: 3786-3798
    9. Benoit P., Gratton Y., and Mucci A. Modeling of dissolved oxygen levels in the bottom waters of the Lower St. Lawrence Estuary: Coupling of bent hic and pelagic processes. Marine Chemistry, 2006, 102 (122): 13-32
    10. Bi Y.F. Atmospheric Nutrient Deposition at the East China Coast and Its Impact on Marine Primary Production. Master's degree Thesis, East China Normal Univ., Shanghai, China, 2006
    11. Bianchi T.S., DiMarco S.F., Cowan Jr. H.J., Hetland R.D., Chapman P., Day J.W., Allison M.A. The science of hypoxia in the Northern Gulf of Mexico: A review. Science of the Total Environment, 2010, 408: 1471-1484
    12. Bianchi T.S., Johansson B., Elmgren R. Breakdown of phytoplankton pigments in Baltic sediments: effect of anoxia and loss of deposit-feeding macrofauna. Journal of Experimental Marine Biology and Ecology, 2000, 251: 161-183
    13. Bode A., Dortch Q. Uptake and regeneration of inorganic nitrogen in coastal waters influenced by the Mississippi River: spatial and seasonal variations. Journal of Plankton Research, 1996, 18: 2251-2268
    14. Borsuk M.E., Stow C.A., Luttich R.A., Paerl H.W., Pinckney J.L. Modelling oxygen dynamics in an intermittently stratified estuary: Estimation of process rates using field data. Estuarine, Coastal and Shelf Science, 2001, 52 (1): 33-49
    15. Breed G.A., Jackson G.A., and Richardson T.L. Sedimentation, carbon export and food web structure in the Mississippi River plume described by inverse analysis. Marine Ecology Progress Series, 2004, 278: 35-51
    16. Breitburg D.L., Hondorp D.W., Davias L.A., and Diaz R.J. Hypoxia, nitrogen, and fisheries: integrating effects across local and global landscapes. Annual Review of Marine Science, 2009: 329-349
    17. Cairns S.H. Eutrophication monitoring and prediction, Ph.D Dissertation, University of North Texas, 1993
    18. Cerco C. F., Tillman D., Hagy D. J. Coupling and comparing a spatially- and temporally-detailed eutrophication model with an ecosystem network model: An initial application to Chesapeake Bay. Environmental Modelling & Software, 2010, 25: 562-572
    19. Chai C., Yu Z.M., Song X.X., and Cao X.H. The status and characteristics of eutrophication in the Yangtze River (Changjiang) Estuary and the adjacent East China Sea, China, Hydrobiologia, 2006, 563, 313-328
    20. Chambers R.M., Fourqurean J.W., Hollibaugh J.T., Vink S.M. Importance of terrestrially-derived, particulate phosphorus to phosphorus dynamics in a west coast estuary. Estuaries and coasts, 1995, 18: 518-526
    21. Chapra S.C. Surface water quality modeling. The McGraw-Hill, 1997
    22. Chen C.C., Gong G.C., Shiah F.K. Hypoxia in the East China Sea: One of the largest coastal low-oxygen areas in the world. Marine Environmental Research, 2007, 64: 399-408
    23. Chen Y.L.L., Chen H.Y., Lee W.H., Hung C.C., Wong G., and Kanda J. New production in the East China Sea: comparison between well-mixed winter and stratified summer conditions. Continental Shelf Research, 2001, 21: 751-764
    24. Chen C.T.R., Wang S.L. Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf. J. Geophys. Res., 1999, 104: 20675–20686
    25. Chin-Leo G., Benner R. Enhanced bacterioplankton production and respiration at intermediate salinities in the Mississippi River plume. Marine Ecology Progress Series, 1992, 87: 87-103
    26. Cloern J.E. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecological Progress Series, 2001, 210: 223-253
