背靠背三电平PWM变换器矢量控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对交流异步电机驱动,对背靠背三电平脉冲宽度调制(Pulse Width Modulation, PWM)变换器矢量控制系统进行研究。
     对三种常用的快速SVPWM算法进行分析与比较,在此基础上提出了一种计算量小、易于数字实现的任意多电平SVPWM通用算法。并将所提的通用SVPWM算法在现场可编程门阵列(Field Programmable Gate Array,FPGA)上设计实现。
     针对单侧二极管中点箝位型三电平PWM变换器,提出一种新的混合SVPWM的电容中点电位平衡控制算法。根据每个扇区不同的小矢量作用,并结合电容电压偏差量及三相电流的极性来设置不同的小矢量作用时间调节因子,然后根据三相电流的变化情况使调制在常规的SVPWM和基于虚拟矢量的SVPWM之间进行切换,以实现对中点电位进行分扇区的精细控制。
     针对背靠背的二极管中点箝位型三电平PWM变换器电容中点电压平衡控制问题,提出一种基于双侧信号的中点电位平衡综合预测控制算法。该算法对双侧的三相电流和直流侧电容电压进行采样和预测,进而给出一个能够表征电容中点电压预期控制指标的品质函数。通过递推运算使品质函数取最小值,从而获得下一个调制周期最佳中点电压控制的冗余矢量时间分配因子。
     在已有的三电平PWM整流器DPC的基础上,提出了在一个开关周期内具有双非零电压矢量输出的三电平PWM整流器DPC算法。该算法通过对下一时刻的有功和无功进行预测,每次选择对有功和无功调节作用相反的两个电压矢量进行输出,并通过一个分配因子对两个电压矢量的作用时间进行分配,从而实现了对功率的精细调整。
     基于递推最小二乘法,对三电平变频器的电机参数静态辨识进行建模和仿真,给出了中点电位不平衡与平衡的情况下,电机参数静态辨识的仿真结果。提出一种交流异步电机电机参数动态在线辨识方法,通过在负载恒定时控制电机速度使其保持恒定来消除转子磁链耦合项对参数动态在线辨识的影响,从而能够利用递推最小二乘法对电机参数进行在线计算,以达到电机参数动态在线辨识的实时性和高精确度要求。其中电机恒定速度的保持又是基于对转子磁链和转矩电流的恒定控制来实现。
     提出了一种能够使系统保持固定的开关频率和采样频率且随机效果不依赖于零矢量的三电平随机SVPWM方法。通过随机调整矢量在每个三角载波的上升段和下降段的时间分配来实现随机SVPWM,并设计一种三重随机化M序列来增强其随机效果。该方法可使输出的线电压和相电流频谱在较宽的频带范围内均匀分布,在整数倍开关频率处的谐波幅值也大大降低。
The dissertation took the back-to-back three-level vector control converters as research models.Firstly, a comparison was made for three fast SVPWM algorithms.New general multilevel SVPWM methods were provided, which shows the absolute advantages of the established general multilevel SVPWM algorithms in briefness and FPGA resources use.
     A new hybrid SVPWM algorithm was proposed based on the single side diode neutral-point clamped (NPC)three-level converter. Different vector on-times factors were selected for different short vectors according to the diviation of capacitors voltages and the polar of three phase currents.Modulation was switched between the conventional SVPWM and the virtual vector based SVPWM according to the situation of three phase currents.Thus, a finer control to the neutral-point voltage balancing was obtained compared to the established hybrid SVPWM algorithm.
     Aiming at the neutral-point voltage balancing control issue of back-to-back diode NPC three-level PWM converters,a comprehensive predictive strategy for the grid side and motor side was proposed.The phase currents at both sides and the dc-link capacitor voltages were measured for the prediction of the neutral-point current.A quality function was found to balance the neutral-point, and a metabolic on-times distribution factor was used as a predicator to minimize the quality function at each switching state.
