无线传感器网络定位算法及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络是随着无线通信、嵌入式技术、传感器技术、微机电技术及分布式信息处理技术的进步而发展起来的一门新兴的信息获取技术。其在军事和民用方面均有着非常广阔的市场,在具体应用中,定位信息十分重要,所涉及到的数据只有包含对应的定位信息,才是有效的;实现整个WSNs中节点的定位,能够有效提高整个WSNs路由效率,并且为整个网络的系统管理、均衡负载、拓扑控制的自动实现提供有效的技术保证。设计出精度高、计算复杂度低的WSNs节点定位算法,一直是无线研究领域一个亟待解决的技术热点问题。
     本论文结合当前WSNs节点主流定位算法,采用无线通信原理与数学模型相结合的技术研究手段,从低运算量(低功耗)、实际产品可行性高的科研本质要求出发,以设计出使用少量锚无线参考节点、取得较好定位性能、满足多种场景需求的定位算法为最终研究目标,针对目前主流信号到达时间(TOA)及接受信号强度(RSSI)测距技术,提出三种新型无线传感器节点定位算法。在此理论研究基础下,本论文中将部分定位技术应用于实际无线测温系统中,取得一些有意义的成果,其主要研究内容如下:
     1.对目前WSNs节点定位算法进行了全面的综述。针对无线定位算法中定位精度的评估方法,推导在WSNs视距条件下的克拉美罗下界(CRLB)在定位算法评估定位精度方法中使用过程,得出了距离效应、到达角误差及锚节点位置误差是如何影响CRLB的具体结论。
     2.针对TOA源定位相应观察方程中存在测量值和未知参量的非线性关系,无法逼近CRLB有效无偏估计值,提出利用坐标系平移的线性化方法即通过相应的公式变换来剔除观察方程的非线性变量的新方法,并提出基于TOA的源节点定位算法。从时间测量误差、计算复杂度、定位误差、CRLB来评价该算法性能,仿真表明,当独立零均值高斯测量误差足够小时,该算法逼近CRLB,其适用TOA测量模型的WSNs节点定位。
     3.针对节点发射功率和路径损耗系数未知这一情况,提出基于RSS测量值的未知功率及路径损耗系数的各项同向衰减源定位算法。其中,未知源节点位置和另两个未知参数(衰减源发射功率和路径损耗系数)可通过彼此的交替方式进行估算,此方法需结合本节提出的RSS测量值最佳初始源位置判断方法。通过锚节点数目、迭代次数、定位误差及CRLB来评价该算法性能,假设RSS测量误差属于独立零均值高斯测量误差,仿真表明所提出的定位迭代算法趋于最小二乘算法(LS)的解,其逼近CRLB的下界值。
     4.针对目前主流分布式协作定位方法如连续多点定位、基于可信度传播模型定位及基于目标函数凸域松弛度定位算法相应局限性,提出采用持续距离评估的无线连通传感器源自定位算法。其利用邻节点协作技术,即利用节点与锚节点之间距离的连续性估计,进行网络节点整体定位。通过通信距离、节点间距离测量误差、均方定位误差及CRLB来评价该算法性能,仿真表明,假设独立、零均值高斯测量误差的情况下,该方案达到最佳的定位性能,其适用于大范围无线节点定位系统。
     5.结合实际酒厂窖池测温需要及无线传感器网络在环境信息监测方面的优势,本文中设计并实现具有节点自定位功能的窖池无线测温系统。其中考虑感温子节点数目众多,采用通过节点定位功能取其相应位置信息将网络内感温子节点分组分频段通信的方案,有效的将低功耗工业监测系统与传感网节点定位技术结合起来,实现了对酒厂1200多口窖池温度的实时监测功能。为了保证系统运行长期稳定性,设计了针对无线系统整体技术性能指标的测试实验,并进行相应的现场测试工作,对相应结果进行分析研究。
With the progress of wireless communication, embedded technology, sensor technology,micro-electromechanical technology and distributed information processing technology,wireless sensor networks (WSNs) developed a new access to information technology. In bothmilitary and civilian aspects which has a broad application prospect and in the specificapplication, location information is very important, only obtained location information, thedata which involved is valid. In addition, localization of all nodes of the wireless sensornetworks can effectively improve the efficiency of the whole wireless sensor networks rootingand provide the network’s automatic implementation of system management, the balancedload and topology control with effective technology guarantee. So we can see that to design ahigh precision, low complexity of the wireless sensor node localization algorithm has alwaysbeen a technical hot topic to be resolved.
