基于智能计算的过程控制与优化若干研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能计算的发展已有较悠久的历史,许多经典的智能算法已取得成功的应用。随着智能计算技术的发展,经典智能算法与来自生命科学中其它生物理论的结合,使得这类算法有了较大进展,最终形成了现代智能计算理论。目前现代智能计算领域已呈现较多的新智能工具,如支持向量机、核方法、粒子群优化算法、迭代学习控制理论等。本文将其中的一部分内容应用到过程控制与优化领域,取得了卓有成效的结果。
     本文创新的工作主要体现在以下几点:
     1提出了间歇过程的批次优化控制方法。通常情况下间歇过程的精确机理模型很难获得,由于支持向量机在解决小样本、非线性和高维数的问题时具有强大的功能,支持向量回归模型被用于间歇过程的终端优化控制。为了达到间歇过程所要求的终端性能指标,批次控制方法通过利用间歇过程重复运行的特性来获取间歇过程的优化操作方案,其中二次规划法被用来解决优化控制问题。本文的批次优化控制策略被证明在模型失配和扰动存在的情况下也是收敛的,因而该控制方法具有一定程度的鲁棒性。基于支持向量回归模型的批次优化控制方法是一种综合性的控制方法,充分利用了支持向量机建模智能化的特点和批次优化控制消除建模误差及克服干扰的特点,是一种可靠的优化控制方案。
     2在线监控和故障诊断在工业过程中对操作安全和产品质量起着重要作用。本文提出了基于核主元和多支持向量机分类的过程监控和故障诊断方法。其中,核主元用来进行故障特征的提取,多支持向量机用来对故障的来源进行分类。该方法首先构造系统正常时的核主元模型,然后将新的数据映射到该核主元模型,对数据进行重构,重构的数据用多元统计指标T2或SPE判断监测过程是否超出了正常的控制限,若有故障发生,则监测程序将给于警告,提示过程出现了异常操作状况。由于原始数据经过核主元的非线性映射后难以求得核主元空间到原始空间的逆映射,因此给故障诊断带来困难。本文采用多支持向量机学习的方法对故障进行分类,避开了求解逆映射的数学方法,直接用智能的方法获得故障的信息,为过程的监控和故障诊断提供了一个新的方法。
     3在迭代学习控制方面,本文对已有的成果作了总结和分类。在此基础上,本文针对两类基于逆模型的前馈—反馈迭代学习控制方案的鲁棒性作了分析,分别提出了各自的鲁棒收敛性条件。理论上获得的鲁棒收敛域是这两类迭代学习控制方法在学习空间全局收敛的充分条件。该理论结果可以为此类型的迭代学习控制器设计提供参考。
     4针对无独立状态和终端约束的间歇过程鲁棒优化问题,本文将迭代方法与粒子群优化算法相结合,提出了迭代粒子群算法。对于该算法,首先将控制变量离散化,用标准粒子群优化算法搜索离散控制变量的最优解,然后在随后的迭代过程中将基准移到刚解得的最优值处,同时收缩控制变量的搜索域,使优化性能指标和控制轨线在迭代过程中不断趋于最优解。算法简洁、可行、高效,避免了求解大规模的微分方程组问题。该方法尤其适合系统梯度信息不可得的情况。当系统的梯度信息不可得时,一般的数学方法很难获得优化问题的最优解,而迭代粒子群优化算法利用智能寻优的特点却可获得满意的解。通过控制变量离散化,迭代粒子群优化算法将一个连续问题转化为一个离散问题。优化算法具有并行计算的特点,所有时间段的控制变量被同时优化。算法兼具了迭代法和智能算法的优点,但不需离散化状态变量,仅需在解空间随机寻优,因此又克服了二者的不足之处。该方法在处理间歇过程的鲁棒优化问题时更具优势,编程简单,且可大大减小计算量。
Intelligent computation has a long history. Many of the theories have been put into successful applications. With the development of intelligent computation, classical intelligent computation combines other biological theories of the life science, which makes the intelligent computation have big progress and hence leads to form the modern intelligent computation theories. Now there are many new intelligent tools in the modern intelligent computation region such as support vector machines, kernel method, particle swarm optimization algorithm and iterative learning control theory. In the article, some of them are applied for the process control and optimization and hence acquired successful achievements.