     Based on the conventional three-level rectifier direct power control (DPC),a new predictive three-level DPC algorithm was presented with an output of double non-zero vectors which distinguishes it from the conventional three-level DPC.The active power and reactive power were predicted to select the on-times distribution factor which enables the accurate control of the power.
     On the basis of analyzing the induction motor parameter identification of the two-level inverters,a mathematic model based on the recursive least square (RLS)algorithm for the static motor parameter identification of the three-level inverters was deduced.Simulation results were abtained under the unbalanced and balanced neutral-point voltage condition.A new model for the dynamic on-load parameter identification was built, for which a constant rotor flux was assumed.A control loop for the rotor flux was implanted into the model,which eliminates the influence of the flux coupling.
     A new random SVPWM method with fixed switching and sampling frequency was proposed.In this method, all vectors action time was randomly assigned between the ascent and descent stage of each triangle carrier on the basis of the unchanging voltage-second balance law, and the random effect dose not rely on the zero vectors.To insure better random effect of the SVPWM,a trebling randomized maximal-length shift register sequences (M-sequences) was designed.Simulation and experiment results show the proposed scheme leads to a well-distributed spectrum of the line-to-line voltage and phase current, and smaller harmonic amplitude at the integral multiple of the switching frequency compared with the conventional SVPWM.
引文
[1]赵相宾,年培新.谈我国变频调速技术的发展及应用[J].电气传动,2000,30(4):3-6.
    [2]Franquelo L G, Rodriguez J, Leon J I, et al. The age of multilevel converters arrives[J]. Industrial Electronics Magazine, IEEE,2008,2(2):28-39.
    [3]李永东,肖曦,高跃.大容量多电平变换器一原理·控制·应用[M].北京:科学出版社,2005.
    [4]Rodriguez J, Lai J S, Peng F Z. Multilevel inverters:a survey of topologies, controls, and applications[J]. Industrial Electronics, IEEE Transactions on,2002, 49(4):724-738.
    [5]Rodriguez J, Bernet S, Steimer P K, et al. A survey on neutral-point-clamped inverters[J]. Industrial Electronics, IEEE Transactions on,2010,57(7): 2219-2230.
    [6]Tian K, Wang M, Liu S. A neutral-point potential balancing technique implemented at the front end in back-to-back-connected three-level converter[C]//Industrial Electronics and Applications,2008. ICIEA 2008.3rd IEEE Conference on. IEEE,2008:1141-1145.
    [7]Celanovic N, Boroyevich D. A fast space-vector modulation algorithm for multilevel three-phase converters [J]. Industry Applications, IEEE Transactions on,2001,37(2):637-641.
    [8]唐雄民,龚理专,彭永进.一种快速的多电平空间矢量调制算法研究[J].高电压技术,2006,32(2):75-77.
    [9]Gupta A K, Khambadkone A M. A space vector PWM scheme for multilevel inverters based on two-level space vector PWM[J]. Industrial Electronics, IEEE Transactions on,2006,53(5):1631-1639.
    [10]Beig A R, Narayanan G, Ranganathan V T. Modified SVPWM algorithm for three level VSI with synchronized and symmetrical waveforms[J]. Industrial Electronics, IEEE Transactions on,2007,54(1):486-494.
    [11]Narayanan G, Ranganathan V T, Zhao D, et al. Space vector based hybrid PWM techniques for reduced current ripple[J]. Industrial Electronics, IEEE Transactions on,2008,55(4):1614-1627.
    [12]Busquets-Monge S, Ortega J D, Bordonau J, et al. Closed-loop control of a three-phase neutral-point-clamped inverter using an optimized virtual-vector-based pulsewidth modulation[J]. Industrial Electronics, IEEE Transactions on,2008,55(5):2061-2071.
    [13]Mehrizi-Sani A, Filizadeh S. An optimized space vector modulation sequence for improved harmonic performance [J]. Industrial Electronics, IEEE Transactions on,2009,56(8):2894-2903.