     In this paper, based on the specific performance of current mainstream WSNs nodelocalization algorithm, we adopt the technical research by means with the combination of theprinciple of wireless communication and mathematical model, starting from the essentialrequirement of scientific research with the low computational cost (low-power) and the actualproduct feasibility of high demand, to design a localization algorithm which uses a smallamount of anchor with wireless reference nodes, obtains better location performance andmeets the demand of a variety of scenarios for the final research goal, based on the currentmainstream signal arrival time TOA and received signal strength RSSI ranging technology,we put forward three new kinds of wireless sensor node localization algorithm. Under thebasis of the theory research, this paper will apply partly location technology to the actualwireless temperature measuring system, some meaningful results are obtained, and the mainresearch contents are as follow:
     1. For the current wireless sensor networks node localization algorithm has carried onthe comprehensive review. In the evaluation method of wireless location algorithmpositioning accuracy, the theoretical analysis was deduced the Cramer-rao lower bound(CRLB) under the condition of WSNs, and in the process of the positioning accuracylocalization algorithm assessment methods, we conclude that the distance effect, the angle ofarrival error, the error of anchor position are how to influence the CRLB.
     2. In general, the nonlinear relationship exist between the TOA measurements and theunknown parameter value in the observation equation corresponding to TOA-based sourcelocation, it normally results in the nonexistence of any efficient unbiased estimator that attainsthe (CRLB). This paper proposes a new method of translating a linear method i.e. by using thecoordinate system transformation corresponding to the formula Nonlinear Equations removedobserved variables. Then it proposes an appropriate method based on the use of lineartranslational coordinates of the source node TOA localization algorithm. From themeasurement error of time, computational complexity, the mean square error and CRLB fouraspects to evaluate the algorithm performance, the performance analysis and simulation study conducted show that our proposed algorithm can achieve CRLB when the zero-meanGaussian and independent measurement errors are sufficiently small.
     3. In general wireless sensor nodes transmit power source and the path loss coefficientsare unknown, we addresses the localization of an isotropically decaying source based on thereceived signal strength (RSS) measurements that are collected from nearby active sensorsthat are position-known and wirelessly connected. For such a source localization problem, wepropose an iterative algorithm, in which the unknown source position and two other unknownparameters (i.e. the source power and pathloss factor) are estimated in an alternating waybased on each other, with our proposed sub-optimum initial estimate on source positionobtained based on the RSS measurements. Analysis and simulation study show that ourproposed iterative algorithm guarantees globally convergence to the least-squares (LS)solution, where for our suitably assumed independent and identically distributed (i.i.d.)zero-mean Gaussian RSS measurement errors the converged localization performanceachieves the optimum that corresponds to CRLB.
     4. This paper deals with self-localization of wirelessly connected sensors, based onpartially available pairwise distance measurements among these randomly deployed sensorsand a few ad hoc deployed position-known anchors. We propose a distributed cooperativescheme that can be implemented at all individual sensors in such networks to self-identify andself-localize a dominant class of localizable sensors. The new scheme exploits successivesensor anchor distance estimations (i.e. prospective sensors successively, starting from theones neighboring to anchors, obtain their distances to these closest anchors). Analysis andsimulation study show that our proposed scheme can be used to identify the consideredlocalizable sensors, and also can perform accurate localization on these localizable sensors inthe absence of any measurement error or achieve optimum localization performance in thepresence of our suitably assumed independent zero-mean Gaussian measurement errors.