     The main original points of this paper lie below:
     1. A run-to-run method is presented for the optimal control of batch processes. Generally it is very difficult to acquire an accurate mechanistic model for a batch process. Because Support Vector Machine is powerful for the problems characterized by small samples, nonlinearity, high dimension and local minima, support vector regression models are developed for end-point optimal control of batch processes. To reach the desired end-point properties, a run-to-run control method is used to exploit the repetitive nature of batch processes to determine the optimal operating policy. Quadratic programming (QP) is employed to solve the optimal control problem. The run-to-run control method is proved convergent and robust even when model mismatches and disturbances exist. Therefore the run-to-run optimal control method based on support vector regression model is a comprehensive method which sufficiently utilizes the intelligence of support vector machine’s modeling and the characters of the run-to-run control that can move away the model mismatches and overcome the disturbances. Hence we can see the run-to-run optimal control based on support vector regression model is a reliable optimal control method.
     2. Online monitoring and fault diagnosis of industry process is extremely important for operation safety and product quality. In the paper, an integrated method is applied for process monitoring and fault diagnosis, which combines kernel principle component analysis (KPCA) for fault feature extraction and multiple support vector machines (MSVMs) for identification of different fault sources. For the algorithm, the kernel primary component model according to the normal system is constructed firstly. Second, the new acquired data are mapped to the kernel primary component model to reconstruct the data. Then the reconstructed data are analyzed by multiple statistical indexes such as T2 or SPE to determine if the supervised process exceeds the normal control limits. If fault occurs, then the supervising program will alarm to prompt that the process has abnormal states. Because it is hard to get the inverse mapping from the kernel space to the original space after the original data are nonlinear mapped by the KPCA method, hence it is difficult to diagnose how the fault happened. The paper adopts the learning method of MSVMs to classify the faults, which avoids the mathematical solution for the inverse mapping and acquires the fault information through intelligent method directly. Such an integrated method provides a new way for process monitoring and fault diagnosis.
     3. As far as iterative learning control concerned, the paper summarized and classified the iterative learning control theories. On the basis, the paper analyzed the robust performances of two kinds of feedforward-feedback iterative learning control based on inverse model. Then robust convergent conditions are presented respectively. The theoretically acquired robust convergent regions are the sufficient conditions for the two kinds of iterative learning control schemes’global convergences in the learning space. The acquired theoretical results can provide the references for the design of iterative learning controllers.
     4. To solve optimization problems of batch processes without state independent and end-point constraints, the article combined the iteration method and the particle swarm optimization algorithm together and proposed an iterative particle swarm algorithm. For the algorithm, the control variables are discretized firstly and the standard particle swarm optimization algorithm is used to search for the best solution of the discretized control variables. Next, the benchmark is moved to the acquired optimal values in the subsequent iterations and the searching space contracted at the same time, hence the optimization performance index and control profile could achieve the best value gradually through iterations. The algorithm is simple, feasible and efficient. It avoided the problem solving large-scale differential equation group. The algorithm is especially practical when the system’s gradient information is unavailable. In the case, it is hard for general mathematical method to acquire the optimal solutions. However, the iterative particle swarm algorithm can acquire the satisfying results based on its intelligent researching. By discretizing the control variables, a continuous dynamic optimization problem is transformed to a discrete problem. The algorithm has the characters of parallel computations which make the control profile at all time stage optimized simultaneously. The algorithm has the advantages of iteration methods and intelligent algorithms. Nevertheless, it don’t need discretization of state variables and only search the optimal control profile in the solution space randomly, hence overcome the disadvantages of iteration methods and intelligent algorithms. The algorithm is of more advantage when solve the robust optimization of batch process which make the program simple and can reduce the computation largely.
