基于神经模糊的模式识别的几个问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模式识别技术是人工智能的重要研究内容。基于各种技术,几十年来各种不同的模式识别方法得到了广泛的研究。其中,随着神经模糊技术的发展,基于神经模糊技术的模式识别方法也得到了长足的发展,引起了众多学者的广泛关注,形成一个独特的研究方向:神经模糊模式识别技术。目前,基于神经模糊技术的模式识别及其相关技术已经得到了较深入的研究,一些成果已成功高效地应用于不同的领域。虽然如此,该类技术依然面临着许多重大的挑战。其中几个关键的挑战是:1)如何构建更鲁棒的神经模糊模式识别算法。2)如何开发基于新模型的神经模糊模式识技术。3)如何把神经模糊模式识别及其相关技术应用于更广泛的领域,如生物信息学、计算机视觉等。
     针对上述的挑战,本课题进行了相关的研究。所研究内容主要涉及三个部分,分述如下。
     第一部分,包含第二章到第五章,主要探讨了鲁棒的神经模糊模式识别技术。具体地,第二章针对模糊聚类神经网络FCNN对例外点敏感的缺陷,通过引入Vapnik’sε?不敏感损失函数,重新构造网络的目标函数,并根据拉格朗日优化理论推导出新的鲁棒模糊聚类神经网络及其算法RFCNN。第三章针对极大熵聚类算法MEC对例外点较敏感和不能标识例外点之缺陷,提出了一种鲁棒的极大熵聚类算法RMEC。第四章提出了一种较鲁棒的基于视觉原理和WEBER定律的TSK模糊系统建模方法。第五章提出了一种新的级联MLP神经网络CATSMLP。证明了CATSMLP神经网络等价于一种特殊的基于演绎模糊推理的级联模糊推理系统CATSFIS;由于级联模糊逻辑推理较之于if-then模糊逻辑推理对噪声的干扰具有较小的误差上界,从而推导出CATSMLP神经网络较ATSMLP具有更好的鲁棒性。
     第二部分,包含第六章到第八章,主要探讨了基于球模型的神经模糊模式识别技术。具体地,第六章提出了一种基于核化技术的模糊核超球感知器分类算法,该算法通过核化技术把样本数据映射到高维特征空间,并利用超球感知器学习寻找高维特征空间的决策超球,从而得到各类样本的决策函数。第七章基于最小最大概率策略和模糊技术提出了一种新的分类学习机:模糊超椭球学习机MPFHM。第八章探讨了压缩集密度估计器RSDE和最小包含球MEB之间的关系,证明了RSDE能被视为一个特殊的MEB问题。进一步引入基于核集的最小包含球逼近策略开发出了快速的压缩集密度估计器FRSDE,并有效地应用于分类、建模及图像分割。
     第三部分,即第九章,基于模糊推理规则提出了一种具有自适应学习功能的自动弹性图像配准方法。进一步地,把形变视频跟踪看作一个动态图像配准问题,提出的弹性配准方法被应用于视频跟踪。
Patten recognition is one of important tasks of artificial intelligence research, which has been extensively studied in the past tens of years. With the development of neural-fuzzy techniques, the neural-fuzzy techniques based pattern recognition techniques attract more and more attentions of the researchers and then a new research topic, i.e, the neural-fuzzy pattern reconition has emerged. Nowadays, a lot of important advancements have been achieved. However, the neural-fuzzy pattern recognition still confronts many challenges. Among of these challenges, several crucial challenges can be described as follows: 1)how to develop more robust neural-fuzzy pattern recognition algorithms; 2)how to develop the new-model based neural-fuzzy pattern recognition techniques; 3)how to apply the neural-fuzzy pattern recognition techniques to more extensive research fields, such as bioinformactis, computer vision and so on.
     Motivated by the above challenges, several issues are addressed in this study, which mainly involves the following three parts.