     5. Considering actual winery cellar pool temperature measurement needs and theadvantages of WSNs that in terms of environmental information monitoring, a low-powerindustrial monitoring system with location information is designed and implemented in thisarticle. Efficient low-power industrial monitoring systems and sensor network nodepositioning technology combined up and realized in the winery over1200ports pits real-timetemperature monitoring function, which has great practical value. In order to ensure thelong-term stability of system operation, designing a test experiment for the overall technologyperformance of wireless system and proceeding field test work accordingly. Then we analyzethe corresponding results of research work. The low-power monitoring system has more than1200industrial temperature sensing end nodes, and it has run stably more than two years at awinery, which is enough to prove the feasibility and rationality of the overall system solution.
引文
1. Wang Q, Ren K, Yu S C, et al. Dependable and secure sensor data storage with dynamic integrityassurance[J]. ACM Transactions on Sensor Networks (TOSN),2011,8(1):1-24.
    2. Du W, Deng J, Han Y S. A pairwise key predistribution scheme for wireless sensor networks[J]. ACMTransactions on Information and System Security (TISSEC),2005,8(2):228-258.
    3. Bonnet P, Gehrke J, Seshadri P. Querying the physical world[J]. IEEE Personal Communications,2000,7(5):10-15.
    4. Rodrigues R, Liskov B. High availability in DHTs: erasure coding vs. replication[M]. Proceedings ofthe19th IEEE International Parallel and Distributed Processing Symposium (IPDPS),2005:226-239.
    5. Akyildiz I, Su W, Sankara Y. Wireless sensor networks: a survey[J]. Elsevier Computer Networks (CN),2002,38(4):393-422.
    6.任丰原,黄海宁,林闯.无线传感器网络[J].软件学报,2003,14(7):1282-1291.
    7. Laurent E, Virgil G. A key-management scheme for distributed sensor networks[C]. Proceedings of the9th ACM conference on Computer and communications security (CCS),2002:41-47.
    8. Zhu Q, Wang R, Chen Q. IoT gateway: bridging wireless sensor networks into internet of things[C].Proceedings of IEEE8th International Conference on Embedded and Ubiquitous Computing (EUC),2010:347-352.
    9. Mainwaring A, Culler D, Polastre J. Wireless sensor networks for habitat monitoring[C]. Proceedingsof the1st ACM International Workshop on Wireless Sensor Networks and Applications (WSNA),2002:88-97.
    10. Juang P, Oki H, Wang Y. Energy-efficient computing for wildlife tracking: Design tradeoffs and earlyexperiences with ZebraNet[C]. Proceedings of the10th International Conference on ArchitecturalSupport for Programming Languages and Operating Systems (ASPLOS-X),2002,37(10):96-107.
    11. Zhao W, Chen Y, Ammar M. Capacity enhancement using throwboxes in DTNs[C]. Proceedings ofIEEE International Conference on Mobile Adhoc and Sensor Systems (MASS),2006:31-40.
    12. Ledlie J, Chaki N, Holland D. Provenance-aware sensor data storage[C]. Proceedings of Workshop onNetworking Meets Databases (NetDB),2005:1-5.
    13. Baker C. Wireless sensor networks for home health care[C]. Proceedings of IEEE AdvancedInformation Networking and Applications (AINA),2007:832-837.
    14. Dai H, Xu H. A key predistribution scheme with matrix decomposition for secure wireless sensornetworks[C]. Proceedings of the7th IEEE World Congress on Intelligent Control and Automation(WCICA),2008:1724-1727.
