咸水造墒条件下棉花耐盐指标与安全性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合理开发利用浅层地下储量丰富的咸水(含微咸水)资源发展农业灌溉,对缓解环渤海低平原区淡水资源紧缺矛盾、确保农业稳产高产和生态环境安全具有重要意义。本文以棉花为研究对象,在河北衡水设计畦灌和沟灌两种造墒方式(灌水定额分别为75mm和37.5mm)及1、2、4、6、8g/L五个矿化度水质处理(分别记为B1、B2、B3、B4、B5处理和F1、F2、F3、F4、F5处理),研究了咸水长期定位灌溉对土壤环境和棉花生长的影响效应,探讨了适于该区咸水安全灌溉的评价方法,并提出了咸水灌溉的适宜灌水方式与灌溉水矿化度指标。取得的主要成果如下:
     (1)确定了土壤盐分变化率和随灌溉水带入盐分的脱盐率是咸水灌溉棉田盐分补排平衡分析的重要评价指标。与2006年开始咸水定位灌溉试验0~1.0m土层初始土壤盐度相比,2013年试验结束时B1、F1和F2处理分别出现11.8%、8.7%和10.1%的脱盐,B2处理基本持平,而B3、B4、B5和F3、F4、F5处理分别增加41%、42.9%、90.8%和7.3%、24.5%、65.2%,证明畦灌处理的积盐水平显著高于沟灌处理。最终所有处理86%以上随灌溉水带入的盐分被淋出1.0m土层,B1、B2、B3、B4和B5处理的盐峰分别出现在2.3、2.1、1.9、1.7和1.5m,F1、F2、F3、F4和F5处理的盐峰分别出现在2.1、2.1、1.9、1.9和0.7m,随灌水矿化度的增加,盐峰值在剖面内有上移趋势。
     (2)揭示了长期咸水灌溉对棉花生长和产量的影响,发现棉花生长指标和产量等在单个棉花生长季与灌水矿化度之间关系密切;而年际间的波动主要受到气象因子和灌水矿化度的共同影响,其中籽棉产量年际波动可能主要受到花铃期平均气温的影响。
     (3)通过界定棉花耐盐性鉴定指标的判定原则,明确了株高、成铃数、果枝数、霜前花率等都可以作为表征棉花耐盐能力和预知籽棉产量趋势的耐盐性鉴定指标。其中株高和成铃数是预知籽棉产量趋势较为可靠的指标。
     (4)综合考虑产量、收益、灌水量及灌溉水引入盐量,在确保土壤相对安全和较高收益的情况下,畦灌和沟灌造墒的灌水矿化度指标最高可定为6.0g/L和4.0g/L。
     (5)提出了适于当地的咸水安全灌溉原则与评价方法,证明连续多年咸水灌溉后,同一灌溉方式下土壤质量随灌水矿化度增加而降低,相比之下,当灌水矿化度不高于6.0g/L时畦灌处理的土壤质量优于沟灌处理,当灌水矿化度达到8.0g/L时沟灌处理的土壤质量较高。综合考虑经济效益和土壤质量,认为在环渤海低平原盐度较低的区域短期开展咸水灌溉是可行的,在咸水造墒播种结合育苗补栽措施条件下最好使用畦灌平播方式植棉,适宜灌水矿化度阈值为6.0g/L。
Rational development and utilization of shallow underground saline water resources in agricultureirrigation has important theoretical significance and practical value in relieving the contradictions of theshortage of water resources, as well as ensuring the stabilization of agricultural production andecological environment security in the low land plain area around Bohai Sea. A field study on cottonwas conducted at Hengshui, Hebei province during the2006-2013growing season. Border irrigationand furrow irrigation were adopted to supply pre-sowing water. The irrigation water quota was75mmfor border irrigation and37.5mm for furrow irrigation. Five salinity levels of mineralized water wereincluded in the experiment:1,2,4,6, and8g/L (denoted as B1, B2, B3, B4, and B5for borderirrigation; F1, F2, F3, F4, and F5for furrow irrigation). The response of cotton growing and soilenvironment to long-term saline water irrigation was investigated, and the evaluation method of safetyirrigation with saline water was probed in this research, and appropriate irrigation methods andirrigation water salinity index were obtained. The main results showed that:
     (1) The change rate of soil salt and the desalinization rate of salt input by irrigation water weredetermined to to be important evaluation indexes in cotton field salt balance analysis of saline waterirrigation and drainage. Compared to the initial soil EC1:5within0~1.0m soil layer in2006(0.25dS/m), the final soil EC1:5in2013decreased by11.8%,8.7%and10.1%for B1, F1and F2treatment,but increased by1.5%,41%,42.9%,90.8%,7.3%,24.5%and65.2%for B2, B3, B4, B5, F3, F4, and F5treatment. It can be seen that the level of soil salt accumulation were higher in border irrigationtreatments significantly. Eventually, more than86%of salt input by irrigation water was leached out ofthe1.0m soil layer for all treatments. The salt peak of B1, B2, B3, B4, B5and F1, F2, F3, F4, F5was2.3,2.1,1.9,1.7,1.5, and2.1,2.1,1.9,1.9,0.7m, respectively. The peak values of salt in the soil profileshowed a tendency to move up with the increasing salinity of the irrigation water under the sameirrigation method.