     In the first part, the robust neural-fuzzy pattern recognition techniques are investigated, which contains Chapter 2 - 5. In Chapter 2, in order to overcome the weakness of sensitivity to outliers of fuzzy cluster neural networks(FCNN), a robust fuzzy clusting neural networks algorithm RFCNN is presented. In Chapter 3, a novel robust maximum entropy clustering algorithm RMEC, as the improved version of the maximum entropy clustering algorithm MEC, is presented to overcome its drawbacks: very sensitive to outliers and uneasy to label them. In Chapter 4, the TSK fuzzy system modeling is re-considered from a new point of view and a more robust TSK fuzzy system modeling approach based on the visual-system principle and the Weber law is presented. In Chapter 5, we present a new MLP model called cascaded ATSMLP (CATSMLP) where the ATSMLPs are organized in a cascaded way. The proposed CATSMLP is proved to be functionally equivalent to a fuzzy inference system based on syllogistic fuzzy reasoning. Meanwhile, we in an indirect way indicate that the CATSMLP is more robust than the ATSMLP in an upper bound sense.
     In the second part, the ball-model based neural-fuzzy pattern recognition techniques are investigated, which contains Chapter 6 - 8. In Chapter 6, a novel fuzzy kernel hyper-ball perceptron is presented to realize the classification desicion. In Chapter 7, a novel classification machine called the minimax-probability based fuzzy hyper-ellipsoid machine MPFHM is proposed using the hyper-ellipsoid with the minimax probability principle and fuzzy concept. In Chapter 8, in order to overcome the shortcoming of the high time and space complexities of reduced set density estimator RSDE, a fast reduced set density estimator algorithm FRSDE is proposed. The finding that RSDE is equivalent to a special MEB problem is derived and with this finding the fast core-set-based MEB approximation algorithm is introduced to develop the algorithm FRSDE.
     In the third part, which contains Chapter 9, the applications of neural-fuzzy pattern recognition techniques in other research fields are investigated. In Chapter 9, in terms of the characteristics of elastic image registration, a fuzzy-inference-rule based flexible model is proposed for the automatic elastic image registration. Furthermore, we apply the proposed registration algorithm to visual tracking.
引文
1阎平凡,张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社, 2000
    2 Kohonen K. Self organization and Associative Memory [M]. Berlin:Spring-Verlag, 1989.
    3 Haykin S. Neural Networks: A Comprehensive Foundation [M]. 2nd Ed. IEEE Press, 1999
    4 Jang J S R, Sun C T, Mizutani E. Neuro-Fuzzy and Soft Computing [M]. Upper Saddle River, NJ: Prentice-Hall, 1997.
    5王士同主编.模糊系统,模糊神经网络及应用程序设计[M].上海:上海科学技术文献出版社, 1998
    6王士同主编.神经模糊系统及其应用[M].北京:北京航空航天大学出版社,1998
    7赵振宇,徐用懋.模糊理论和神经网络的基础与应用[M].北京,清华大学出版社,1996
    8边肇祺,张学工等.模式识别.第二版[M].北京:清华大学出版社, 2004
    9 Duda R O, Hart P E, Stork D G. Pattern Classification [M]. 2nd Ed. Wiley Interscience, 2001
    10 Theodoridis S, Koutroumbas K. Pattern Recognition [M]. 3nd Ed. Academic Press, 2006.
    11 Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines [M]. Cambridge University Press, 2000
    12 Dasarasthy B. Nearest Neighbor Pattern Classification Techniques [M]. IEEE Computer Society Press, 1991
    13 Fukunaga F. Introduction to Statistical Pattern Recognition [M]. 2nd Ed.. Academic Press, 1990
    14 Bishop C. Neural Networks for Pattern Recognition [M]. Oxford University Press, 1995
    15 Bezdek J C. Fuzzy models for pattern recognition: methods that search for structures in data [M]. New York:Institute of Electrical and Electronics Engineers, 1992
    16 Bezdek J C, Keller J, Krishnapuram R. Fuzzy Models and Algorithms for Pattern Recognition and Image Processing [M]. San Francisco: Kluwer Academic Publishers, 1999
    17 Gabrys B, Bargiela A. General fuzzy Min-Max neural network for clustering and classification [J]. IEEE Trans.on Neural Networks, 2000, 11(3):769-783
    18 Krishnapuram R, Keller J M. A possibilistic approach to clustering [J]. IEEE Trans on Fuzzy Systems, 1993, 1(2):98-110
    19 Zhang D, Pal S K. A fuzzy clustering neural networks system design methodology [J]. IEEE Trans Neural Netw, 2000, 11(4):1174–1177