    15. SenseIT [EB/OL]. http://www.nsf.gov/pubs/2003/nsf03512/nsf03512.htm.
    16. UbiSense [EB/OL]. http://www.ubiSense.net.
    17. Navy Cooperative Engagement Capability. http://www.fas.org/man/dpd101/sys/ship/weaps/sec.htm.
    18. TinyOS [EB/OL]. http://www.tinyos.net.
    19. SOS [EB/OL]. http://projects.nesl,ucla.edu/public/sos-2x.
    20. Shen X, Wang Z, Sun Y. Wireless Sensor networks for industrial health monitoring. Proceedings ofIntelligent Control and Automation (WCICA),2004:3636-3640.
    21.姜华,郑春雷,刘海涛.无线传感网中链路级能量有效策略的研究[J].传感技术学报,2006,19(6):2738-2742.
    22.于海斌,曾鹏,王忠锋.分布式无线传感器网络通信协议研究[J].通信学报,2004,25(10):102-110.
    23. Sun L, Wang H, Yan T X. ESTS: An Error Statistic Based Time Synchronizatyion Prptocol for WirelessSensor Networks[C]. Proceedings of International Conference on Intelligent Computing (ICIC’06),2006:1317-1323.
    24.张豫鹤,希崔莉.面向交通信息采集的无线传感网络节点[J].计算机研究与发展,2008,45(1):110-118.
    25. Pierce J A, McKenzie A A, Woodward R H. MIT Radiation Laboratory Series[M], Volume4,MeGraw-Hill, New York,1998.
    26. pahlavan K, Li X, Makela J P. Indoor geolocation science and technology[J]. IEEE CommunicationsMagazine,2002(40):112-118.
    27. Shamos M H. Great Experiments in Physics[M]. Courier Dover Publications,1987.
    28. Bums R W. Communications: An International History of the Formative Years[M], IET,2004.
    29. Bonivento A, Corloni L, Sangiovanni-Vicentelli A. Platform-based design of wireless sensor networksfor industrial applications[C]. Proceedings of Design, Automation and Test in Europe (DATE),2006:1-6.
    30. Yan T, He T, Stankovic J A. Differentiated surveillance for sensor networks[C]. Proceedings of the1stInternational Conference on Embedded Networked Sensor Systems, NY, USA: ACM,2003:51-62.
    31. Charles T J, Woodrwo E J. Long Range Multiple Point Wireless Control and Monitoring System[P].Patent United States,4968978,1990.
    32. Hector G, Jiawei H. Mining Compressed Commodity Workflows Form Masssive RFID Data Sets[C].ACM Conference on Information and Knowledge Management,2006:162-171.
    33. Rajant Corporation. First Wireless Phone Call from inside Coal Mine Enabled by Rajant Corporation.Hannah Engineering and Sanmina SCI Collaboration [EB/OL]. http://www.the freelibrary.com,2009-08-17.
    34. Vertical News Mining&Minerals. Innovative Wireless Technologies Provides Critical Component toSuccessful L-3Wireless Mesh Communications Solution [EB/OL]. http://www.verticalnews.com,2008-07-28.
    35. Bahl P, Padmanabhan V N. RADAR: An in-building RF-based user location and tracking system[C].INFOCOM’2000, Tel Aviv, Israel.2000,2:775-784.
    36. Niculescu Dragos, Nath Badri. Ad-hoc positioning system[C]. Proceeding of the Seventh AnnualInternational Conference on Mobile Computing and Networks (MobiCOM’01), Washington, USA,2001:2926-2931.
    37. He T, Huang C. Range-free localization schemes for large scale sensor networks[C].9th internationalconference on Mobile Computing and Networking, San Diego, CA,2003:81-95.
    38. Nissanka B P, Hari B. Anchor-Free Distributed Localization in Sensor Networks[C]. Technical ReportNo.892, MIT Laboratory for Computer Science, Apr.2003.
    39. Sireesha V, Huirong F. Beacon-less Location Detection in Wireless Sensor Networks for Non-flatTerrain[C]. FGCN,2007:528-534.