    [14]Gopinath A, Mohamed ASA, Baiju M R. Fractal based space vector PWM for multilevel inverters-A novel approach[J]. Industrial Electronics, IEEE Transactions on,2009,56(4):1230-1237.
    [15]何广明,何凤有,殷沐林,等.SVPWM坐标分量法的研究与实现[J].电力电子技术,2011,45(11):56-57.
    [16]Zhang Y, Zhao Z, Zhu J. A hybrid PWM applied to high-power three-level inverter-fed induction-motor drives[J]. Industrial Electronics, IEEE Transactions on,2011,58(8):3409-3420.
    [17]Atalik T, Deniz M, Koc E, et al. Multi-DSP and-FPGA-based fully digital control system for cascaded multilevel converters used in FACTS applications[J]. Industrial Informatics, IEEE Transactions on,2012,8(3): 511-527.
    [18]Alecsa B, Cirstea M N, Onea A. Simulink modeling and design of an efficient hardware-constrained FPGA-based PMSM speed controller[J]. Industrial Informatics, IEEE Transactions on,2012,8(3):554-562.
    [19]Idkhajine L, Monmasson E, Maalouf A. Fully FPGA-based sensorless control for synchronous AC drive using an extended Kalman filter [J]. Industrial Electronics, IEEE Transactions on,2012,59(10):3908-3918.
    [20]Blanchette H F, Ould-Bachir T, David J P. A state-space modeling approach for the FPGA-based real-time simulation of high switching frequency power converters[J]. Industrial Electronics, IEEE Transactions on,2012,59(12): 4555-4567.
    [21]Curkovic M, Jezernik K, Horvat R. FPGA-based predictive sliding mode controller of a three-phase inverter[J]. Industrial Electronics, IEEE Transactions on,2013,60(2):637-644.
    [22]Jezernik K, Korelic J, Horvat R, PMSM sliding mode FPGA-based control for torque ripple reduction[J]. Power Electronics, IEEE Transactions on,2013, 28(7):3549-3556.
    [23]Nascimento P S B, de Souza HEP, Neves F A S, et al. FPGA Implementation of the Generalized Delayed Signal Cancelation-Phase Locked Loop Method for Detecting Harmonic Sequence Components in Three-Phase Signals[J]. Industrial Electronics, IEEE Transactions on,2013,60(2):645-658.
    [24]Shahbazi M, Poure P, Saadate S, et al. Fault-tolerant five-leg converter topology with FPGA-based reconfigurable control[J]. Industrial Electronics, IEEE Transactions on,2013,60(6):2284-2294.
    [25]Shahbazi M, Poure P, Saadate S, et al. FPGA-based reconfigurable control for fault-tolerant back-to-back converter without redundancy [J]. Industrial Electronics, IEEE Transactions on,2013,60(8):3360-3371.
    [26]Celanovic N, Boroyevich D. A comprehensive study of neutral-point voltage balancing problem in three-level neutral-point-clamped voltage source PWM inverters[J]. Power Electronics, IEEE Transactions on,2000,15(2):242-249.
    [27]张永昌,赵争鸣.基于快速空间矢量调制算法的多电平逆变器电容电压平衡问题研究[J].中国电机工程学报,2006,26(18):71-76.
    [28]宋文祥,陈国呈,武慧,等.一种具有中点电位平衡功能的三电平空间矢量调制方法及其实现[J].中国电机工程学报,2006,26(12):95-100.
    [29]姜卫东,王群京,史晓锋,等.中点钳位型三电平逆变器在空间矢量调制时中点电位的低频振荡[J].中国电机工程学报,2009,29(3):49-55.
    [30]Grigoletto F B, Pinheiro H. A space vector PWM modulation scheme for back-to-back three-level diode-clamped converters[C]//Power Electronics Conference,2009. COBEP'09. Brazilian. IEEE,2009:1058-1065.