引文
Allgor, R. J., Barrera, M. D., Barton, P. I. & Evans, L. B. (1996). Optimal batch process development. Computers and Chemical Engineering, 20(6–7), 885–896.
    Amann, N., Owens, D. H. & Rogers, E. (1996). Iterative learning control for discrete–time system with exponential rate of convergence. IEE Proceedings Control Theory Applications, 143(2), 217–224.
    Amann, N., Owens, D. H. & Rogers, E. (1996). Iterative learning control using optimal feedback and feedforward actions. International Journal of Control, 65(2), 277–293.
    Arimoto, S., Kawamura, S., & Miyazaki, F. (1984). Bettering operation of robots by learning. Journal of Robotic Systems, 1(1), 123–140.
    Aziz, N., Hussain, M. A. & Mujtaba, I. M. (2000). Performance of different types of controllers in tracking optimal temperature profiles in batch reactors. Computers and Chemical Engineering, 24, 1069– 1075.
    Balsa–Canto, E., Banga, J. R., Alonso, A. A. & Vassiliadis, V. S. (2001). Dynamic optimization of chemical and biochemical processes using restricted second–order information. Computers and Chemical Engineering, 25, 539–546.
    Bien, Z. & Huh, K. M. (1989). Higher order iterative learning control algorithm. IEEE Proc. D: Control Theory and Application, 136(3).
    Bien, Z. & Xu, J. X. (1998). Iterative Learning Control—Analysis, Design, Integration and Applications. Boston, MA: Kluwer.
    Bovin, D. (1998). Optimal operation of batch reactors—a personal view. Journal of Process Control, 8, 355–368.
    Brogliato, B. & Neto, A. T. (1995). Practical stabilization of a class of nonlinear systems with partially known uncertainties. Automatica, 31(1), 145–150.
    Bryson, A. E. (1999). Dynamic Optimization. Menlo Park, CA: Addison–Wesley. Chekhova, E., Barton, P. I. & Gorak, A. (2000). Optimal operation processes of discrete–continuous biochemical processes. Computers and Chemical Engineering, 24, 1167–1173.
    Chen, C. J. (2000). A sampled–data iterative learning control using fuzzy network design. International Journal of Control, 73(10), 902–913.
    Chen, Y., Gong, Z. & Wen, C. (1998). Analysis of a high–order iterative learning control algorithm for uncertain nonlinear systems with state delays. Automatica, 34(3), 345–353.
    Chen, Y., Wen, C., Dou, H. & Sun, M. (1997). Iterative learning identification of aerodynamic drag curve from tracking radar measurements. Control Engineering Practice, 5(11), 1543–1553.
    Chen, Z. G. (2001). Iterative learning control for batch systems based on receding horizon optimization. Proceedings of the 3rd International Conference on Control Theory and Applications, Pretoria, South Africa.
    陈治纲. (2003). 基于迭代学习的间歇过程先进控制和优化研究. 上海:上海交通大学.
    Choi, J. W., Choi, H. G., Lee, K. S. and Lee, W. H. (1996). Control of ethanol concentration in a fed-batch cultivation of Acinetobacter calcoaceticus RAG-1 using a feedback-assisted iterative learning algorithm. Journal of Biotechnology, 49, 29–43.
    Choi, J. Y. & Park, H. J. (1995). Adaptive learning control of affine nonlinear systems using piecewise linealy trained networks. IEEE International Conference on Neural Networks (pp. 2338–2341).
    崔伟东,周志华,李星. 神经网络VC维计算研究. 计算机科学,2000,27(7),59–62.
    De Roover, D., Bosgra, O. H. & Steinbuch, M. (2000). Internal model–based design of repetitive and iterative learning controllers for linear multivariable systems. International Journal of Control, 73(10), 914–929.
    Downs, J. H., Vogel, E. F. (1993). A plant-wide industrial process control problem. Comput. Chem. Eng., 17, 245–255.