    40. Lambert M, Stephen F. The Distributed Construction of a Global Coordinate System in a Network ofStatic Computational Nodes from Inter-Node Distance[J]. Kestrel Institute Technical ReportKES.U.04.04, March2004.
    41. Gianni G, Sandeep K S G. Wireless Locatization Using Self-Organizing Maps[C]. Ipsn’07, April25-27,2007.
    42. Oh-Heum K, Ha-Joo S. Localization through Map Stitching in Wireless Sensor Networks[J]. IEEEtransations on parallel and distributed systems, January2008,19(1):93-105.
    43. Chengqun W, Jiming C. Wireless Sensor Networks Localization with Isomap[C]. Proceedings of IEEEICC, Dresden, Germany, June14-18,2009.
    44. Shang Y, Rum W. Localization from mere connectivity[C]. Proceedings of the4th ACM. On MobileAd Hoc Networking&Computing. Annapolis: ACM Press,2003.201-212. http://www.sigmobile.org/mobihoc/2003/papers/p201-shang.pdf.
    45. Yi S, Wheeler R. Improved MDS-Based Localization[C]. IEEE INFOCOM’04,2004,4:2640-2651.
    46. Xiang J, Honyuan Z. Sensor poisitioning in Wireless Ad-hoc Sensor Networks Using MultidimensionalScaling[C]. IEEE INFOCOM’04, Hong Hong,2004.
    47. Kiran Y, Bhaskar K. Sequence-based Localization in Wireless Sensor Networks[J]. IEEE Transactionson Mobile Computing,2008.7(1):81-94.
    48. Sol L, Yue W. Connectivity based Localization of Large Scale Sensor Networks with complexShape[C]. INFOCOM08,2008.
    49. Ding Z D, Zhou W X. Localization and Dynamic Tracking Using Wireless-Networked Sensors andMulti-Agent Technology: First Steps[J]. IEICE transations fundmentals.2002, E85-A(11):286-295.
    50.王海东,孙利民.无线传感网络的定位机制[J].计算机科学,2006,33(4):36-49.
    51.王福豹,史龙.无线传感网络中的自身定位系统和算法[J].软件学报,2005,16(5):857-868.
    52.季检,石胜飞.一种适用于无线传感器网络的健壮的有序定位算法[J].计算机研究与发展,2008,45(1):131-137.
    53.汪炀,黄刘生.一种基于Monte Carlo的移动传感网络精确定位算法[J].小型微计算机系统,2008,29(9):1637-1642.
    54.汪炀,黄刘生.一种基于RSSI校验的无线传感网络节点定位算法[J].小型微计算机系统,2009,30(1):59-62.
    55.黄学青,房鼎益.基邻居筛选的质心迭代定位算法[J].杭州电子科技大学学报,2008,28(6):59-62.
    56.魏叶华,李仁发.无线传感网络中的一种二阶段定位算法[J].计算机应用与软件,2009,30(2):204-207.
    57.陈鸿龙,李鸿斌.基于TDoA测距的传感器网络安全定位研究[J].通信学报,2008,29(8):11-20.
    58.陈和康,周水庚.一种Beacon协助的传感器网络定位方法[J].计算机应用与软件,2009,26(2):225-227.
    59.曹晓梅,何欣.传感器节点定位系统攻防机制研究[J].计算机科学,2008,35(7):36-41.
    60.刘新华,李方敏.一种分布式的无线传感网络Range-free节点定位算法[J].传感技术学报,2008,21(1):154-157.
    61.王沁,于锋.一种基于能量衰减特征的无线传感器网络定位算法[J].小型微型计算机系统,2009,30(6):1082-1088.
    62.张文哲,李明禄.一种基于局部Voronoi图的目标穿越算法[J].软件学报,2007,18(5):1246-1253.
    63. Mo L, Yunhao L. Underground Structure Monitoring with Wireless Sensor Networks. Proceedings ofthe6th International Conference on Information processing In Sensor Networks [EB/OL]. http://findarticles.com/p/articles/mipwwi/is200606/ai_nl6474031,2006-06-15.