    27. Colin N., Helen P. J., Paul J.A.W., Brian A.W., Margaret N. The strategic significance of wastewater sources to pollutant phosphorus levels in English rivers and to environmental management for rural, agricultural and urban catchments. Science of the Total Environment, 2010, 408: 1485-1500
    28. Conley D.J., Smith W.M., Cornwell J.C., Fisher T.R. Transformation of particle-bound phosphorus at the land-sea interface. Estuarine, Coastal and Shelf Science, 1995, 40: 161-176
    29. Costanza, R. and A. Voinov. Integrated ecological economic regional modeling: linking consensus building and analysis for synthesis and adaptive management. pp. 461-506, in: J. Hobbie (Ed.). Estuarine science: a synthetic approach to research and practice. Island Press. 2000
    30. Dagg M.J., Ammerman J.W., Amon R.M.W., et al. A review of water column process influencing hypoxia in the northern Gulf of Mexico. Estuaries and Coasts,2007, 30(5): 735-752
    31. Dai M.H., Guo X.H., Zhai W.D., et al. Oxygen depletion in the upper reach of the Pearl River estuary during a winter drought. Marine Chemistry, 2006, 102: 159-169
    32. Das A., D. Justi?, E. Swenson. Modeling estuarine-shelf exchanges in a deltaic estuary: Implications for coastal carbon budgets and hypoxia. Ecological Modelling, 2010, 221: 978-985
    33. De Leeuw, G., Ambelas Skj?th C., Hertel O., Jickells T., Spokes L., Vignati E., Frohn L., Frydendall J., Schulz M., Tamm S., S?rensen L.L., Kunz G.J. Deposition of nitrogen into the North Sea. Atmos. Environ., 2003, 37: 145-165
    34. Deng Y.X., Zheng B.H., Fu G., Lei K., Li Z.C. Study on the total water pollutant load allocation in the Changjiang (Yangtze River) Estuary and adjacent seawater area Estuarine, Coastal and Shelf Science, 2010, 86: 331-336
    35. Dettmann E.H. Effect of water residence time on annual export and denitrification of nitrogen in estuaries: a model analysis. Estuaries, 2001, 24: 481-490
    36. Diaz R.J. Overview of hypoxia around the world. Journal of Environmental Quality, 2001, 30 (2), 275-281
    37. Diaz, R.J., and Rosenberg, R. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology–An Annual Review 1995, 33: 245-303
    38. Donner S.D. Surf or turf-A shift from feed to food cultivation could reduce nutrient flux to the Gulf of Mexico: Global Environmental Change, 2006, 17(1): pp.105-113
    39. Dortch Q., Rabalais N.N., Turner R.E., and Rowe G.T. Respiration rates and hypoxia on the Louisiana shelf. Estuaries, 1994, 17: 862-872
    40. Duce R.A., LaRoche J., Altieri K., Arrigo K.R., Baker A.R., Capone D.G., Cornell S., Dentener F., Galloway J., Ganeshram R.S., Geider R.J., Jickells T., Kuypers M.M., Langlois R., Liss P.S., Liu S.M., Middelburg J.J., Moore C.M., Nickovic S., Oschlies A., Pedersen T., Prospero J., Seitzinger S., Sorensen L.L.,Uematsu M., Ulloa O., Voss M., Ward B., Zamora L. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science, 2008, 320: 893-897
    41. Edmond J.M., Spivack A., Grant B.C., Hu M.H., Chen Z.X., Chen S., Zeng X.S. Chemical dynamics of the Changjiang estuary. Continental Shelf Research, 1985, 4: 17-36
    42. EPA,Hypoxia in the Northern Gulf of Mexico. Washington, D.C., 2007, 109-112
    43. Fang T.H. Partitioning and behaviour of different forms of phosphorus in the Tanshui estuary and one of its tributaries, Northern Taiwan. Estuarine, Coastal and Shelf Science, 2000, 50: 689-701
    44. Filipelli G.M., Delaney M.L. Phosphorus geochemistry of equatorial Pacific sediments. Geochim Cosmochim Acta, 1996, 60: 1479-1495