    20何丕廉,侯越先.模糊聚类神经网络的非对称性学习算法[J].计算机研究与发展, 2001,38(3):296-301
    21沈红斌,王士同,吴小俊.离群模糊核聚类算法[J].软件学报, 2004, 15(7):1021-1029
    22 Keller A. Fuzzy clustering with outliers [C]. In: Proc. Of the NAFIPS 2000, 2000, 143-147.
    23 Leski J. Towards a robust fuzzy clustering [J]. Fuzzy Sets and Systems, 2003, 137(2):215-233.
    24 Krabs W. Optimization and approximation [M]. New York:Wiley,1981
    25 Huber P J. Robust Statistics [M]. New York:Wiley,1981
    26 Rose K, Gurewtiz E, Fox G. A deterministic annealing approach to clustering [J]. Pattern Recognition Letters, 1990, 11(9):589-594
    27 Karayiannis N B. MECA: maximum entropy clustering algorithm [C]. Proc on IEEE Int Conf on Fuzzy Syst. Orlando, FL,1994. 630-635
    28 Li R P, Mukaidono M. A maximum entropy approach to fuzzy clustering [C]. Proc on IEEE Int Conf Fuzzy Syst, Yokohama, Japan, 1995, 2227-2232
    29张志华,郑南宁,史罡.极大熵聚类算法及其全局收敛性分析[J].中国科学,E辑, 2001, 31(1):59-70
    30 Las M, Kandel A. Automated Perceptions in data mining [C]. Proceedings of the Eighth International Conference on Fuzzy System. Seoul, Korea,1999.190~197
    31 Mendenhall W, Reinmuth J E, Beaver R J. Statistics for management and economics [M]. Belmont, CA: Duxbury Press,1993
    32 Steve R G. Support vector machines classification and regression [R]. UNIVERSITY OF SOUTHAMPTON,1998
    33 Vapnik V. Statistical learning theory [M]. New York:Wiley, 1998
    34 Gill P E, Murray W, Wright M H. Practical optimization[M]. New York: Academic Press, 1981
    35 Wong C C, Lai H R. Generating Fuzzy Control Rules by a Clustering Algorithm Based on a Grey Relational Measure [C]. Proc. of IEEE Int. Conf. Fuzzy Systems. Seoul, Korea, 1999. 470-473.
    36邓赵红,陆介平,王士同.改进的Min-Max神经网络与模糊系统建模[J].江南大学学报, 2003,2(3):234-239
    37 Marr D. Vision, A computational Investigation into the Human Representation [M]. San Francisco: W H Freeman, 1982.
    38张讲社,梁怡,徐宗本.基于视觉系统的聚类算法[J].计算机学报, 2001, 24(5):496-501
    39 Coren S, Ward L M, JEnns J T. Sensation and Perception (M). Fort Worth, TX: Cold Sprin Harcourt Brace College Publishers, 1994
    40 Erhan G, Jose C P. Information Theoretic Clustering [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2002, 24(2):158-171
    41 Wang S T, Chung F L, Xu M, etc. A Visual System Theoretic Cost Criterion and its Application to Classification and Fuzzy Modeling [J]. Information Technology Journal, 2007, 6(2):310-324
    42 Benitez M J, Castro J L, Requena I. Are artificial neural networks boxes? [J]. IEEE Trans. Neural Networks, 1997, 8:1156-1164
    43 Zhang D, Li X, Cai K Y. Extended neuro-fuzzy models of multilayer perceptrons [J]. Fuzzy Sets and Systems, 2003, 137: 215-233
    44邓赵红,王士同.鲁棒性的模糊聚类神经网络RFCNN.软件学报, 2005,16(8):1415-1422
    45邓赵红,王士同,吴锡生,等.鲁棒的极大熵聚类算法RMEC及其例外点标识.中国工程科学, 2004, 6(9):38-45
    46邓赵红,王士同,吴锡生.基于视觉原理和Weber定律的TSK模糊系统建模.模式识别与人工智能, 2005, 18(2):177-182
    47 Hoff M E. Learning phenomena in network of adaptive switching circuits [R]. Stanford Electron. Labs., Stanford, CA, Tech. Rep. 1554-1,July 1962
    48 Stevenson M, Winter R, Widrow B. Sensitivity of feedforward neural networks to weight errors [J]. IEEE Trans. Neural Networks, 1990, 1:71–80, 1990
    49 Choi J Y, Choi C H. Sensitivity analysis of multilayer perceptron with differentiable activation functions [J]. IEEE Trans. Neural Networks, 1992, 3: 101–107