    64.邱云,周沈杰,董少龙.基于无线传感网的虚拟MIMO的能量有效性研究[J].计算机工程,2007,33:1-3.
    65. ECE Multimedia Systems Lab. Real-Time Wireless Sensor Network Platform [EB/OL]. http://www.ece.cmu.edu/firefiy/projects.html,2007-01-12.
    66. Mohanty P K. Application of Wireless Sensor Network Technology for Miner Tracking and MonitoringHazardous Conditions in Underground Mines [EB/OL]. http://www.msha.gov/regs/comments/06-722/Ab44-CO MM-95.pdf,2008-09-10.
    67. patwari N, III A H. Using Proximity and Quantized RSS for Sensor Localization in WirelessNetworks[C]. WSNA.2003.
    68. Younis O, Fahmy S. HEED: A Hybrid Energy-Efficient Distributed Clustering Approach for Ad HocSensor Networks[J]. IEEE Transactions On Mobile Computing,2004,3(4):20-36.
    69. Girod L, Estrin D. Robust range estimation using acoustic and multimodal sensing[J]. IEEE Roboticsand Automation Society,2001(3):1312-1320.
    70. Griod I, Bychovskiy V, Elson J, Estrin D. Locating tiny sensors in time and space: A case study[J].IEEE Computer Society,2002(2):214-219.
    71. Hightower J, Boriello G. Location system for ubiquitous computing[J]. Computer,2001,34(8):57-66.
    72. Julian, Satran, Kalman ethetal [EB/OL]. http://www.ietf.org/internetdraftss/draftiet fipsi scsi20.txt,2003-01.
    73. Priyantha N B, Miu A K L, Balakrishman H. The cricket compass for context aware mobileapplications[C]. In Proceedings of7th ACM International Conference on Mobile Computing andNetworking,2001:1-1.
    74. Patwari N, Hero A O, Perkins M. Relative location estimation in wireless sensor networks[J]. IEEETransactions on Signal Processing,2003,51(8):2137-2148.
    75. Larsson E G. Cramer-Rao bound analysis of distributed positioning in sensor networks[J]. IEEE SignalProcessing Letters,2004,11(3):334-337.
    76. Miao H, Yu K, Juntti M. Positioning for NLOS propagation: algorithm derivation and Cramer-Raobounds[J]. IEEE Transactions on Vehicular Technology,2007,56(5):2568-2580.
    77. Goodwin G C, Payne. Dynamic system identification-experiment design and data analysis[M]. NewYork: Academic Press,1997.
    78. Pierce J A, McKenzie A A, Woodward R H. MIT Radiation Laboratory Series[M]. New York:eGraw-Hill,1998.
    79. Saamisaari H. TLS-ESPRIT in a time delay estimation[C]. Proceedings of47th IEEE VehicularTechnology Conference(VTC),1997:1619-1623.
    80. Xiao L, Greenstein L J, Mandayam N B. Sensor-assisted localization in cellular systems[J]. IEEETransactions on Wireless Communications,2007,6(12):4244-4248.
    81.于海斌,曾鹏.智能无线传感器网络系统[M].北京:科学出版社,2006.
    82. Li T, Ekpenyong A, Huang Y. Source localization and tracking using distributed asynchronoussensors[J]. IEEE Transactions on Signal Processing,2006,54(10):3991-4003.
    83. Beck A, Stoica P, Li J. Exact and approximate solutions of source localization problems[J]. IEEETransactions on Signal Processing,2008,56(5):334-339.
    84. Xu E, Ding Z, Dasgupta S. Wireless source localization based on time of arrival measurement[C].IEEE International Conference on Acoustics, Speech, and Signal Processing,2010:2842-2845.
    85. Xu E Y, Ding Z, Dasgupta S. Source Localization in Wireless Sensor Networks from SignalTime-of-Arrival Measurements[J]. IEEE Transations on. Signal Processing,2011,59(6):2887-2897.