    45. Froelich P.N. Kinetic control of dissolved phosphate in natural rivers and estuaries: a primer on the phosphate buffer mechanism. Limnology Oceanography, 1988, 33: 649-668
    46. Galloway J.N., Townsend A.R., Erisman J.W., Bekunda M., Cai Z.C., Freney J.R., Martinelli L.A., Seitzinger S.P., Sutton M.A. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 2008, 320: 889-892
    47. Gao L., Li D.J., Ding P.X. Variation of nutrients in response to the highly dynamic suspended particulate matter in the Changjiang (Yangtze River) plume. Continental Shelf Research, 2008, 28: 2393-2403
    48. Gao L., Li D.J., Ding P.X. Nutrient budgets averaged over tidal cycles off the Changjiang (Yangtze River) Estuary. Estuarine, Coastal and Shelf Science, 2008, 77: 331-336
    49. Giordani G., Austoni M., Zaldívar M.J., Swaney P.D., Viaroli P. Modelling ecosystem functions and properties at different time and spatial scales in shallow coastal lagoons: An application of the LOICZ biogeochemical model. Estuarine, Coastal and Shelf Science, 2008, 77: 264-277
    50. Golubkov S., A. Alimov. Ecosystem changes in the Neva Estuary (Baltic Sea): Natural dynamics or response to anthropogenic impacts?. Marine PollutionBulletin, 2010, 61: 198-204
    51. Gong G.C., Wen Y.H., Wang B.W., Liu G.J. Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep-Sea Research II, 2003, 50: 1219-1236
    52. Gouze E., Raimbault P., Garcia N., Bernard G., Picon P. Nutrient and suspended matter discharge by tributaries into the Berre Lagoon (France): The contribution of flood events to the matter budget. C. R. Geoscience, 2008, 340: 233-244
    53. Green R.E., Bianchi T.S., Dagg M.J., Walker N.D., and Breed G.A. An organic carbon budget for the Mississippi River turbidity plume and plume contributions to air–sea CO2 fluxes and bottom water hypoxia. Estuaries and Coasts, 2006, 29: 579-597
    54. Gu Y.H. A study on the cause of the path turning of the Changjiang River diluted water. Oceanologia Et Limnologia Sinica, 1985, 16: 354-363
    55. Hager S.W., L.I. Gordon, and P.K. Park. A practical manual for use of the Technicon Autoanalyzer? in seawater nutrient analyses. Final report to Bureau of Commercail Fisheries, Contract 14-17-0001-1759, 1968, Oregon State University, Dept. of Oceanography. Ref. No. 68-33. 31 pp.
    56. Hernes P.J. and Benner R. Photochemical and microbialdegradation of dissolved lignin phenols: Implications for the fate of terrigenous dissolved organic matter in marine environments. Journal of Geophysical Research, 2003, 108 (C9): 3291
    57. Hetland R.D., Dimarco S.F. How does the character of oxygen demand control the structure of hypoxia on the Texas-Louisiana continental shelf?. Journal of Marine Systems, 2008, 70: 49-62
    58. Hill A.E., Durazo R., and Smeed D.A. Observations of a cyclonic gyre in the western Irish Sea. Continental Shelf Research, 1994, 14: 479-490
    59. Howarth W. Robert. Coastal nitrogen pollution: A review of sources and trends globally and regionally. Harmful Algae, 2008, 8: 14-20
    60. Howarth W.R., G. Billen, D. Swaney, A. Townsend, N. Jaworski, K. Lajtha, A. Downing, R. Elmgreen, N. Caraco, T. Jordan, F. Berendse, J. Freney, V. Kudeyarov, P. Murdoch, and Z. Zhao-liang. Regional nitrogen budgets andriverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. Biogeochemistry, 1996, 35: 181-226
    61. Hu J.T., S.Y Li. Modeling the mass fluxes and transformations of nutrients in the Pearl River Delta, China. Journal of Marine Systems, 2009, 78: 146-167