    [31]Busquets-Monge S, Bordonau J, Boroyevich D, et al. The nearest three virtual space vector PWM-a modulation for the comprehensive neutral-point balancing in the three-level NPC inverter[J]. Power Electronics Letters, IEEE,2004,2(1): 11-15.
    [32]Gupta A K, Khambadkone A M. A simple space vector PWM scheme to operate a three-level NPC inverter at high modulation index including overmodulation region, with neutral point balancing[J]. Industry Applications, IEEE Transactions on,2007,43(3):751-760.
    [33]张志,谢运祥,乐江源,等.消除中点电位低频振荡的三电平逆变器空间矢量脉宽调制方法[J].电工技术学报,2011,26(3):103-109.
    [34]Jiang W, Du S, Chang L, et al. Hybrid PWM strategy of SVPWM and VSVPWM for NPC three-level voltage-source inverter[J]. Power Electronics, IEEE Transactions on,2010,25(10):2607-2619.
    [35]Xia C, Shao H, Zhang Y, et al. Adjustable proportional hybrid SVPWM strategy for neutral-point-clamped three-level inverters[J]. Industrial Electronics, IEEE Transactions on,2013,60(10):4234-4242.
    [36]Pou J, Pindado R, Boroyevich D, et al. Limits of the neutral-point balance in back-to-back-connected three-level converters[J]. Power Electronics, IEEE Transactions on,2004,19(3):722-731.
    [37]Yao-fei H, Guo-jun T, Hao L, et al. Back-to-back three-level double-fed induction motor control system for mine hoist[J]. Procedia Earth and Planetary Science,2009,1(1):1448-1454.
    [38]Ghennam T, Berkouk E M. Back-to-back three-level converter controlled by a novel space-vector hysteresis current control for wind conversion systems[J]. Electric Power Systems Research,2010,80(4):444-455.
    [39]谭国俊,吴轩钦,李浩,等.Back-to-Back双三电平电励磁同步电机矢量控制系统[J].电工技术学报,2011,26(3):36-43.
    [40]Wang F. Coordinated control of regenerative three-level neutral point clamped PWM voltage source inverters[C]//Industry Applications Conference,2002. 37th IAS Annual Meeting. Conference Record of the. IEEE,2002,1:537-543.
    [41]Correa P, Pacas M, Rodriguez J. Predictive torque control for inverter-fed induction machines[J]. Industrial Electronics, IEEE Transactions on,2007, 54(2):1073-1079.
    [42]Laczynski T, Mertens A. Predictive stator current control for medium voltage drives with LC filters[J]. Power Electronics, IEEE Transactions on,2009, 24(11):2427-2435.
    [43]Espi J M, Castello J, Garcia-Gil R, et al. An adaptive robust predictive current control for three-phase grid-connected inverters[J]. Industrial Electronics, IEEE Transactions on,2011,58(8):3537-3546.
    [44]Lee K J, Park B G, Kim R Y, et al. Robust predictive current controller based on a disturbance estimator in a three-phase grid-connected inverter[J]. Power Electronics, IEEE Transactions on,2012,27(1):276-283.
    [45]Vargas R, Cortes P, Ammann U, et al. Predictive control of a three-phase neutral-point-clamped inverter[J]. Industrial Electronics, IEEE Transactions on, 2007,54(5):2697-2705.
    [46]Barros J D, Silva J F. Optimal predictive control of three-phase NPC multilevel converter for power quality applications[J]. Industrial Electronics, IEEE Transactions on,2008,55(10):3670-3681.
    [47]Barros J D, Silva J F A, Jesus EGA. Fast-predictive optimal control of NPC multilevel converters [J]. Industrial Electronics, IEEE Transactions on,2013, 60(2):61-9-627.
    [48]Choi J H, Kim H C, Kwak J S. Indirect current control scheme in PWM voltage-sourced converter[C]//Power Conversion Conference-Nagaoka 1997., Proceedings of the. IEEE,1997,1:277-282.
