基于LS-SVM的盾构密封舱土压建模仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
密封舱土压是盾构掘进过程中一个非常重要的控制参数,压力失衡将导致地表坍塌等严重的工程事故。但现在的施工多是人工控制操作,控制精度较低。因此,实现盾构掘进过程的自动控制是当前自动化领域研究的热点问题。
     目前对土压平衡盾构系统的研究多集中在诸如推进系统、排渣系统等一些相对独立的领域里,这些研究都没有考虑其整体特性,且都未考虑刀盘转速的影响,无法反映盾构掘进过程中盾机的整体性能。而在研究方法上多采用神经网络、模糊算法等,并未得出具体的模型形式。再加上盾构施工现场情况复杂,影响土压的因素较多,而且实验研究需要较大的投资,所以,目前大部分土压平衡盾构系统的分析与设计都是依赖工程实践经验。基于此,本文提出一种建立盾构土压模型的方法,结合现场施工数据,对土压平衡盾构施工过程中的特性进行研究,为实际盾构施工工程提供指导与参考。
     由于建立土压平衡盾构系统的机理模型比较困难。因此,本文在广泛研究国内外盾构理论的基础上,基于盾构掘进过程的机理分析,初步确定土压值与刀盘转速、总推力、螺旋输送机转速及推进速度有关。进一步,利用主元分析方法来估计土压值与这些因素的相关性强弱,得出结论:推进速度、螺旋输送机转速、刀盘转速及总推力为土压值的主元。基于此,首先对现场采集数据进行数据预处理;其次,利用最小二乘支持向量机(LS-SVM)方法,结合现场施工数据,选用六种核函数来对土压进行建模分析,并引入均方根误差(RMSE)和绝对平均值百分误差(MAPE)来评价该模型的预测精度,进而确定采用二次多项式核函数建立的土压模型其估计能力较好;最后,通过仿真试验验证了该模型的有效性。并结合MAPE评价标准,比较LS-SVM模型与BP神经网络模型的估计能力,试验表明LS-SVM模型有较好的估计能力和推广能力。
The earth pressure of the sealed cabin is a very important controlling parameter and is intimately related to the stability of excavated surface and deformation of ground. However, at present, most constructions are manual operations and controls, which lead to low control accuracy. Thus, the realization of automatic control during the excavation of Shield is a hot topic in the present automation research.
     At present, most of the researches are focus on some relatively independent areas, such as Propulsion System or Casting System. While research on the whole characteristic of EPB shield system is relatively less and exclude the consideration of affect of the speed of cutter head. The result is that it can't reflect the overall performance during the excavation of shield. In the other side, the research methods, such as Artificial Neural Networks or Fuzzy Algorithm, which can't get a specific form of the model. In addition, the situation of the construction of shield is complex and there are many factors that could affect the earth pressure. Moreover, it generally requires lots of investment in equipments to perform on site test or experiments of physical model which set back the process of research. Therefore, most of the analysis and designs of Earth Pressure Balance Shield System are based on engineering experience. For these reasons, this paper raise a method of establishing the earth pressure model of EPB shield, and do a research of the character of the construction process of EPB shield combined with construction-site data, which could provide some instructions and references for the construction of shield.
     It is difficult to establish the mechanism model of shield EPB system directly. Therefore, the thesis identify the earth pressure value may be relative with cutter head speed, main thrust, screw conveyor speed and advancing speed based on the mechanism during the excavation of shield and the study on shield theory at home and abroad. Furthermore, the use of principal component analysis to estimate the value of earth pressure and the strength of the correlation of these factors lead to a conclusion that the earth pressure has four principal elements as follows: advancing speed, cutter head speed, screw conveyor speed and main thrust. For these reasons, first, preprocess the construction-site data. Secondly, obtaining the specific model of earth pressure by using Least Squares Support Vector Machine (LS-SVM) method combined with the construction-site data, and using six kinds of kernel function to construct the earth pressure model. With the introduction of RMSE(Root Mean Square Error) and MAPE(Mean Absolute Percent Error), then estimating the precision of prediction of the constructed model, and get the conclusion that the constructed model with a quadratic polynomial kernel function has the optimal precision of prediction. At last, verifying the validity of the mathematical model by simulation experiments, and comparing the estimates capacity of LS-SVM model and BP Neural Network model with MAPE as an estimated standard. The simulation represents that the LS-SVM model gets an excellent predictive ability and generalization ability.
引文
[1]王守强.盾构施工技术及其应用[J].水利水电科技进展.1997,17(3):5-11.
    [2]张照煌,李福田.全断面隧道掘进机施工技术[M].北京:中国水利水电出版社,2006.
    [3]张凤祥.盾构隧道[M].北京:北京人民交通出版社,2004.
    [4]周文波.盾构法隧道施工技术及应用[M].北京:中国建筑工业出版社,2007.
    [5]余佑官.盾构推进电液控制系统研究[D],杭州:浙江大学,2006.
    [6]叶飞,黎柯军.隧道掘进机技术及其在我国的发展和应用[J].中外公路.2006(04):166-171.