    Eberhart R C, Shi Y. (2001). Particle swarm optimization: Developments, applications and resources. Proceedings of the IEEE Conference on Evolutionary Computation, 1, 81–86.
    Floudas, C. A. (2000). Global optimization in design and control of chemical process systems. Journal of Process Control, 10,125–134.
    Flores-Cerrillo, J. & MacGregor, J. F. (2003). Within-batch and batch-to-batch inferential-adaptive control of semibatch reactors: A Partial Least Squares Approach, Ind. Eng. Chem. Res. 42, 3334–3345.
    Fotopoulos, J., Georgakis, C. & Stenger, H. G. (1994). Uncertainty issues in the modeling and optimization of batch reactors with tendency model. Chemical Engineering Science, 49, 5533–5548.
    Frueh, J., & Phan, M. Q. (1998). Linear quadratic optimal learning control (LQL). Proceedings of the 37th IEEE conference on decision and control (pp. 678–683), Tampa, Florida, USA.
    Galvanauskas, V., Simutis, R., Volk, N. & Lübbert, A. (1998). Model based design of a biochemical cultivation process. Bioprocess Engineering, 18, 227–234.
    Gao, F., Yang, Y. & Shao, C. (2001). Robust iterative learning control with applications to injection molding process. Chemical Engineering Science, 56, 7025–7034.
    Garcia, V., Cabassud, M., Le Lann, M. V., Pibouleau, L. & Casamatta, G. (1995). Constrained optimization for fine chemical productions in batch reactors. The Chemical Engineering Journal, 59, 229–241.
    Gattu, G. & Zafiriou, E. (1999). A methodology for on–line setpoint modification for batch reactor control in the presence of modeling error. Chemical Engineering Journal, 75, 21–29.
    Genton M. G. (2001). Classes of Kernels for Machine Learning: A Statistical Perspective. Journal of Machine Learning Research, 2, 299–312.
    Gentric, C., Pla, F., & Latifi, M. A., etc. (1999). Optimization and non-linear control of a batch emulsion polymerization reactor. Chemical Engineering Journal, 75, 31–46.
    Gorinevsky, D. (1999). Distributed system loopshaping design of iterative control for batch processes. Proceedings of the 38th Conference on Design & Control (pp. 245–250), Phoenix, Arizona, USA.
    Gunnarsson, S. & Norrl?f, M. (2001). On the design of ILC algorithms using optimization. Automatica, 37, 2011–2016.
    Hamamoto, K. & Sugie, T. (2001). An iterative learning control algorithm within prescribed Input–output subspace. Automatica, 37, 1803–1809.
    Havlicsek, H. & Alleyne, A. (1999). Nonlinear control of an electrohydraulic injection molding machine via iterative adaptive learning. IEEE/ASME Transactions on Mechatronics, 4, 312–323.
    Henson, M. A. (1998). Nonlinear model predictive control: current status and future directions. Computers and Chemical Engineering, 23, 187–202.
    Jackson, J. E. (1991). A user's guide to principal components. New York: Wiley.
    Jang, T. J., Choi, C. H. & Ahn, H. S. (1995). Iterative learning control in feedback systems. Automatica, 31(2), 243–245.
    Jin, Y. C. & Hyun, M. D. (2001). A Learning Approach of Wafer Temperature Control in a Rapid Thermal Processing System. IEEE Transactions on Semiconductor Manufacturing, 4(1), 1–9. Kennedy, J., Eberhart, R. C. (1995). Particle swarm optimization. Proceedings of the IEEE International Conference on Neural Networks, 4, 1942–1948.
    Krothapally, M. & Palanki, S. (1997). A neural network strategy for batch process optimization. Computers and Chemical Engineering, 21, S463–S468.
    Kuc, Y.Y., Lee, S. J. & Nam, K.H. (1992). An iterative learning control theory for a class of nonlinear dynamic systems. Automatica, 28(10), 1215–1221.