    [49]Blasko V, Kaura V. A new mathematical model and control of a three-phase AC-DC voltage source converter[J]. Power Electronics, IEEE Transactions on, 1997,12(1):116-123.
    [50]Akagi H, Kanazawa Y, Nabae A. Instantaneous reactive power compensators comprising switching devices without energy storage components[J]. Industry Applications, IEEE Transactions on,1984 (3):625-630.
    [51]Ohnishi T. Three phase PWM converter/inverter by means of instantaneous active and reactive power control [C]//Industrial Electronics, Control and Instrumentation,1991. Proceedings. IECON'91.,1991 International Conference on. IEEE,1991:819-824.
    [52]Noguchi T, Tomiki H, Kondo S, et al. Direct power control of PWM converter without power-source voltage sensors [J]. Industry Applications, IEEE Transactions on,1998,34(3):473-479.
    [53]Lu T, Zhao Z, Zhang Y, et al. A novel direct power control strategy with wide input voltage range for three-level PWM rectifier[C]//Power Electronics and Motion Control Conference,2009. IPEMC'09. IEEE 6th International. IEEE, 2009:897-902.
    [54]Malinowski M, Jasinski M, Kazmierkowski M P. Simple direct power control of three-phase PWM rectifier using space-vector modulation (DPC-SVM)[J]. Industrial Electronics, IEEE Transactions on,2004,51(2):447-454.
    [55]Malinowski M, Stynski S, Kolomyjski W, et al. Control of three-level PWM converter applied to variable-speed-type turbines[J]. Industrial Electronics, IEEE Transactions on,2009,56(1):69-77.
    [56]Bouafia A, Gaubert J P, Krim F. Predictive direct power control of three-phase pulsewidth modulation (PWM) rectifier using space-vector modulation (SVM)[J]. Power Electronics, IEEE Transactions on,2010,25(1):228-236.
    [57]Ma Z, Xu D, Li R, et al. A novel DC-side zero-voltage switching (ZVS) three-phase boost PWM rectifier controlled by an improved SVM method[J]. Power Electronics, IEEE Transactions on,2012,27(11):4391-4408.
    [58]Abad G, Rodriguez M A, Poza J. Three-level NPC converter-based predictive direct power control of the doubly fed induction machine at low constant switching frequency[J]. Industrial Electronics, IEEE Transactions on,2008, 55(12):4417-4429.
    [59]张永昌,谢伟,李正熙.PWM整流器功率脉动最小化方法的研究[J].中国电机工程学报,2013,33(018):57-64.
    [60]Zhang Y, Li Z, Zhang Y, et al. Performance improvement of direct power control of pwm rectifier with simple calculation[J]. Power Electronics, IEEE Transactions on,2013,28(7):3428-3437.
    [61]Zhang Y, Xie W, Li Z. Model Predictive Direct Power Control of PWM Rectifier With Duty Cycle Optimization[J]. Power Electronics, IEEE Transactions on,2013,28(11):5343-5351.
    [62]Yin Z, Liu J, Zhong Y. Study and Control of Three-Phase PWM Rectifier Based on Dual Single-Input Single-Output Model[J]. Industrial Informatics, IEEE Transactions on,2013,9(2):1064-1073.
    [63]Li Z, Li Y, Wang P, et al. Control of three-phase boost-type PWM rectifier in stationary frame under unbalanced input voltage[J]. Power Electronics, IEEE Transactions on,2010,25(10):2521-2530.
    [64]Roiu D, Bojoi R I, Limongi L R, et al. New stationary frame control scheme for three-phase PWM rectifiers under unbalanced voltage dips conditions[J]. Industry Applications, IEEE Transactions on,2010,46(1):268-277.
    [65]Tang Y, Loh P C, Wang P, et al. One-cycle-controlled three-phase PWM rectifiers with improved regulation under unbalanced and distorted input-voltage conditions [J]. Power Electronics, IEEE Transactions on,2010, 25(11):2786-2796.