    62. Humborg C., Danielsson A., Sjoberg B., Green M. Nutrient land-sea fluxes in oligotrophic and pristine estuaries of the Gulf of Bothnia, Baltic Sea. Estuarine, Coastal and Shelf Science, 2003, 56: 781-793
    63. Jones M.N. Nitrate reduction by shaking with cadmium, alternative to cadmium columns. Water Res., 1984, 18: 643-646
    64. Justi? D., Rabalais N. N., Turner R. E. et al. Changes in nutrient structure of river-dominated coastal waters: stoichiometric nutrient balance and its consequences. Estuarine, Coastal and Shelf Science, 1995, 40: 339-356
    65. Justi? D., Rabalais N.N., and Turner R.E. Modeling the impacts of decadal changes in riverine nutrient fluxes on coastal eutrophication near the Mississippi River Delta. Ecological Modelling, 2002, 152: 33-46
    66. Justi? D., Rabalais N.N., and Turner R.E. Simulated responses of the Gulf of Mexico hypoxia to variations in climate and anthropogenic nutrient loading. Journal of Marine Systems, 2003, 42: 115-126
    67. Karim M.R., Sekine M., Ukita M. Simulation of eutrophication and associated occurrence of hypoxic and anoxic condition in a coastal bay in Japan. Marine Pollution Bulletin, 2002, 45: 280-285
    68. Kasai A., Fujiwara T., Simpson J.H., and Kakehi S. Circulation and cold dome in a gulf-type ROFI. Continental Shelf Research, 2002, 22: 1579-1590
    69. Kasai A., Yamada T., and Takeda H. Flow structure and hypoxia in Hiuchi-nada, Seto Inland Sea, Japan. Estuarine, Coastal and Shelf Science, 2007, 71: 210-217
    70. Kauppila P., Meeuwig J.J., Pitkanen H. Predicting oxygen in small estuaries of the Baltic Sea: A comparative approach. Estuarine, Coastal and Shelf Science, 2003, 57 (526) : 1115-1126
    71. Kim H. C., Yamaguch H., Yoo S., Zhu J., Okamura K., Kiyomoto Y., Tanaka K., Kim S.-W., Park T., Oh I.S. and Ishizaka J. Distribution of Changjiang DilutedWater detected by satellite chlorophyll-a and its interannual variation during 1998–2007. Journal of Oceanography, 2009, 65: 129-135
    72. Kirstin D., Alexandra S., Thomas B., Emeis K.C. Sub-recent nitrogen isotope trends in sediments from Skagerrak (North Sea) and Kattegat: Changes in N-budgets and N-sources?. Marine Geology, 2008, 253: 92-98
    73. Knudsen M. Ein hydrographischer Lehrsatz. Annalen der Hydrographie und Maritimen Meteorologie, 1900, 28: 316-320
    74. Kudersky L.A., Churukhin A.S., Popov A.P., Bogdanov D.V., Yakovlev A.S. Fish population of the Neva Estuary. In: Alimov, A.F., Golubkov, S.M. (Eds.), Biodiversity and Ecological Problems of the Neva Estuary. KMK Publishers, Moscow, 2008, pp. 223–240 (in Russian)
    75. Lansard B., Rabouille C., Denis L., Grenz C. In situ oxygen uptakes by coastal sediments under the influence of the Rhone River (NW Mediterranean Sea), Continental Shelf Research, 2007, 28: 1501-1510
    76. Lansard B., Rabouille C., Denis L., Grenz C. Benthic remineralization at the land–ocean interface: A case study of the Rh?ne River (NW Mediterranean Sea). Estuarine, Coastal and Shelf Science, 2009, 81(4): 544-554
    77. Lee Y.J., Lwiza K.M.M. Characteristics of bottom dissolved oxygen in Long Island Sound, New York. Estuarine, Coastal and Shelf Science, 2008, 76 (2): 187-200
    78. Leithold E.L., Blair N.E. Watershed control on the carbon loading of marine sedimentary particles. Geochimica et Cosmochimica Acta, 2001, 65: 2231-2240