    86. Host-Madsen A. On the existence of efficient estimators[J]. IEEE Transactions on Signal Processing,2000,48(11):3028-3031.
    87. Wang X, Wang Z, ODea B. A TOA-based location algorithm reducing the errors due tonon-line-of-sight (NLOS) propagation[J]. IEEE Transactions on Vehicular Technology,2003,52(1):112-116.
    88. Zhu S, Ding Z. A simple approach of range-based positioning with low computational complexity[J].IEEE Transactions on Wireless Communications,2009,8(12):5832-5836.
    89. Sayed A H, Tarighat A, Khajehnouri N. Network-based wireless location: Challenges faced indeveloping techniques for accurate wireless location information[J]. IEEE Signal Processing Magazine,2005,22(4):24-40.
    90. Li D, Hu Y H. Energy-based collaborative source localization using acoustic microsensor array[J].EURASIP Journal on Applied Signal Processing,2003,4:321-337.
    91. Meesookho C, Mitra U, Narayanan S. On energy-based acoustic source localization for sensornetworks[J]. IEEE Transactions on Signal Processing,2008,56(1):365-377.
    92. Li X R. RSS-based location estimation with unknown pathloss model[J]. IEEE Transactions onwireless communications,2006,5(12):3626-3633.
    93. Rabbat M G, Nowak R D, Bucklew J. Robust decentralized source localization via averaging[C].Proceeding of IEEE ICASSP,2005.
    94. Ampeliotis D, Berberidis K. Sorted order-K voronoi diagrams for model-independent sourcelocalization in wireless sensor networks[J]. IEEE Transactions on Signal Processing,2010,58(1):426-437.
    95.李建中,高宏.无线传感器网络的研究进展[J].计算机研究与发展,2008,45(1):1-15.
    96. Patwari N, Ash J N, Kyperountas S, et al. Locating the nodes: Cooperative localization in wirelesssensor networks[J]. IEEE Signal Processing Magazine,2005,7:54-69.
    97. Wymeersch H, Lien J, Win M Z. Cooperative localization in wireless networks[J]. Proceedings of theIEEE,2009,97(2):427-450.
    98. Sun M, Ho K C. Successive and asymptotically efficient localization of sensor nodes in closed form[J].IEEE Transactions on Signal Processing,2009,57(11):4522-4537.
    99. Shang Y, Ruml W, Zhang Y, et al. Localization from connectivity in sensor networks[J]. IEEETransactions on Parallel and Distributed Systems,2004,15(11):961-975.
    100. Chan F K W, So H C. Efficient weighted multidimensional scaling for wireless sensor networklocalization[J]. IEEE Transactions on Signal Processing,2009,57(11):4548-4553.
    101. Biswas P, Liang T C, Toh K C, et al. Semidefinite programming approaches for sensor networklocalization with noisy distance measurements[J]. IEEE Transactions on Automatic ScienceEngineering,2006,3(4):360-371.
    102. Meng C, Ding Z, Dasgupta S. A semidefinite programming approach to source localization in wirelesssensor networks[J]. IEEE Signal Processing Letters,2008,15:360-371.
    103. Wang Z, Zheng S, Ye Y, et al. Further relaxations of the semidefinite programming approach to sensornetwork localization[J]. SIAM Journal on Optimization,2008,19(2):655-673.
    104. Lui K W K, Ma W K, So H C, et al. Semi-definite programming algorithms for sensor network nodelocalization with uncertainties in anchor positions and propagation speed[J]. IEEE Transactions onSignal Processing,2009,57(2):752-763.
    105. Tseng P. Second-order cone programming relaxation of sensor network localization[J]. SIAM Journalon Optimization,2007,18(1):156-185.
    106. Srirangarajan S, Tewfik A H, Luo Z. Distributed sensor network localization using SOCP relaxation[J].IEEE Transactions on Wireless Communications,2008,7(12):4886-4895.