    Lee, J. H., Lee, K. S. & Kim, W. C. (2000). Model–based iterative learning control with a quadratic criterion for time–varying linear systems. Automatica, 36, 641–657. Lee, J. M., Yoo, C. K., etc. (2004). Nonlinear process monitoring using kernel principal component analysis. Chemical Engineering Science, 59, 223–234.
    Lee, K. S., Bang, S. H., & Chang, K. S. (1994b). Feedback–assisted iterative learning control based on an inverse process model. Journal of Process and Control, 4(2), 77–89.
    Lee, K. S., Bang, S. H., Yi, S., Son, J. S. & Yoon, S. C. (1996). Iterative learning control of heat-up phase for a batch polymerization reactor. Journal of Process Control, 6(4), 255–262.
    Lee, K. S., Chin, I., Lee, H. J. & Lee, J. H. (1999). Model predictive control technique combined with iterative learning for batch processes. AIChE Journal, 45(10), 2175–2187.
    Lee, K. S., Kim, W. C. & Lee, J. H. (1996). Model–based iterative learning control with quadratic criterion for linear batch processes. Journal of Control Automation Systems Engineering, 2(3), 148–157.
    Lee, K. S. & Lee, J. H. (2003). Iterative learning control–based batch process control technique for integrated control of end product properties and transient profiles of process variables. Journal of Process Control, 13, 607–621.
    Lee, H. S. & Bien, Z. (1996). Study on robustness of iterative learning control with non–zero initial error. International Journal of Control, 64, 345–359.
    Lee, H. S. & Bien, Z. (1997). A note on convergence property of iterative learning controller with respect to Sup norm. Automatica, 33(8), 1591–1593.
    Lelann, M. V., Cabassud, M. & Casamatta, G. (1999). Modeling, optimization and control of batch chemical reactors in fine chemical production. Annual Reviews in Control, 23, 25–34.
    Liu, Y., Yang, X., Xiong, Z., etc. (2005). Batch-to-batch optimal control based on support vector regression model. Lecture Notes in Computer Science, Vol 3498, Berlin, Germany: Springer.
    Livstone, M. M., Dahleh, M. A. & Farrell, J. A. (1995). A new framework for iterative identification and control. Proceedings of the American Control Conference (pp. 3546–3550), Seattle, Washington, USA.
    Luus, R. (1994). Optimal control of batch reactors by iterative dynamic programming. Biotechnology and Bioengineering, 41, 599–602.
    Lübbert, A. & J?rgensen, S. B. (2001). Bioreactor performance: a more scientific approach for practice. Journal of Biotechnology, 85, 187–212.
    Manayathara, T. J., Tsao, T. C. & Bentsman, J. (1996). Rejecton of unknown periodic load disturbances in continuous steel casting process using learning repetitive control approach. IEEE Transactions on Control Systems Technology, 4(3), 259–266.
    Mayne, D. Q. & Michalska, H. (1990). Receding horizon control of nonlinear systems. IEEE Transactions on Automatic Control, 35(7), 814–824.
    McAvoy, T. J., Ye, N. (1994). Base level control for the Tennessee Eastman problem. Comput. Chem. Eng., 8, 383–413.
    Mezghani, M., Roux, G., Cabassud, M., Dahhou, B., Le Lann, M. V. & Casamatta, G. (2001). Robust iterative learning control of an exothermic semi–batch chemical reactor. Mathematics and Computers in Simulation, 57, 367–385.
    Mezghani, M., Roux, G., Cabassud, B., Le Lann, M., Dahhou, M. V. & Casamatta, G. (2002). Application of iterative learning control to an exothermic semibatch chemical reactor. IEEE Transactions on Control Systems Technology, 10(6), 822–834.
    Moon, J. H., Doh, T. Y. & Chung, M. J. (1998). A robust approach to iterative learning control design for uncertain systems. Automatica, 34(8), 1001–1004.
    Moore, K. L. (1993). Iterative learning control for deterministic systems. London: Springer.
    Moore, K. L. (1998). Iterative learning control—an expository overview. Applied & Computational Controls, Signal Processing, and Circuits, 1, 1–42.