    79. Lenhart H.J., David K. Mills, Hanneke Baretta-Bekker, Sonja M. van Leeuwen, Johan van der Molen, Job W. Baretta, Meinte Blaas, Xavier Desmit, Wilfried Kühn, Geneviève Lacroix, Hans J. Los, Alain Ménesguen, Ramiro Neves, Roger Proctor, Piet Ruardij, Morten D. Skogen, Alice Vanhoutte-Brunier, Monique T. Villars, Sarah L. Wakelin. Predicting the consequences of nutrient reduction on the eutrophication status of the North Sea. Journal of Marine Systems, 2010, 81: 148-170
    80. Lenihan H.S., and C.H. Peterson. How habitat degradation through fisherydisturbance enhances impacts of hypoxia on oyster reefs. Ecol. Appl. 1998, 8: 128-140
    81. Li D.J., Zhang J., Huang D.J., et al. Oxygen depletion off the Changjiang (Yangtze River) Estuary. Science in China (series D), 2002, 45(12): 1137-1136
    82. Li M.T., Xu K.Q., Wantanabe M., et al. Long-term variations in dissolved silicate, nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and impacts on estuarine ecosystem. Estuarine, Coastal and Shelf Science, 2007, 71: 3-12
    83. Liu H. and Dagg M.J. Interactions between nutrients, phytoplankton growth, and micro- and meso-zooplankton grazing in the plume of the Mississippi River. Marine Ecology Progress Series, 2003, 258: 31-42
    84. Liu, K.K., Gong, G.C., Wu, C.R., Lee, H.J., Lee, B.S. Biogeochemistry of the Kuroshio and the East China Sea. In: Liu, K.K., Atkinson, L., Quinones, R., Talaue-McManus, L. (Eds.), Carbon and Nutrient Fluxes in Continental Margins: A Global Synthesis. Springer-Verlag, New York,2003
    85. Liu S.M., Hong G.H., Zhang J., Ye X.W., and Jiang X.L. Nutrient budgets for large Chinese estuaries. Biogeosciences, 2009, 6: 2245–2263
    86. Liu X.C. Biogenic elements fluxes in the Changjiang estuary. Ph.D. Thesis, East China Normal Univ., Shanghai, China, 2001
    87. Ludwig W., Dumont E., Meybeck M., Heussner S. River discharges of water and nutrients to the Mediterranean and Black Sea: Major drivers for ecosystem changes during past and future decades?. Progress in Oceanography, 2009, 80: 199-217
    88. McKee B.A., Allerb R.C., Allisona M.A., Bianchia T.S., Kineke G.C. Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: benthic boundary layer and seabed processes. Continental Shelf Research, 2004, 24: 899-926
    89. Mee L.D. Eutrophication in the Black Sea and a basin wide approach to control it. In: Von Bodungen, B., Turner, R.E. (Eds.), Science and Integrated Coastal Management. Dahlem University Press, Berlin, 2001: 71-91
    90. Meyer L.R., Allen E.D., Susanne S. Nitrification and denitrification as sources of sediment nitrous oxide production: A microsensor approach. Marine Chemistry, 2008, 110: 68-76
    91. Morse J.W., Rowe G.T. Benthic biogeochemistry beneath the Mississippi river plume. Estuaries, 1999, 22: 206-214
    92. Mukhopadhyay S.K., Biswas H., De T.K., Jana T.K. Fluxes of nutrients from the tropical River Hooghly at the land–ocean boundary of Sundarbans, NE Coast of Bay of Bengal, India. Journal of Marine Systems, 2006, 62: 9-21
    93. Nedwell D.B., Jickells T.D., Trimmer M., Sanders R. Nutrients in estuaries. Advances in Ecological Research, 1999, 29: 43-92
    94. Neitsch S.L., Arnold, J.G., Kiniry J.R., Srinivasan R., and Williams J.R. Soil and water assessment tool input/output file documentation, version 2005: Temple, TX, U.S. Department of Agriculture, Agricultural Research Service, Grassland, Soil and Water Research Laboratory, 2004. Available online at: ftp://ftp.brc.tamus.edu.pub/outgoing/sammons/swat2005 (accessed 11/28/06)