    50 PichéS W, The selection of weight accuracies for Madalines [J]. IEEE Trans. Neural Networks, 1995, 6:432–445
    51 Cheng A Y, Yeung D S. Sensitivity analysis of neocognitron [J]. IEEE Trans. Syst., Man, Cybern., 1999, 29:238–248
    52 Yeung D S, Wang X Z. Initial analysis on sensitivity of multilayer perceptron [C]. In: Proc. IEEE SMC’99 Conf. 1999, 3:407–411
    53 Yeung D S, Sun X Q. Using function approximation to analyze the sensitivity of MLP with antisymmetric Squashing Activation function [J]. IEEE Trans. Neural Networks, 2002, 13:34–44
    54 Zadeh L A. Syllogistic reasoning in fuzzy logic and its application to usuality and reasoning with dispositions [J]. IEEE Trans. Syst., Man, Cybern., 1985, 15: 755–763
    55 Madea H, Yonekura H, Nonusada Y, etc. A study on the spread of fuzziness in multi-fold multi-stage approximate reasoning: An approximate reasoning using parametrical t-norm [C]. In: Proc. IEEE Int.Conf. Fuzzy Syst., Yokohama, Japan, 1995. 1455–1460
    56 Madea H. An investigation on the spread of fuzziness in multi-fold multi-stage approximate reasoning by pictorial representation—under sup-min composition and triangular type membership function [J]. Fuzzy Sets Syst., 1996, 80:133–148
    57 Driankov D, Hellendoorn H. Chaining of fuzzy IF–THEN rules in Mamdani-controllers [C], In: Proc. IEEE Int. Conf. Fuzzy Syst., Yokohama, Japan, 1995. 103–108.
    58 Uehara K, Fujise M. Multi-stage fuzzy inference formulated as linguistic-truth-value propagation and its learning algorithm based on back-propagation error information [J]. IEEE Trans. Fuzzy Syst., 1993, 1:205-221
    59 Chung F L, Duan J C. On multistage fuzzy neural network modeling [J]. IEEE Trans. Fuzzy Syst., 2000, 8:125–142
    60 Duan J C, Chung F L. Cascaded fuzzy neural network model based on syllogistic fuzzy reasoning [J]. IEEE Trans. Fuzzy Syst., 2001, 9:293–306
    61 Wang S T, Chung F L, Shen H B, etc. Cascaded centralized TSK fuzzy system: universal approximator and high interpretation [J]. Int. J. Applied soft computing, 2004, 5(2):131-145
    62 Vapnik V. The Nature of Statistical Learning Theory [M]. New York: Springer-Verlag, 1995
    63 Boser B E, Guyon I M and Vapnik V N. A Training Algorithm for Optimal Margin Classifiers [C]. In: Haussler D, eds. Proc. of 5th Annual ACM Workshop on COLT. Pittsburgh PA: ACM Press, 1992. 144-152.
    64 Cortes C and Vapnik V N. Support vector networks [J]. Machine Learning, 1995, 20(3): 273-297.
    65 Mangasarian O L. Generalized support vector machines [C]. In: Smola A J, Bartlett P L , Scholkopf B , and Schuurmans D, eds. Advances in Large Margin Classifiers. Cambridge MA: MIT Press, 2000,135-146
    66 Sch&o&lkopf B, Smola A J, Williamson R C etal. New support vector algorithms [J]. NeuralComputation. 2000,12:1207-1245
    67 Zhang L, Zhang B. Relational Between Support Vector Set and Kernel Functions in SVM [J]. Journal of Computer Science & Technology, 2002,17(5):549-555
    68 Vapnik V. The Nature of statistical Learning Theory [M]. New York: Springer-Verlag, 1999
    69 Sch&o&lkopf B, Smola A, and Muller K R. Nonlinear component analysis as a kernel eigenvalue problem [J]. Neural Computation, 1998,10:1299-1319.