    [66]李永东.交流电机数字控制系统[M].北京:机械工业出版社,2002.
    [67]Holtz J, Thimm T. Identification of the machine parameters in a vector-controlled induction motor drive[J]. Industry Applications, IEEE Transactions on,1991,27(6):1111-1118.
    [68]Electric Machines Committee of the IEEE Power Engineering Society. IEEE Std 112-1984 IEEE standard test procedures for polyphase induction motors and generators[S]. USA:the Institute of Electrical and Electronics Engineers, 1984.
    [69]Alonge F, D'Ippolito F, Ferrante G, et al. Parameter identification of induction motor model using genetic algorithms[J]. IEE Proceedings-Control Theory and Applications,1998,145(6):587-593.
    [70]Huang K S, Wu Q H, Turner D R. Effective identification of induction motor parameters based on fewer measurements[J]. Energy Conversion, IEEE Transactions on,2002,17(1):55-60.
    [71]Picardi C, Rogano N. Parameter identification of induction motor based on particle swarm optimization[C]//Power Electronics, Electrical Drives, Automation and Motion,2006. SPEED AM 2006. International Symposium on. IEEE,2006:968-973.
    [72]Chen Z, Zhong Y, Li J. Parameter identification of induction motors using ant colony optimization[C]//Evolutionary Computation,2008. CEC 2008.(IEEE World Congress on Computational Intelligence). IEEE Congress on. IEEE,2008: 1611-1616.
    [73]Wlas M, Krzeminski Z, Toliyat H A. Neural-network-based parameter estimations of induction motors[J]. Industrial Electronics, IEEE Transactions on, 2008,55(4):1783-1794.
    [74]Bechouche A, Sediki H, Abdeslam D O, et al. A novel method for identifying parameters of induction motors at standstill using ADALINE[J]. Energy Conversion, IEEE Transactions on,2012,27(1):105-116.
    [75]Laroche E, Sedda E, Durieu C. Methodological insights for online estimation of induction motor parameters [J]. Control Systems Technology, IEEE Transactions on,2008,16(5):1021-1028.
    [76]Barut M, Bogosyan S, Gokasan M. Experimental evaluation of braided EKF for sensorless control of induction motors[J]. Industrial Electronics, IEEE Transactions on,2008,55(2):620-632.
    [77]Lalami A, Wamkeue R, Kamwa I, et al. Unscented Kalman filter for non-linear estimation of induction machine parameters[J]. Electric Power Applications, IET,2012,6(9):611-620.
    [78]Wang K, Chiasson J, Bodson M, et al. An online rotor time constant estimator for the induction machine [J]. Control Systems Technology, IEEE Transactions on,2007,15(2):339-348.
    [79]Marcetic D P, Vukosavic S N. Speed-sensorless AC drives with the rotor time constant parameter update[J]. Industrial Electronics, IEEE Transactions on, 2007,54(5):2618-2625.
    [80]Kim J W, Kim T, Park Y, et al. On-load motor parameter identification using univariate dynamic encoding algorithm for searches [J]. Energy Conversion, IEEE Transactions on,2008,23(3):804-813.
    [81]Kenne G, Simo R S, Lamnabhi-Lagarrigue F, et al. An online simplified rotor resistance estimator for induction motors[J]. Control Systems Technology, IEEE Transactions on,2010,18(5):1188-1194.
    [82]Ranta M, Hinkkanen M. Online identification of parameters defining the saturation characteristics of induction machines [C]//Electrical Machines (ICEM),2012 XXth International Conference on. IEEE,2012:1027-1033.
    [83]Telford D, Dunnigan M W, Williams B W. Online identification of induction machine electrical parameters for vector control loop tuning[J]. Industrial Electronics, IEEE Transactions on,2003,50(2):253-261.