    95. Nezlin N.P., K. Kamer, J. Hyde, E.D. Stein. Dissolved oxygen dynamics in a eutrophic estuary, Upper Newport Bay, California. Estuarine, Coastal and Shelf Science, 2009, 82: 139-151
    96. Nixon S.W. Coastal eutrophication: A definition, social causes, and future concerns. Ophelia, 1995, 41: 199-220
    97. Nyenje P.M., Foppen J.W., Uhlenbrook S., Kulabako R., Muwanga A. Eutrophication and nutrient release in urban areas of sub-Saharan Africa—A review. Science of the Total Environment, 2010, 408: 447-455
    98. Officer C.B. Discussion of the behaviour of nonconservative dissolved constituents in estuaries. Estuarine Coastal Marine Science, 1979, 9: 91-94
    99. OSPAR. 2003 Strategies of the OSPAR Commission for the Protection of the Marine Environment of the North-East Atlantic. II– Eutrophication. 2003. http://www.ospar.org/eng/html/welcome.html/
    100.Pakulski J.D., Benner R., Whitledge T., et al. Microbal metabolism and nutrient cycling in the Mississippi and Atchafalaya River plumes. Estuarine, Coastal andShelf Science, 2000, 50: 173-184
    101.Pei S.F., Shen Z.L., Laws E.A. Nutrient dynamics in the upwelling area of Changjiang (Yangtze River) estuary. Journal of Costal Research, 2009, 25: 569-580
    102.Pe?a M.A., Katsev S., Oguz T., and Gilbert D. Modeling dissolved oxygen dynamics and coastal hypoxia: a review. Biogeosciences Discuss., 2009, 6: 9195-9256
    103.Pratihary K. A., S.W.A. Naqvi, H. Naik, B.R. Thorat, G. Narvenkar, B.R. Manjunatha, V.P. Rao. Benthic fluxes in a tropical Estuary and their role in the ecosystem. Estuarine, Coastal and Shelf Science, 2009, 85: 387-398
    104.Rabalais N.N. and Turner R.E. Coastal hypoxia: consequences for living resources and ecosystems. Washington, DC: American Geophysical Union, 2001, pp. 241-267
    105.Rabalais N.N., Turner R.E., Wiseman W.J. Gulf of Mexico Hypoxia, A.K.A.“the dead zone”. Annual review of Ecological systems, 2002, 33: 235-263
    106.Rabouille C., Conley D.J., Dai M.H., Cai W.J., Chen C.T.A., Lansard B., Green R., Yin K., Harrison P.J., Dagg M., and McKee B. Comparisons of hypoxia among four river dominated ocean margins: the Changjiang (Yangtze), Mississippi, Pearl, and Rh?ne rivers. Continental Shelf Research, 2008, 28: 1527-1537
    107.Raymond P.A., and Bauer J.E. Use of 14C and 13C natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: a review and synthesis. Organic Geochemistry, 2001, 32: 469-485
    108.Reissmann J.H., H. Burchard, R. Feistel, E. Hagen, H.U. Lass, V. Mohrholz, G. Nausch, L. Umlauf, G. Wieczorek. Vertical mixing in the Baltic Sea and consequences for eutrophication-A review. Progress in Oceanography, 2009, 82: 47-80
    109.Rosenberg R., Hellman B., and Johansson B. Hypoxic tolerance of marine benthic fauna. Marine Ecology Progress Series, 1991, 79: 127-131
    110.Roubeix Vincent, Rousseau Véronique, Lancelot Christiane. Diatom successionand silicon removal from freshwater in mixing zones: From experiment to modeling. Estuarine, Coastal and Shelf Science, 2008, 78: 14-26
    111.Seitzinger S.P., Kroeze C. Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems. Global Biogeochemical Cycles, 1998, 12: 93-113
    112.Shen J., Wang T.P., Herman J., Mason P., Arnold G.L. Hypoxia in a coastal embayment of the Chesapeake Bay: A model diagnostic study of oxygen dynamics. Estuaries and Coasts, 2008, 31: 652-663