    Morari, M. & Lee, J.H. (1999). Model predictive control: past, present and future. Computers and Chemical Engineering, 23, 667–682.
    Nandi, S., Badhe, Y., Lonali, J., etc. (2004). Hybrid process modeling and optimization strategies integrating neural networks/support vector regression and genetic algorithms: study of benzene isopropylation on Hbeta catalyst. Chemical Engineering Journal, 97, 115–129.
    Nguang S K, Chen L Z, Chen X D. (2001). Optimisation of fed-batch culture of hybridoma cells using genetic algorithms. ISA Transactions, 40, 381–389.
    Norrl?f, M. & Gunnarsson, S. (2001). Disturbance aspects of iterative learning control. Engineering Applications of Artificial Intelligence, 14, 87–94.
    Ourique C O, Biscaia E C, Pinto J C. (2002). The use of particle swarm optimization for dynamical analysis in chemical processes. Computers and Chemical Engineering, 26, 1783–1793.
    Padiew, F. & Su, R. (1990). An H∞ approach to learning control systems. International Journal of Adaptive Control and Signal Process, 4, 465–474.
    Palanki, S., Kravaris, C. & Wang, H. Y. (1994). Optimal feedback control of batch reactors with a state inequality constraint and free terminal time. Chemical Engineering Science, 49(1), 85–100.
    Park, S. & Ramirez, W. F. (1988). Optimal production of secreted protein in fed-batch reactors. AIChE Journal, 34(9), 1550–1558.
    Park, T. Y. & Froment, G.F. (1998). A hybrid genetic algorithm for the estimation of parameters in detailed kinetic models. Computers and Chemical Engineering, 22, S103–S110.
    Parsopoulos, K. E. & Vrahatis, M. N. (2004). On the computation of all global minimizers through particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8(3), 211–224.
    Phan, M. Q., & Frueh, J. (1999). Model reference adaptive learning controlwith basis functions. Proceedings of the 38th Conference on Design & Control (pp. 251–257), Phoenix, Arizona, USA. Pistikopoulos, E. N. (1995). Uncertainty in process design and operations. Computers and Chemical Engineering, 19, S553–S563.
    Popa, D. O. & Wen, J. T. (2000). Singularity computation for iterative control of nonlinear affine systems. Asian Journal of Control, 2(2), 57–75.
    Rahman, S. & Palanki, S. (1996). On–line optimization of batch processes in the presence of measurable disturbacnces. AIChE Journal, 42, 2869.
    Rahman, S. & Palanki, S. (1998). State feedback synthesis for on–line optimization of batch reactors with multiple manipulated inputs. Computers and Chemical Engineering, 22(10), 1429–1439.
    Rajesh J, Gupta K, Kusumakar H S, Jayaraman V K, Kulkarni B D. (2001). Dynamic optimization of chemical processes using ant colony framework. Computers and Chemistry, 25, 583–595.
    Ronen, M., Shabtai, Y. & Guterman, H. (2002). Optimization of feeding profile for a fed-batch bioreactor by an evolutionary algorithm. Journal of Biotechnology, 97, 253–263.
    Rosipal, R., Trejo, L. J., Leonard, J. T., etc. (2001). Kernel PCA for feature extraction and de-noising in nonlinear regression. Neural Computing & Application. 10(3), 231–243.
    Ruan, X., Li, H. & Wan, B. (2003). The Local-Symmetrical-Double-Integral-Type iterative learning control for dynamics of industrial processes with time delay in steady-state optimization. Acta Automatica Sinica, 29(1), 125–129.
    Ruan, X., Yu, N., Wan, B. & Gao, H. (2000). Proceedings of the 3rd World Congress on Intelligent Control and Automation (pp. 3285–3289), Hefei, P.R.China.
    Ruppen, D., Benthack, C. & Bonvin, D. (1995). Optimization of batch reactor operation under parametric uncertainty–computational aspects. Journal of Process Control, 5 (4), 235–240.