    70 Sch&o&lkopf B and Smola A J. Learning with Kernels---Support Vector Machines, Regularization, Optimization and Beyond [M]. Cambridge MA: MIT Press, 2001
    71 Platt J. Fast training of support vector machines using sequential minimal optimization [C]. In: Sch&o&lkopf B, Burges C, Smola A, eds. Advances in kernel methods—Support vector learning. Cambridge, MA:MIT Press,1999, 185-208.
    72 Lin C J. Formulations of support vector machines: A note from an optimization point of view [J]. Neural Computation. 2001,13:307~317
    73 Wahba, G. Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV [C]. In: Sch&o&lkopf B, Burges C, Smola A, eds. Advances in kernel methods—Support vector learning. Cambridge, MA:MIT Press,1999,69-88
    74 Chen J H, Chen C S. Fuzzy Kernel Perceptron [J]. IEEE Transactions on Neural Networks, 2002, 13(6):1364-1373
    75许建华,张学工,李衍达.一种基于核函数的非线性感知器算法[J].计算机学报, 2002, 25(7):689-695
    76 Han J and Kamber M. Data Mining: Concepts and Techniques [M]. Morgan Kaufmann Publishers, 2001
    77 Lanckriet G R G, Ghaoui L E, Bhattacharyya C, etc. A robust minimax approach to classification [J]. J. Machine Learning Research, 2003, 3(3): 555-582
    78 Lanckriet G R G, Ghaoui L E, Bhattacharyya C, etc. Minimax probability machine [C]. In: Advances in Neural Information Processing Systems 14, Cambridge, MA:MIT Press, 2002
    79 Lanckriet G R G, Ghaoui L E and Jordan M I. Robust novelty detection with single-class MPM [C]. In: Advances in Neural Information Processing Systems 15, Cambridge, MA: MIT Press, 2002.
    80 Huang K Z, Yang H Q, King I, etc. Minimum Error Minimax Probability Machine [J]. Journal of Machine Learning Research, 2004, 5:1253-1286
    81 Huang K Z, Yang H Q, King I, etc.. Imbalanced learning with biased minimax probability machine [J]. IEEE Transactions on System, Man, and Cybernetics -Part B, 2006, 36(4):913-923
    82 Huang K Z, Yang H Q, King I, etc. Maximizing sensitivity in medical diagnosis using biased minimax probability machine [J]. IEEE Transactions on Biomedical Engineering, 2006, 53(5):821--831