    113.Shen Z.L. A study on the relationships of the nutrients near the Changjiang River estuary with the flow of the Changjiang River water. Chinese Journal of Oceanology and Liminology, 1993, 11(3): 260-267
    114.Shen Z.L. Historical changes in nutrient structure and its influences on phytoplankton composition in Jiaozhou Bay. Estuarine.Coastal and shelf Science, 2001, 52: 211-224
    115.Shen Z.L., Liu Q. Nutrients in the Changjiang River, Environmental Monitoring and Assessment, 2009, 153: 27-44
    116.Shen Z.L., Zhou S.Q., Pei S.F. Transfer and transport of phosphorus and silica in the turbidity maximum zone of the Changjiang Estuary. Estuarine, Coastal and Shelf Science, 2008, 78(3): 481-492
    117.Shiah F.K., Gong G.C., Chen T.Y., and Chen C.C. Temperature dependence of bacterial specific growth rates on the continental shelf of the East China Sea and its potential application in estimating bacterial production. Aquatic Microbial Ecology, 2000, 22: 155-162
    118.Slawyk G. and Maclsaac J.J. Comparison of two automated ammonium methods in a region of coastal upwelling. Deep-Sea Res., 1972, 19: 521-524
    119.Smayda T.J. Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In: E. Granéli, B. Sundstr?m, L. Edler, and D.M. Anderson [eds.], Toxic Marine Phytoplankton. Elsevier, 1990, pp. 29-40
    120.Smayda J.T. Complexity in the eutrophication–harmful algal bloom relationship, with comment on the importance of grazing. Harmful Algae, 2008, 8: 140-151
    121.Stephen V. Smith. Water, salt, and nutrient exchanges in San Francisco Bay. Limnol. Oceanogr., 2006, 51(1): 504-517
    122.Strickland J. D. H & T. R. Parsons. A practical handbook of seawater analysis. Fisheries Research Board of Canada Bulletin, 1972, pp. 167-311
    123.Turner R.E., Rabalais N.N., Swenson E.M., Kasprzak M., and Romaire T. Summer hypoxia in the northern Gulf of Mexico and its prediction from 1978 to 1995. Maine Environmental Research, 2005, 59: 65-77
    124.Val H.S. and David W. S. Eutrophication science: where do we go from here?. Trends in Ecology and Evolution, 2009, 24(4): 201-207
    125.Vermaat J.E., Gollop A.M., Eleveld M.A., Gilbert A.J. Past, present and future nutrient loads of the North Sea: Causes and consequences. Estuarine, Coastal and Shelf Science, 2008, 80: 53-59
    126.Wang B.D. Cultural eutrophication in the Changjiang (Yangtze River) plume: History and perspective. Estuarine Coastal and Shelf Science, 2006, 69: 471-477
    127.Wang B.D. Hydromorphological mechanisms leading to hypoxia off the Changjiang estuary. Marine Environmental Research, 2009, 67: 53-58
    128.Wei H., He Y., Li Q., Liu Z., and Wang H. Summer hypoxia adjacent to the Changjiang Estuary. Journal of Marine Systems, 2007, 69: 292-303
    129.Welsh B.L. and Eller F.C. Mechanisms controlling summertime oxygen depletion in western Long Island Sound. Estuaries, 1991, 14: 265-278
    130.Wong, G.T.F., Gong, G.C., Liu, K.K., and Pai, S.C.‘Excess nitrate’in the East China Sea. Estuarine, Coastal and Shelf Science, 1998, 46: 411-418
    131.Wu Y., Zhang J., Liu S.M., Zhang Z.F., Yao Q.Z., Hong G.H., Cooper L. Sources and distribution of carbon within the Yangtze River system. Estuarine, Coastal and Shelf Science, 2007, 71: 13-25
    132.Xu N., Lu S.H., Duan S.S. The influence of nutrients input on the red tide occurrence. Marine Environmental Science, 2004, 23(2): 20-24
    133.Yamamoto T., Hiraga N., Takeshita K., Hashimoto T. An estimation of net ecosystem metabolism and net denitrification of the Seto Inland Sea, Japan. Ecological modeling, 2008, 215: 55-68