    107. Shi Q, He C, Chen H, et al. Distributed wireless qensor network localization via sequential greedyoptimization algorithm[J]. IEEE Transactions on Signal Processing,2010,58(6):3328-3340.
    108. Abramo A, Blanchini F, Geretti L, et al. A mixed convex/nonconvex distributed localization approachfor the deployment of indoor positioning services[J]. IEEE Transactions on Mobile Computing,2008,7(11):1325-1337.
    109. Khan U A, Kar S, Moura J M F. Distributed sensor localization in random environments usingminimal number of anchor nodes[J]. IEEE Transactions on Signal Processing,2009,57(5):2000-2016.
    110. Khan U A, Kar S, Moura J M F. DILAND: An algorithm for distributed sensor localization with noisydistance measurements[J]. IEEE Transactions on Signal Processing,2010,58(3):1940-1947.
    111. Ihler A T, Fisher III J W, Moses R L, et al. Nonparametric belief propagation for self-localization ofsensor networks[J]. IEEE Journal on selected areas in communications,2005,23(4):809-819.
    112. Kwon O, Song H. Localization through map stitching in wireless sensor networks[J]. IEEETransactions on Parallel and Distributed Systems,2008,19(1):93-105.
    113. Aloor G, Jacob L. Distributed wireless sensor network localization using stochastic proximityembedding[J]. Computer Communications,2010,33:745-755.
    114. Aspnes J, Eren T, Goldenberg D K, et al. A theory of network localization[J]. IEEE Transactions onMobile Computing,2006,5(12):1-16.
    115. Rappaport T S. Wireless communications: Principles and practice[M].2nd Ed, Prentice Hall:NewJersey, USA,2002.
    116. Anon. JN5148-001-M0X [ED/OL].2010. http://bocon.com.cn/jennic/JN5148.
    117. McCrady D D, Doyle L, Forstrom H, et al. Mobile ranging using low-accuracy clocks[J]. IEEETransactions on Microwave Theory and Techniques,2000,48(6):951-957.
    118. Ciurana M, Barcelo Arroyo F, Izquierdo F. A ranging method with IEEE802.11data frames forindoor localization[C]. IEEE Wireless Communications and Networking Conference.2007:2092-2096.
    119. Gunther A, Hoene C. Measuring round trip times to determine the diatance between WLAN nodes[J].Networking,2005,1:768-779.
    120.明红梅,刘宇驰,卓毓崇.制曲温度对酱香型大曲质量的影响[J].中国酿造,2010,(7):157-159.
    121.贝伟仰,江虹.基于红外测温的无线温度监测系统的研究[J].计算机测量与控制,2011,19(10):2397-2400.
    122.陈上挺,谢文彬,游颖敏.基于STM8的红外与超声波测距仪设计[J].电子技术应用,2011,37(9):32-34.
    123.舒杰,曹建.基于MSP430F149与Si4432的无线传感器网络的实现方法[J].微型机与应用,2011,30(12):93-95.
    124.张修太,胡雪惠,翟亚芳.基于PT100的高精度温度采集系统设计与实验研究[J].传感技术学报,2010,23(6):812-815.
    125.李宁.基于MDK的STM32处理器开发应[M].航空航天大学出版社,2008,10:12-18.
    126.易先军,文小玲,刘翠梅.基于铂电阻的温度高精度测量研究[J].传感器与微系统,2009,28(1):49-51.
    127. Gomez-de-Gabriel J M, Mandow A, Fernandez-Lozano J, et al. Using LEGO NXT Mobile RobotsWith LabVIEW for Undergraduate Courses on Mechatronics[J]. IEEE Transactions on Education,2011,54(1):41-47.
    128. Chen Y, Wang H T, Si W. Design of Clinic Patient Body Temperature Wireless RemoteConcentration Monitor System Based on VI[C]. Education Technology and Computer Science,2009,1:630-634.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700