    83 Strohmann T R, Belitski A, Grudic G Z, etc. Sparse Greedy Minimax Probability Machine Classification [C]. NIPS 2003.
    84 Chung F L, Wang S T and Deng Z H. Fuzzy kernel hyperball perceptron [J]. Applied Soft Computing, 2004, 5(1):67-74
    85 Marshall A W, Olkin I, Multivariate Chebyshev inequalities [J]. Annals of Mathematical Statistics,1960, 31(4):1001–1014
    86 Popescu I, Bertsimas D. Optimal inequalities in probability theory: A convex optimization approach [R]. Technical Report TM62, INSEAD, Dept. Math. O.R., Cambridge, Mass, 2001
    87 Kennedy J, Eberhart R C. Particle swarm optimization [C]. Proc. IEEE Int. Conf. on Neural Networks, IV. Piscataway, NJ: IEEE, 1995. 1942-1948
    88 Goldberg D E. Genetic Algorithms in Search, Optimization, and Machine Learning [M]. Addison-Wesley, 1989
    89 Luenberger D G. Introduction to Linear and Nonlinear Programming [M]. 2nd Ed.. Reading, MA: Addison-Wesley, 1989
    90 Newman D J, Hettich S, Blake C L, etc. UCI Repository of Machine Learning Databases [DB/OL]. Department of Information and Computer Science, University of California, Irvine, CA, 1998. http://www.ics.uci.edu/~mlearn/ MLRepository.html
    91 Datasets from UCI Repository [DB/OL]. http://www.sgi.com/tech/mlc/db/
    92 Lockhart D J, Winzeler E A. Genomics, gene expression and DNA arrays [J]. Nature, 2000, 405:827–836
    93 Tsujinishi D, Abe S. Fuzzy least squares support vector machines for multiclass problems [J]. Neural Networks, 2003, 16:785-792
    94 Golub T R, Slonim D K, Tamayo P, etc. Molecular classification of cancer: Class discovery and class prediction by gene [J]. Science, 1999, 286:531-537
    95 Ramaswamy S, Tamayo P, Rifkin R, etc. Multi-class cancer diagnosis using tumor gene expression signatures [J]. Proc. Nat. Acad. Sci., 2001, 98:15149-15154
    96 Tamayo P, Ramaswamy S. Cancer genomics and molecular pattern recognition [C]. In: Ladanyi M, Gerald W, eds. Expression Profiling of Human Tumors: Diagnostic and Research Applications, Humana Press, 2003.
    97 Guyon I, Weston J, Barnhill S, etc. Gene selection for cancer classification using support vector machines [J]. Machine Learning, 2002, 46:389-422
    98 Lee K Y, Kim D W, Lee K H, etc. Possibilistic support vector machines [J]. Pattern Recognition, 2005, 38:1325–1327
    99 Silverman B W, Density Estimation for Statistics and Data Analysis [M]. Chapman and Hall, 1986
    100 Parzen E. On Estimation of a Probability Density Function and Mode [M]. Annals of Math. Statistics, 1962, 33:1065-1076
    101 Jeon B, Landgrebe D A. Fast Parzen Density Estimation Using Clustering-Based Branch and Bound [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 16, no. 9, pp 950-954, Sept. 1994.
    102 Babich G A, Camps O, Weighted Parzen Windows for Pattern Classification [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1996, 18(5):567-570
    103 Fukunaga K, Mantock J M. Nonparametric Data Reduction [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1984, 6: 115-118
    104 Donoho D, Johnstone I M, Kerkyacharian G, etc. Density estimation by wavelet tresholding [J]. Ann. Statist. 1996, 24(2):508-539
    105 Mitra P, Murthy C A, Pal S K, Density Based Multiscale Data Condensation [J]. IEEE Trans. PatternAnalysis and Machine Intelligence, 2002, 24(6):734-747
    106 Mukherjee S, Vapnik V. Support Vector Method for Multivariate Density Estimation [C]. CBCL Paper #170, AI Memo #1653, 1999
    107 Scott D W, Sheather S J. Kernel Density Estimation with Binned Data [J].Comm. Statistics-Theory and Methods, 1985, 14:1353-1359
    108 Weston J, Gammerman A, Stitson M O, etc. Support Vector Density Estimation [C]. Advances in Kernel Methods, MIT Press, 1999.
    109 Vapnik V, Mukherjee S. Support Vector Method for Multivariate Density Estimation [C]. In: Solla S, Leen T, M&u&ller K R , eds. Advances in Neural Information Processing Systems,MIT Press, 2000. 659-665
    110 Holnstr&o&m L . The Error and the Computational Complexity of a Multivariate Binned Kernel Density Estimator [J]. Journal of Multivariate Analysis, 2000, 72(2):264-309
    111 Huang D and Chow T.W.S. Enhancing Density-Based Data Reduction Using Entropy [J]. Neural computation, 2005, 18(2):470–495
    112 Girolami M, Cao. H. Probability density estimation from optimally condensed data samples [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(10):1253– 1264
    113 Cao H, Girolami M, Novelty Detection Employing an L2 Optimal Nonparametric Density Estimator [J]. Pattern Recognition Letters, 2004, 25(12):1389-1397
    114 Sha F, Saul L, Lee D D. Multiplicative Updates for Non-Negative Quadratic Programming in Support Vector Machines [R]. Technical Report MSCIS-02-19, University of Pennsylvania, 2002.