    [84]王鸿山,张兴,杨淑英,等.基于最小二乘法在线参数辨识的异步电动机矢量控制仿真[J].合肥工业大学学报:自然科学版,2009,32(4):495-499.
    [85]张虎,李正熙,童朝南.基于递推最小二乘算法的感应电动机参数离线辨识[J].中国电机工程学报,2011,31(18):79-86.
    [86]Lin W M, Su T J, Wu R C. Parameter identification of induction machine with a starting no-load low-voltage test[J]. Industrial Electronics, IEEE Transactions on,2012,59(1):352-360.
    [87]Kirlin R L, Bech M M, Trzynadlowski A M. Analysis of power and power spectral density in PWM inverters with randomized switching frequency [J]. Industrial Electronics, IEEE Transactions on,2002,49(2):486-499.
    [88]Borisov K, Calvert T E, Kleppe J A, et al. Experimental investigation of a naval propulsion drive model with the PWM-based attenuation of the acoustic and electromagnetic noise[J]. Industrial Electronics, IEEE Transactions on,2006, 53(2):450-457.
    [89]Mihalic F, Kos D. Reduced conductive EMI in switched-mode DC-DC power converters without EMI filters:PWM versus randomized PWM[J]. Power Electronics, IEEE Transactions on,2006,21(6):1783-1794.
    [90]Trzynadlowski A M, Blaabjerg F, Pedersen J K, et al. Random pulse width modulation techniques for converter-fed drive systems-a review[J]. Industry Applications, IEEE Transactions on,1994,30(5):1166-1175.
    [91]Tse K K, Chung H S H, Huo S Y, et al. Analysis and spectral characteristics of a spread-spectrum technique for conducted EMI suppression[J]. Power Electronics, IEEE Transactions on,2000,15(2):399-410.
    [92]El Khamlichi Drissi K, Luk P C K, Wang B, et al. Effects of symmetric distribution laws on spectral power density in randomized PWM[J]. Power Electronics Letters, IEEE,2003,1(2):41-44.
    [93]马丰民,吴正国,李玉梅.随机频率PWM逆变器的分析设计[J].中国电机工程学报,2008,28(15):67-71.
    [94]Trzynadlowski A M. Nonsinusoidal modulating functions for three-phase inverters[J]. Power Electronics, IEEE Transactions on,1989,4(3):331-338.
    [95]Agelidis V G, Vincenti D. Optimum non-deterministic pulse-width modulation for three-phase inverters[C]//Industrial Electronics, Control, and Instrumentation,1993. Proceedings of the IECON'93., International Conference on. IEEE,1993:1234-1239.
    [96]Kaboli S, Mahdavi J, Agah A. Application of random PWM technique for reducing the conducted electromagnetic emissions in active filters[J]. Industrial Electronics, IEEE Transactions on,2007,54(4):2333-2343.
    [97]Jiang D, Lai R, Wang F, et al. Study of conducted EMI reduction for three-phase active front-end rectifier[J]. Power Electronics, IEEE Transactions on,2011, 26(12):3823-3831.
    [98]Kirlin R L, Kwok S, Legowski S, et al. Power spectra of a PWM inverter with randomized pulse position[J]. Power Electronics, IEEE Transactions on,1994, 9(5):463-472.
    [99]Bech M M, Blaabjerg F, Pedersen J K. Random modulation techniques with fixed switching frequency for three-phase power converters[C]//Power Electronics Specialists Conference,1999. PESC 99.30th Annual IEEE. IEEE, 1999,1:544-551.
    [100]Oh S Y, Jung Y G, Yang S H, et al. Harmonic-spectrum spreading effects of two-phase random centered distribution PWM (DZRCD) scheme with dual zero vectors[J]. Industrial Electronics, IEEE Transactions on,2009,56(8): 3013-3020.
    [101]Lim Y C, Jung Y G, Oh S Y, et al. A two-phase separately randomized pulse position PWM (SRP-PWM) scheme with low switching noise characteristics over the entire modulation index[J]. Power Electronics, IEEE Transactions on, 2012,27(1):362-369.