    Sarkar, D. & Modak, J. M. (2004). Optimization of fed-batch bioreactors using genetic algorithm: multiple control variables. Computers and Chemical Engineering, 28, 789–798.
    Scholkopf, B., Smola A. & Muller K-R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1299-1319.
    Schubert, J., Simutis, R., Dors, M., Havlik, I. & Lübbert, A. (1994). Bioprocess optimization and control: Application of hybrid modelling. Journal of Biotechnol, 35, 51–68.
    邵惠鹤. (1990). 化工过程最优控制. 北京:化学工业出版社.
    邵信光,杨慧中,石晨曦. (2004). ε 不敏感支持向量回归在化工数据建模中的应用. 东南大学学报,34,215–218.
    石成英,林辉. (2004). 迭代学习控制的研究与应用进展. 测控技术,23(2), 1–3.
    Shioya, S. (1992). Optimization and Control in Fed–Batch Bioreactors. Advances in Biochemical Engineering and Biotechnology, 46, 111–142.
    Shouche, M., Genceli, H., Vuthandam, P. & Nikolaou, M. (1998). Simultaneous constrained model predictive control and identification of DARX processes. Automatica, 34(12), 1521–1530.
    Simutis, R. & Lübbert, A. (1997). A comparative study on random search algorithms for biotechnical process optimization. Journal of Biotechnol, 52, 245–256.
    Srinivasan, B., Bonvin, D., Visser, E. & Palanki, S. (2002). Dynamic optimization of batch processes II. Role of measurements in handling uncertainty. Computers and Chemical Engineering, 27, 27–44.
    Srinivasan, B., Primus, C. J., Bonvin, D. & Ricker, N. L. (2001). Run–to–run optimization via control of generalized constraints. Control Engineering Practice, 9, 911–919.
    Suykens, J. A. K., Vandewalle, J. & De Moor B. (2001). Optimal control by least squares support vector machines, Neural Networks, 14, 23–35.
    孙明轩,黄宝健. (1999). 迭代学习控制. 北京:国防工业出版社.
    Suykens, J. A. K., Vandevalle, J. & De Moor, B. (2001). Optimal control by least squares support vector machines. Neural Networks, 14, 23–35.
    Tan, K. K., Huang, S. N., Lee, T. H. & Lim, S. Y. (2003). A discrete–time iterative learning algorithm for linear time–varying systems. Engineering Applications of Artificial Intelligence, 16, 185–190.
    Tayebi, A. & Zaremba, M. B. (2003). Robust iterative learning control design is straightforward for uncertain LTI systems satisfying the robust performance condition. IEEE Transactions on Automatic Control, 48(1), 101–106.
    Terwiesch, P., Agarwal, M. & Rippin, D. W. T. (1994). Batch unit optimization with imperfect modeling–a survey. Journal of Process Control, 4, 238–258.
    Tieu, D., Cluett, W. R, & Penlidis, A. (1995). A comparison of collocation methods for solving dynamic optimization problems. Computers and Chemical Engineering, 19 (4), 375–381.
    田华,席裕庚,张钟俊. (1995). 间歇反应过程的智能控制系统. 系统工程与电子技术, 4, 73–80.
    Vapnik V. (1999). The Nature of statistical Learning Theory. New York:Springer-Verlag. Visser, E., Srinivasan, B., Palanki, S. & Bonvin, D. (2000). On–line optimization of batch processes by tracking adjoints and states. Proceedings of 14th IFAC World Congress, Vol. N, (pp. 31–36), Beijing, China.
    Visser, E., Srinivasan, B., Palanki, S. & Bonvin, D. (2000). A feedback–based implementation scheme for batch process optimization. Journal of Process Control, 10,399–410.
    万百五,黄正良. (1998). 大工业过程计算机在线稳态优化控制. 北京:科学出版社.
    Wang, D. (2000). On D–type and P–type ILC design and anticipatory approach. International Journal of Control, 73(10), 890–901.
    王华忠,俞金寿. (2004). 统计学习理论与支持向量机在过程控制中的应用. 化工自动化及仪表,31(5),1–6.