    [7]郭陕云.论我国隧道和地下工程技术的研究和发展[J].隧道建设.2004,24(5):1-5.
    [8]白杉,周洁.我国隧道盾构掘进机的发展和应用[J].2004(5):26-28.
    [9]朱伟,陈仁俊.盾构隧道施工技术现状及展望(第1讲)盾构隧道基本原理及在我国的使用情况[J].岩土工程界.2001,4(11):19-21.
    [10]张庭华.土压平衡盾构土舱压力控制技术研究[J].铁道标准设计.2005(08):83-84.
    [11]李笑,陈振环,陈烘陶等.盾构土压平衡电液模拟系统的研究[J].机床与液压,2006,7:129-131.
    [12]陈烘陶.盾构土压平衡系统的建模与仿真研究[D].广州:广东工业大学,2007.
    [13]施虎,龚国芳,杨华勇等.盾构掘进土压平衡控制模型[J].煤炭学报.2008,33(3):343-346.
    [14]王洪新,傅德明.土压平衡盾构平衡控制理论及试验研究[J].土木工程学报.2007,40(5):61-68.
    [15]郑久强,龚国芳,胡国良等.盾构刀盘液压驱动系统[J].液压气动与密封.2005(04):31-33.
    [16]杨华勇,龚国芳.盾构掘进机及其液压技术的应用[J].液压气动与密封.2004(1):27-29.
    [17]胡国良,龚国芳,杨华勇等.盾构模拟试验平台液压推进系统设计[J].机床与液压.2005(02):92-94.
    [18]Herrenknecht AG Schlehenweg.Construction of water tunnels by Herrenknecht Microtunnelling Equipment.Schwanau(Germany),Dipl.Ing.Werner Suhm Workshop Tehran,[2003,08,31].http://www.herrenknecht.de
    [19]胡眠,周文波.基于多级神经网络的盾构法隧道施工参数控制[J].计算机工程.2005,31(08):192-194.
    [20]Yeh I.Application of neural networks to automatic soil pressure balance control for shield tunnelling[J].Automation in Construction.1997,5(5):421-426.
    [21]薛茹镜,陈冬,吴婧姝.土压平衡盾构排土量控制分析[J].工业建筑.2008,38(Addition):965-967.
    [22]王洪新,傅德明,李向红.土压平衡盾构各主要参数的统计分析[J].大直径隧道与城市轨道交通工程技术.2007,248-255.
    [23]王洪新,傅德明.土压平衡盾构掘进的数学物理模型及各参数间关系研究[J].土木工程学报.2006,39(9):86-90.
    [24]张厚美,吴秀国,曾伟华.土压平衡式盾构掘进试验及掘进数学模型研究[J].岩石力学与工程学报.2005,24(Supp.2):5762-5766.
    [25]魏建华,丁书福.土压平衡式盾构开挖面稳定机理与压力舱土压的控制[J].工程机械.2005(01):18-19.
    [26]刘东亮.EPB盾构掘进的土压控制[J].铁道工程学报.2005(2):45-50.
    [27]Sugimoto M.Theoretical Model of Shield Behavior During Excavation 1:Theory[J].Joumal Of Geotechnical And Geoenvironmental Engineering.2002:138-155.
    [28]Sramoon A.Theoretical Model of Shield Behavior During Excavation Ⅰ:APPlication[J].Journal Of Geotechnical And Geoenvironmental Engineering.2002:156-165.
    [29]Suwansawat S,Einstein H H.Artificial neural networks for Predicting the maximum surface settlement caused by EPB shield tunneling[J].Tunnelling And Underground Space Technology.2006(21):133-159.
    [30]谈小龙,朱伟,秦建设等.盾构法隧道施工中盾构控制滞后效应的研究[J].地下空间.2004(1):36-40.
    [31]宋克志.无水砂卵石地层盾构推力及刀盘转矩的计算[J].建筑机械.2004(10):58-60.
    [32]Wallis S.Soft ground TBMs under the sea[J].Tunnels and Tunnelling.1988,20(12).
    [33]竺维彬,鞠世健.盾构施工泥饼(次生岩块)的成因及对策[J].地下工程与隧道.2005(2):25-29.
    [34]汪茂祥.土压平衡式盾构机异常现象产生原因和处理方法[J].建筑机械.2005(5):32-33.
    [35]杨晓强,薛瑞麟.盾构机掘进中几个值得关注的问题[J].工程机械与维修.2005(13):83-85.
    [36]韩文忠.复杂地质条件下土压平衡盾构掘进控制技术[J].石家庄铁道学院学报.2004,17(B05):12-14.
    [37]林成功,吴德伦.土层透气性现场实验与分析[J].岩土力学.2003,24(4):579-582.
    [38]秦建设,朱伟.土压式盾构施工中地下水出渗机理研究[J].岩土力学.2004(10):1632-1636.
    [39]黄平华.盾构工法中土质改良剂的应用技术[J].施工技术.2004,33(1):46-47.
    [40]秦建设,朱伟,林进也.盾构施工中气泡应用效果评价研究[J].地下空间.2004(03):350-353.