    [102]El Khamlichi Drissi K, Luk P C K, Wang B, et al. A novel dual-randomization PWM scheme for power converters[C]//Power Electronics Specialist Conference,2003. PESC'03.2003 IEEE 34th Annual. IEEE,2003,2:480-484.
    [103]王斌,李兴源.双随机调制技术及其功率谱密度特性分析[J].中国电机工程学报,2004,24(4):97-101.
    [104]Boudjerda N, Melit M, Nekhoul B, et al. Spread spectrum in DC-DC full bridge voltage converter by a dual randomized PWM scheme[C]//Electromagnetic Compatibility-EMC Europe,2008 International Symposium on. IEEE,2008:1-6.
    [105]Boudjerda N, Boudouda A, Melit M, et al. Optimized dual randomized PWM technique for reducing conducted EMI in DC-AC converters[C]//EMC Europe 2011 York. IEEE,2011:701-706.
    [106]Kim K S, Jung Y G, Lim Y C. A new hybrid random PWM scheme[J]. Power Electronics, IEEE Transactions on,2009,24(1):192-200.
    [107]王庆义,邓歆,刘洋,等.一种零矢量-变延时随机PWM方法[J].电工技术学报,2009(12):132-136.
    [108]姚文熙,胡海兵,徐海杰,等.一种基于三电平矢量调制波的多电平调制方法[J].电力系统自动化,2007,31(7):50-54.
    [109]高志刚,李建林,赵斌,等.基于简化决策树的空间矢量逆变技术研究[J].中国电机工程学报,2008,27(33):93-97.
    [110]刘铮,王翠,彭永进.优化开关频率的空间矢量调制算法[J].高电压技术,2008,34(6):1208-1213.
    [111]Shu Z, Ding N, Chen J, et al. Multilevel SVPWM with DC-link capacitor voltage balancing control for diode-clamped multilevel converter based STATCOM[J]. Industrial Electronics, IEEE Transactions on,2013,60(5): 1884-1896.
    [1121宋强,刘文华.多电平通用空间矢量调制集成电路及其FPGA实现[J].中国电机工程学报,2008,28(12):95-100.
    [113]姜卫东,王群京,陈权,等.一种新的N电平电压源逆变器的空间矢量调制算法[J].中国电机工程学报,2009,28(33):12-18.
    [114]Alvarez J, Lopez O, Freijedo F D, et al. Digital parameterizable VHDL module for multilevel multiphase space vector PWM[J]. Industrial Electronics, IEEE Transactions on,2011,58(9):3946-3957.
    [115]Pongiannan R K, Paramasivam S, Yadaiah N. Dynamically reconfigurable PWM controller for three-phase voltage-source inverters[J]. Power Electronics, IEEE Transactions on,2011,26(6):1790-1799.
    [116]Oriti G, Julian A L. Three-phase VSI with FPGA-based multisampled space vector modulation[J]. Industry Applications, IEEE Transactions on,2011, 47(4):1813-1820.
    [117]Navarro D, Lucia O, Barragan L A, et al. Synchronous FPGA-based high-resolution implementations of digital pulse-width modulators[J]. Power Electronics, IEEE Transactions on,2012,27(5):2515-2525.
    [118]Aguirre M P, Calvino L, Valla M I. Multilevel current-source inverter with FPGA control[J]. Industrial Electronics, IEEE Transactions on,2013,60(1): 3-10.
    [119]刘铮,王翠,彭永进.一种限制零序电压的快速SVPWM算法研究[J].电力电子技术,2008,42(3):69-71.
    [120]Aneesh MAS, Gopinath A, Baiju M R. A Simple Space Vector PWM Generation Scheme for Any General-Level Inverter [J]. Industrial Electronics, IEEE Transactions on,2009,56(5):1649-1656.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700