    王华忠,俞金寿. (2005). 核函数方法及其在过程控制中的应用. 石油化工自动化,1,25–30.
    王华忠,张雪申,俞金寿. (2004). 基于支持向量机的故障诊断方法. 华东理工大学学报,30(2),179–182.
    Wang, X. A. & Mahajan, R. L. (1996). Artificial neural network model-based run-to-run process controller. IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part C, 19, 19–26.
    Wang, X .Z., & McGreavy, C. (1998). Automatic classification for mining process operational data. Ind. Eng. Chem. Res., 37, 2215–2222.
    Wold, S. (1978). Cross-validatory estimation of the number of components in Factor and principal components models. Technometrics, 20(4), 397–405.
    席裕庚. (1993). 预测控制. 北京:国防工业出版社.
    席裕庚,王凡. (1996). 非线性系统预测控制的多模型方法. 自动化学报,24(1), 14–20.
    谢晓峰,张文俊,杨之廉. (2003). 微粒群算法综述. 控制与决策,18(2), 129–134.
    Xiong, Z., Zhang, J. (2005). A batch-to-batch iterative optimal control strategy based on recurrent neural network models. Journal of Process Control, 15, 11–21.
    Xu, J. X. (1997). Analysis of iterative learning control for a class of nonlinear discrete–time systems. Automatica, 33(10), 1905–1907.
    Xu, J. X., Chen, Y., Lee, T. H. & Yamamoto, S. (1999). Terminal iterative learning control with an application to RTPCVD thickness control. Automatica, 35, 1535–1542.
    Xu, J. X., Lee, T. H., & Jia, Q. W. (1997). Adaptive robust control scheme for a class of nonlinear uncertain systems. International Journal of System Science, 28(4), 429–434.
    Xu, J. X., Hu, Q., Lee, T. H. & Yamamoto, S. (2001). Iterative learning control with Smith time delay compensator for batch processes. Journal of Process Control, 11, 32–328.
    Xu, J. X., & Qu, Z. (1998). Robust learning control for a class of non–linear systems. Automatica, 34(8), 983–988.
    Xu, J. X. & Tan, Y. (2002). Robust optimal design and convergence properties analysis of iterative learning control approaches. Automatica, 38, 1867–1880.
    Xu, J. X. & Viswanathan, B. (2000). Adaptive robust iterative learning control with dead zone scheme. Automatica, 36, 91–99.
    Xu, J. X., & Zhu, T. (1999). Dual–scale direct learning control of trajectory tracking for a class of nonlinear uncertain systems. IEEE Transactions on Automatic Control, 44(10), 1884–1888.
    徐钦龙,刘国平,张健民. (2003). 基于粒子群算法的温度模型优化. 南昌大学学报, 25(1), 68–71.
    Yamanaka, F. & Nishiya, T. (1997). Application of the intelligent alarm system for the plant operation. Computers and Chemical Engineering, 21, 625–630.
    阎威武. (2003). 支持向量机理论、方法和应用研究. 上海:上海交通大学.
    Yan, W., Shao, H. & Wang, X. (2004). Soft sensing modeling based on support vector machine and Bayesian model selection. Computers and Chemical Engineering, 28, 1489–1498.
    Yasuda, K. & Iwasaki, N. (2004). Adaptive particle swarm optimization using velocity information of swarm. IEEE International Conference on Systems, Man and Cybernetics, 3475–3481.
    张兵,陈德钊. (2005). 迭代遗传算法及其用于生物反应器补料优化. 化工学报,56(1),100-104.
    Zhang, J. (2003). Neural network model based batch-to-batch optimal control. Proceedings of the IEEE International Symposium on Intelligent Control, 352–357.
    张杰,阳宪惠. (2000). 多变量统计过程控制. 北京:化学工业出版社.
    张英,苏宏业,褚健. (2005). 基于模糊最小二乘支持向量机的软测量建模. 控制与决策. 20, 621–624.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700