    115 Sch&o&l kopf B, Platt J, Taylor J S, etc. Estimaing the support of a high-dimensional distribution [J]. Neural Computation, 2001, 13:1443–1471
    116 Tsang I W, Kwok J T, Cheung P M. Core vector machines: Fast SVM training on very large data sets [J]. Journal of Machine Learning Research, 2005,6: 363-392
    117 Tax D, Duin R. Support vector domain description [J]. Pattern Recognit. Lett., 1999, 20(14):1191–1199
    118 Tsang I W, Kwok J T, Zurada J M. Generalized core vector machines [J]. IEEE Transactions on Neural Networks, 2006, 17(5):1126-1140
    119 Ba(d oiu M, Clarkson K L. Optimal core sets for balls [C]. In DIMACSWorkshop on Computational Geometry, 2002
    120 Ba(d oiu M, Peled S H, Indyk P. Approximate clustering via core sets [C]. In Proceedings of 34th Annual ACM Symposium on Theory of Computing, 2002. 250–257.
    121 Kumar P, Mitchell J S B, Yildirim A, Approximate minimum enclosing balls in high dimensions using core-sets [J/OL]. ACM Journal of Experimental Algorithmics, 2003, 8
    122 Nielsen F, Nock R. Approximating smallest enclosing balls [C]. In Proceedings of International Conference on Computational Science and Its Applications, 2004, 3045:147-157
    123 Smola A, Sch&o&l kopf B. Sparse greedy matrix approximation for machine learning [C]. In: Proceedings of the Seventeenth International Conference onMachine Learning, Stanford,CA, USA, June 2000. 911–918
    124 Maurer C, Fitzpatrick J. A review of medical image registration [C]. In: R.J. Maciunas, Eds. Interactive Image Guided Neurosurgery. American Association of Neurological Surgeons, Park Ridge, 17-44, 1993. 17-44
    125 Brown L. A survey of image registration techniques [J]. ACM Computing Surveys, 1992, 24(4):325-376
    126 Van Den Elsen P A, Pol E J D, Viergever M A. Medical image matching - A review with classification [J]. IEEE Engineering in Medicine and Biology, 1993, 12(1):26-39
    127 Maintz J, Viergever M. A survey of medical image registration [J]. Medical Image Analysis, 1998, 2(1):1-36
    128 Lester H, Arridge S. A survey of hierarchical non-linear medical image registration [J]. Pattern Recognition, 1999, 32(1):129-149
    129 Ratha N K, Bolle R M. Effect of controlled acquisition on fingerprint matching [C]. Proc. 14th ICPR, 1998, 2:1659-1661
    130 Jain A K, Hong L, Bolle R. On-line fingerprint verification [J]. IEEE Trans. on Pattern Analysis & Machine Intelligence, 1997, 19(4):302-313
    131 Fang B, Tang Y Y. Elastic registration for retinal images based on reconstructed vascular trees [J]. IEEE Trans. on Biomedical Engineering, 2006, 53(6):1183-1187
    132 Harold S S, Michael T O, Chang E C, etc. A fast direct Fourier-based algorithm for sub-pixel registration of images [J]. IEEE Trans. Geoscience and Remote Sensing, 2001, 39(10):2235-2243
    133 Dai X L, Khorram S. A feature-based image registration algorithm using improved chain-code representation combined with invariant moments [J]. IEEE Trans. Geoscience and Remote Sensing, 1999, 37(5):2351-2362
    134 Moigne J L, Campbell W J, Cromp R F. An automated parallel image registration technique based on the correlation of wavelet features [J]. IEEE Trans. Geoscience and Remote Sensing, 2002, 40(8):1849-1864
    135 Rohr K, Stiehl H S, Sprengel R, etc. Landmark-based elastic registration using approximating thin-plate splines [J]. IEEE Trans. Medical Imaging, 2001, 20(6):526-534
    136 Suter D, Chen F. Left ventricular motion reconstruction based on elastic vector splines [J]. IEEE Trans. Medical Imaging, 2000, 19(4):295-305
    137 Akutsu T, Kanaya K, Ohyama A, etc. Point matching under non-uniform distortions [J]. Discrete Applied Mathematics, 2003, 127(11):5-21