     (2) The response of cotton growing and soil environment to long-term saline water irrigation wasrevealed. There was a close relation between salinity of water and the cotton growth index and yield in asingle cotton growing season. Among the years, the interannual fluctuations of all cotton growingindicators and yield were mainly affected by salinity of irrigation water and the meteorological factors.the interannual fluctuations of seed cotton yield might be mainly affected by mean air tempreture atblossing and boll-forming stages.
     (3) By means of the definition of judging principle of cotton salt resistance appraisal index, cottonplant height, number of boll, number of branches, and pre-frost yield rate all could be used as salttolerance appraisal indices of cotton. Meanwhile, the plant height and number of boll are the mostreliable index to predict the seed cotton yield.
     (4) Taking yield, price, irrigation quota, and salt input by irrigation water into consideration, andensuring the higher income and the soil safety, the maximum salinity of irrigation water for border irrigation and furrow irrigation treatment was6.0and4.0g/L, respectively.
     (5) The suitable saline water safety irrigation principle and evaluation method were proposed forthe local. It demonstrated that after7years of saline water irrigation, the soil quality decreased with theincreasing salinity of irrigation water under the same irrigation method; the soil quality were better inborder irrigation treatments when salinity of irrigation water was lower than6.0g/L, the soil quality wasbetter in furrow irrigation treatment when salinity of irrigation water reached to8.0g/L. Considering theeconomic benefits and soil quality, short-term saline water irrigation is feasible in the low plain aroundthe Bohai Sea with the low soil salinity. Border irrigation and conventional planting for cotton aresuggested under pre-sowing irrigation with saline water and transplanting after sowing, and the suitableeigevalue for irrigation water salinity is6.0g/L.
引文
1.白旭,田长彦,胡明芳,等.盐分和温度以及光照对陆地棉种子萌发的影响[J].棉花学报,2006,18(4):238~241.
    2.毕远杰,王全九,雪静.微咸水造墒对油葵生长及土壤盐分分布的影响[J].农业工程学报,2009,25(7):39~44.
    3.柴春岭.棉花膜下滴灌咸淡水轮灌灌溉制度试验研究[柴春岭硕士学位论文].保定:河北农业大学,2005.
    4.陈德明,俞仁培.作物相对耐盐性的研究-不同栽培作物的耐盐性差异[J].土壤学报,1996,33(2):121~128.
    5.陈恩凤,王汝镛,王春裕.有机质改良盐碱土的作用[J].土壤通报,1984,15(5):193~
    196.
    6.陈丽娟,冯起,王昱,等.微咸水灌溉条件下含黏土夹层土壤的水盐运移规律[J].农业工程学报,2012,28(8):44~51.
    7.陈素英,张喜英,邵立威,等.微咸水非充分灌溉对冬小麦生长发育及夏玉米产量的影响[J].中国农业生态学报,2011,19(3):579~585.