    [41]朱合华,徐前卫,廖少明等.土压平衡盾构施工的顶进推力模型试验研究[J].岩石力学.2007,28(8):1587-1593.
    [42]胡国良,胡少华,龚国芳等.土压平衡盾构螺旋输送机排土控制分析[J].工程机械.2008,39:35-38.
    [43]Richard Robbins,Martin Kelley.Tunnelling Machine Development for Undersea Projecta Review of the issues[J].Tunnelling and Underground Space Technology.1994,9(3):323-328.
    [44]薛备芳.我国盾构掘进机的现状和发展策略[J].世界隧道.1999(6):26-31.
    [45]吴克利.国内外隧道掘进机械发展概述[J].重工与起重技术,2005(1):1-4.
    [46]Naitoh K.The development of earth pressure balanced shields in Japan[J].Tunnels&Tunnelling.1985(5):15-18.
    [47]杨华勇,龚国芳.盾构掘进机发展战略研究[J].城市交通隧道工程最新技术.上海国际隧道工程研讨会论文集,2003:339-345.
    [48]刘仁鹏.土压平衡盾构技术综述[J].世界隧道.2000(1):1-7.
    [49]G.Anagnostou,K.Underground SpaceKovari.The face stability of slurry-shield-driven tunnels[J].Tunnelling and Technology,1994,9(2):155-174.
    [50]C.Gonzalez,C.Sagaseta.Patterns of soil deformations around tunnels.Application to the extension of Madrid Metro[J].Computers and Geotechnics.2001(28):445-468.
    [51]Peter Darling.Steep tunnelling for EPBM under the Avon Estuary[J].Tunnels& Tunnelling,1993(1):17-19.
    [52]Shani Wallis.UK EPB machine conquers Bordeaux's Karstic limestone[J].Tunnels &Tunnelling,1994(7):43-46.
    [53]陈国彬.土压平衡盾构机刀盘结构介绍与刀具应用浅析[J].中国水运.2007,07(06):61-62.
    [54]何其平.土压平衡盾构刀盘结构探讨[J].工程机械.2003(11):10-15.
    [55]蔡河山.土压平衡盾构液压传动控制系统浅析——刀盘驱动液压传动控制系统[J].液压与气动.2003(08):30-31.
    [56]庄欠伟,龚国芳,杨华勇.盾构机推进系统分析[J].液压与气动.2004(04):11-13.
    [57]鲁志军.海瑞克土压平衡式盾构机分析[C].地下铁道新技术文集2003.2003:567-572.
    [58]宋克志,汪波,孔恒等.无水砂卵石地层土压盾构施工泡沫技术研究.岩石力学与工程学报.2005,24(13):2327-2331.
    [59]朱伟,陈仁俊.盾构隧道施工技术现状及展望(第2讲)盾构隧道技术问题和施工管理[J].岩土工程界.2001,4(12):14-20.
    [60]胡国良,龚国芳,杨华勇等.盾构螺旋输送机液压驱动及控制系统[J].液压与气动.2004(12):33-35.
    [61]赵洪波.岩土力学与工程中的支持向量机分析[M].北京:煤炭工业出版社,2008.
    [62]陈爱军.最小二乘支持向量机及其在工业过程建模中的应用[D].浙江:浙江大学,2006.
    [63]Vapnik V N.The Nature of Statistical Learning Theory.New York:Springer,1995.张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000.
    [64]边肇祺,张学工.模式识别[M].北京:清华大学出版社,2000.
    [65]Shigeo Abe.Support Vector Machines for Pattern Classification[M].London:Springer,2005.
    [66]Suykens J A K,Lukas L,Yandewalle J.SPARSE APPROXIMATION USING LEAST SQUARES[J].IEEE International Symposium on Circuits and Systems,Geneva,2000:757-760.
    [67]Scholkopf B,Smola J.Learning with kernels[M].MA:MIT press,2001.
    [68]荣海娜,张葛祥,金炜东.系统辨识中支持向量机核函数及其参数的研究[J].系统仿真学报.2007,18(11):3204-3208.
    [69]黄啸.支持向量机核函数的研究[D].苏州:苏州大学,2008.
    [70]张冰,孔锐.一种支持向量机的组合核函数[J].计算机应用.2007,27(1):44-46.
    [71]HOLLAND J H.Adaptation in natural and artificial systems[M].Ann Arbor:University of Michigan Press,1975.
    [72]霍罕妮.支持向量机中参数选取的一个问题[D].大连:大连理工大学,2007.
    [73]王睿.关于支持向量机参数选取方法的分析[J].重庆师范大学学报.2005,24(2):36-39.
    [74]马金玲.数据分析与测量数据处理[M].徐州:中国矿业大学出版社,1994.
    [75]J.Edward Jackson.A User' s Guide To Principal Component[M].NewYork:A Wiley-Interscience Publication,1992.
    [76]Jolliffe I.T.Principal Component Analysis[M].New York:Springer,1986.
    [77]孙嵘.基于BP神经网络的中小企业财务风险预警研究[D].长沙:长沙理工大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700