    138 Bazen A M, Gerez S H. Fingerprint matching by thin-plate spline modeling of elastic deformations [J]. Pattern Recognition, 2003, 36(8):1859-1867
    139 Pánek J, Vohradsky J. Point pattern matching in the analysis of two-dimensional gel electropherograms [J]. Electrophoresis, 1999, 20(18):3483–3491
    140 Unser M, Aldroubi A, Eden M. Fast B-spline transforms for continuous image representation and interpolation [J]. IEEE Trans. Pattern Anal. Mach. Intell., 1991, 13(3):277-285
    141 Szeliski R, Shum H Y. Motion estimation with quadtree splines [J]. IEEE Trans. Pattern Anal. Mach. Intell., 1996, 18(12):1199-1210
    142 Meijering E, Niessen W, Viergever M. Quantitative evaluation of convolution-based methods formedical image interpolation [J]. Medical Image Analysis, 2001, 5(2):111-126
    143 Szeliski R, Coughlan J, Spline-based image registration [J]. Computer Vision, 1997, 22(3):199-218
    144 Mattes D, Haynor D R, Vesselle H, etc. PET-CT image registration in the chest using free-form deformations [J]. IEEE Trans. Medical Imaging, 2003, 22(1):120-128
    145 Maitre H, Wu Y. A dynamic programming algorithm for elastic registration distorted picture based on autoregressive model [J]. IEEE. Trans. Acoustics, Speech, and Signal Processing, 1989, 37(2):288-297
    146 Woods R, Cherry S, Mazziotta J. Rapid automated algorithm for aligning and reslicing PET images [J]. Journal of Computer Assisted Tomography, 1992, 16:620-633
    147 Woods R, Grafton S, Holmes C, etc. Automated image registration I. General methods and intra-subject, intra-modality validation [J]. Journal of Computer Assisted Tomography, 1998, 22:141-154
    148 Cooper J R, Ritter N. Optical flow for validating medical image registration [C]. Proc. of the 9th IASTED Int. Conf. on Signal and Image Processing, Honolulu, Hawaii, USA, IASTED/ACTA Press, 2003. 502-506
    149 Periaswamy S, Farid H. Elastic registration in the presence of intensity variations. IEEE Trans. on Medical Imaging, 2003, 22(7):865-74
    150 Periaswamy S. General-purpose medical image registration [D]. Ph.D. thesis, Dartmouth College, Department of Computer Science, Hanover, NH, 2003
    151 Periaswamy S, Farid H. Medical image registration with partial data [J]. Medical Image Analysis, 2006, 10(3):452-464
    152 Hellier P, Barillot C, Mémin E, etc. An energy-based framework for dense 3-D registration of volumetric brain image [C]. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Hilton Head Island, SC, 2000. Vol.II, 270-275
    153 Mémin E, Pérez P. Dense estimation and object-based segmentation of the optical flow with robust techniques [J]. IEEE Trans. on Image Processing, 1998, 7:703-719
    154 Hellier P, Barillot C, Mémin E, etc. Hierarchical estimation of a dense deformation field for 3-D robust registration [J]. IEEE Trans. on Medical Imaging, 2001, 20(5):388-402
    155 Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking, IEEE Trans. on Pattern Analysis and Machine Intelligence [J]. 2003, 25(5):564-575
    156 Hager G D, Belhumeur P N. Efficient region tracking with parametric models of geometry and illumination [J]. IEEE Trans. Pattern Analysis & Mach. Intel., 1998, 20(10):1025-1039
    157 Farid H, Simoncelli E. Differentiation of multi-dimensional signals [J]. IEEE Trans. on Image Processing, 2004, 13(4):496-508
    158 Gan M T, Hanmandlu M. From a Gaussian mixture model to additive fuzzy systems. IEEE Transactions on fuzzy systems, 2005,13(3):303-316
    159 Chung F L, Wang S T, Deng Z H. CATSMLP: Towards a robust and interpreTab. multilayer perceptron with sigmoid activation functions. IEEE Transactions on SMC(part B), 2006, 36(6):1319-1331

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700