    8.陈志恺.持续干旱与华北水危机[J].海河水利,2002,(1):6~9.
    9.董合忠,辛承松,李维江.山东滨海盐渍棉田盐分和养分特征及对棉花出苗的影响[J].棉花学报,2009,21(4):290~295.
    10.方生,陈秀玲.华北平原大气降水对土壤淋洗脱盐的影响[J].土壤学报,2005,22(5):730~736.
    11.方生,陈秀玲.浅层地下咸水利用与改造的研究[J].河北水利科技,1999,20(2):6~
    10.
    12.冯棣,曹彩云,郑春莲,等.盐分胁迫时量组合与棉花生长性状的相关研究[J].中国棉花,2011,(8):24~26.
    13.冯棣,张俊鹏,孙景生,等.咸水畦灌棉花耐盐性鉴定指标与耐盐特征值研究[J].农业工程学报,2012,28(8):52~57.
    14.逢焕成,杨劲松,严惠峻.微咸水灌溉对土壤盐分和作物产量影响研究[J].植物营养与肥料学报,2004,10(6):599~603.
    15.郝志刚,胡自治,朱兴运.碱茅耐盐性的研究[J].草业科学,1994,3(3):27~36.
    16.贾玉珍,朱禧月,唐宇迪,等.棉花出苗及苗期耐盐性指标的研究[J].河南农业大学学报,1987,21(1):30~41.
    17.姜凌,李佩成,郭建青.贺兰山西麓典型干旱区绿洲地下水水化学特征与演变规律[J].地球科学与环境学报,2009,31(3):285~290.
    18.阚文杰,吴启堂.一个定量综合评价土壤肥力的方法初探[J].土壤通报,1994,25(6):245~247.
    19.康金虎.宁夏引黄灌区微咸水灌溉技术试验研究[康金虎博士学位论文].银川:宁夏大学,2005.
    20.雷霆武,肖娟,詹卫华,等.沟灌条件下不同灌水水质对玉米产量和土壤盐分的影响[J].水利学报,2004,(9):118~122.
    21.李悦,陈忠林,王杰,等.盐胁迫对翅碱蓬生长和渗透调节物质浓度的影响[J].生态学杂志,2011,30(1):72~76.
    22.李科江,马俊永,曹彩云,等.不同矿化度咸水造墒灌溉对棉花生长发育和产量的影响[J].中国生态农业学报,2011,19(2):312~317.
    23.李鹏程,董合林,刘爱忠,等.棉花上部叶片叶绿素SPAD值动态变化研究[J].中国农学通报,2012,28(3):121~126.
    24.李维江,董合忠,郭正庆,等.盐分胁迫对海陆杂交棉及亲本生长发育的影响[J].棉花学报,1997,9(6):324~328.
    25.李尉霞,齐军仓,石国亮,等.大麦苗期耐盐性生理指标的筛选[J].石河子大学学报(自然科学版),2007,25(1):23~26.
    26.刘有昌.鲁北平原地下水安全深度的探讨[J].土壤通报,1962,(8):13~22.
    27.刘玉春,姜红安,李存东,等.河北省棉花灌溉需水量与灌溉需求指数分析[J].农业工程学报,2013,29(19):98~104.
    28.罗永忠,成自勇.水分胁迫对紫花苜蓿叶水势、蒸腾速率和气孔导度的影响[J].草地学报,2011,19(2):215~221.
    29.吕宁,候振安.不同滴灌方式下咸水灌溉对棉花根系分布的影响[J].灌溉排水学报,2007,26(5):58~62.
    30.马俊永,曹彩云,郑春莲,等.微咸水灌溉条件下棉花—黑麦草种植系统的效益分析[J].河北农业科学,2010,14(6):86~88.
    31.乔冬梅,吴海卿,齐学斌,等.不同潜水埋深条件下微咸水灌溉的水盐运移规律及模拟研究[J].水土保持学报,2007,21(6):7~15.
    32.乔玉辉,宇振荣.灌溉对土壤盐分的影响及微咸水利用的模拟研究[J].生态学报,2003,23(10):2050~2056.