    134.Yan W.J., Zhang S., Sun P., et al. How do nitrogen inputs to the Changjiang basin impact the Changjiang river nitrate: a temporal analysis for 1968-1997. Global Biogeochemical Cycles, 2003, 17: 1-9
    135.Zhang J., Liu S.M., Ren J.L. b, Wu Y., Zhang, G.L. Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea Shelf. Progress In Oceanography, 2007, 74: 449-478Zheng L.Y., Chen C.S., Zhang F.Y. Development of water quality model in the Satilla River Estuary, Georgia. Ecological Modelling, 2004, 178 (324): 457-482
    136.Zhang, J., Liu, S.M., Ren, J.L. b, Wu, Y., Zhang, G.L. Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea Shelf. Progress In Oceanography, 2007, 74, 449-478
    137.Zhang J., Yu Z.G., Wang J.T., Ren J.L., Chen H.T., Xiong H., Dong L.X., and Xu W.Y. The subtropical Zhujiang (Pearl River) estuary: nutrient, trace species and their relationship to photosynthesis. Estuarine, Coastal and Shelf Science, 1999, 49: 385-400
    138.Zhou M.J., Shen Z.L., and Yu R.C. Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River. Continental Shelf Research, 2008, 28: 1483-1489
    139.Zhu J., Chen C., Ding P., Li C., and Lin H. Does the Taiwan warm current exist in winter?. Geophysical Research Letters, 2004, 31, L12302, doi: 10.1029/2004GL019997
    140.陈吉余,陈沈良.南水北调工程对长江河口生态环境的影响.水资源保护, 2002, 3: 10-13
    141.段水旺,章申,陈喜保等.长江下游氮、磷含量变化及其输送量的估计.环境科学, 2000, 21: 53-56
    142.傅瑞标,沈焕庭,刘新成.长江河口潮区界溶解态无机氮磷的通量.长江流域资源与环境, 2002, 11(1): 64-68
    143.焦念志.关于沉积物释磷问题的研究.海洋湖沼通报, 1989, 2: 80-84
    144.李道季,张经,黄大吉,吴莹,梁俊.长江口外氧的亏损.中国科学D辑, 2002, 32(8): 686-694
    145.李佳霖,白洁,高会旺,王晓东,于江华,张桂玲.长江口海域夏季沉积物反硝化细菌数量及反硝化作用.中国环境科学2009,29(7): 756-761
    146.李玲玲,于志刚,姚庆祯,陈洪涛,米铁柱,巩瑶.长江口海域营养盐的形态和分布特征.水生态学杂志, 2009, 2(2): 15-20
    147.李茂田和程和琴.近50年来长江入海溶解硅通量变化及其影响.中国环境科学, 2001,21(3): 193-197
    148.刘成,王兆印,何耘,韦鹤平.上海污水排放口水域水质和底质分析.中国水利水电科学研究院学报, 2003, 4: 275-280
    149.刘瑞玉和罗秉征.三峡工程对长江口及邻近海域生态与环境的影响.海洋科学集刊, 1992, 33: 1-13
    150.刘新成,沈焕庭,黄清辉.长江入河口区生源要素的浓度变化及通量估算.海洋与湖沼, 2002, 33(5): 332-340
    151.宁修仁,战闰,臧家业.我国海洋初级生产力研究二十年.东海海洋, 2000, 18(3): 13-20
    152.宁修仁,史君贤,蔡昱明等.长江口和杭州湾海域生物生产力锋面及其生态学效应.海洋学报, 2004, 26(6): 96-106
    153.蒲新明,吴玉霖,张永山.长江口浮游植物营养盐限制因子的研究.海洋学报, 2000, 22 (4): 58-66
    154.沈洪艳,宋存义,贾建和.城市化进程中的生态环境问题及生态城市建设.河北师范大学学报(自然科学版),2006, 30(6): 726-731
    155.沈焕庭.长江河口物质通量.北京:海洋出版社, 2001, pp.176
    156.沈焕庭,贺松林,茅志昌,李九发.中国河口最大浑浊带刍议.泥沙研究, 2001, 1: 23-29
    157.屠建波,王保栋.长江口及其邻近海域富营养化状况评价.海洋科学进展, 2006, 24(4): 532-538
    158.沈志良.三峡工程对长江口海区营养盐分布变化影响的研究.海洋与湖沼.1991, 22(6): 540-546
    159.沈志良.长江干流营养盐通量的初步研究.海洋与湖沼,1997, 28(5): 522-527
    160.沈志良.长江氮的输送通量.水科学进展, 2004, 15(6): 752-759
    161.沈志良.长江磷和硅的输送通量.地理学报, 2006, 61(7): 741-751
    162.石晓勇,陆茸,张传松,王修林.长江口邻近海域溶解氧分布特征及主要影响因素.中国海洋大学学报, 2006, 36(2): 287-290
    163.石晓勇,王修林,韩秀荣,祝陈坚,孙霞,张传松.长江口邻近海域营养盐分布特征及其控制过程的初步研究.应用生态学报, 2003, 14(7): 1086-1092
    164.孙湘平.中国近海区域海洋.北京:海洋出版社, 2006, pp.376
    165.王海龙,丁平兴,沈健.河口/近海区域低氧形成的物理机制研究进展.海洋科学进展, 2010, 28(1): 116-125
    166.王晓燕.非点源污染及其管理.北京海洋出版社, 2003
    167.韦蔓新,赖廷和,何本茂.广西钦州内湾贝类养殖海区三氮的含量和百分组成.台湾海峡, 2001, 20(4): 441-446
    168.徐宁,段舜山,李爱芬等.沿岸海域富营养化与赤潮发生的关系.生态学报, 2005, 25(7): 3870-3875
    169.赵保仁,任广法,曹德明,杨玉玲.长江口上升流海区的生态环境特征.海洋与湖沼, 2001, 32(3): 327-333
    170.周菊珍,谷国传.长江河口夏季营养盐的分布、变化及锋面对营养盐的影响.广州环境科学, 2002, 17(1): 1-5
    171.周俊丽,刘征涛,孟伟,李政,李霁.长江口营养盐浓度变化及分布特征.环境科研究, 2006, 19(6): 139-144
    172.朱建荣.长江口外海区叶绿素a浓度分布及其动力成因分析.中国科学D辑:地球科学, 2004, 34(8): 757-762
    173.朱建荣,肖成猷,沈焕庭.夏季长江冲淡水扩展的数值模拟.海洋学报, 1998, 20 (5): 13-22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700