    33.阮明艳,张富仓,侯振安.咸水膜下滴灌对棉花生长和产量的影响[J].节水灌溉,2007,(5):14~16.
    34.石元春,等.黄淮海平原的水盐运动和旱涝盐碱的综合治理[M].石家庄:河北人民出版社,1983.
    35.时唯伟,支月娥,王景,等.土壤次生盐渍化与微生物数量及土壤理化性质研究[J].水土保持学报,2009,23(6):166~170.
    36.孙三民,蔡焕杰,安巧霞.新疆阿拉尔灌区棉花苗期耐盐度研究[J].人民黄河,2009,31(4):81~82.
    37.孙小芳,刘友良.棉花品种耐盐性鉴定指标可靠性的检验[J].作物学报,2001,27(6):794~802.
    38.孙晓明.环渤海地区地下水资源可持续利用研究[孙晓明博士学位论文].北京:中国地质大学,2007.
    39.孙肇君,李鲁华,张伟,等.膜下滴灌棉花耐盐预警值的研究[J].干旱地区农业研究,2009,27(4):140~145.
    40.谭万能,李志安,邹碧,等.地统计学方法在土壤学中的应用[J].热带地理,2005,25(4):307~311.
    41.唐启义.DPS数据处理系统:实验设计、统计分析及数据挖掘-2版[M].北京:科学出版社,2010.
    42.王伟,蔡焕杰,王健,等.水分亏缺对冬小麦株高、叶绿素相对含量及产量的影响[J].灌溉排水学报,2009,28(1):41~44.
    43.王春霞,王全九,刘建军,等.灌水矿化度及土壤含盐量对南疆棉花出苗率的影响[J].农业工程学报,2010,26(9):28~33.
    44.王国栋,褚贵新,刘瑜,等.干旱绿洲长期微咸地下水灌溉对棉田土壤微生物量影响[J].农业工程学报,2009,25(11):44~48.
    45.王洪恩.鲁西北地区地下水临界深度的探讨[J].土壤通报,1964,(6):29~32.
    46.王俊娟,王德龙,樊伟莉,等.陆地棉萌发至三叶期不同生育阶段耐盐特性[J].生态学报,2011,31(13):3720~3727.
    47.王全九,徐益敏.咸水与微咸水在农业灌溉中的应用[J].灌溉排水,2002,21(4):73~
    76.
    48.王群,赵亚丽,张学林,等.不同土层容重对玉米根系生长及土壤酶活性的影响[J].河南农业大学学报,2012,46(6):624~630.
    49.王文杰,关宇,祖元刚,等.施加改良剂对重度盐碱地土壤盐碱动态及草本植物生长的影响[J].生态学报,2009,29(6):2835~2844.
    50.魏红国,杨鹏年,张巨松,等.咸淡水滴灌对棉花产量和品质的影响[J].新疆农业科学,2010,47(12):2344~2349.
    51.魏由庆,刘思义,邢文刚.黄淮海平原土壤次生潜在盐渍化分级研究[J].土壤肥料,1994,(5):5~9.
    52.吴乐如,李取生,刘长江.微咸水淋洗对苏打盐渍土土壤理化性状的影响[J].生态与农村环境学报.2006,22(2):11~15.
    53.吴忠东,王全九.利用一维代数模型分析微咸水入渗特征[J].农业工程学报,2007,23(6):21~26.
    54.吴忠东,王全九.微咸水非充分灌溉对土壤水盐分布与冬小麦产量的影响[J].农业工程学报,2009,25(9):36~42.
    55.吴忠东,王全九.微咸水连续灌溉对冬小麦产量和土壤理化性质的影响[J].农业机械学报,2010,41(9):36~43.
    56.吴忠东,王全九.微咸水钠吸附比对土壤理化性质和入渗特性的影响研究[J].干旱地区农业研究,2008,26(1):231~236.
    57.武雪萍,郑妍,王小彬,等.不同盐分含量的海冰水灌溉对棉花产量和品质的影响[J].资源科学,2010,32(3):452~456.
    58.肖娟,孙西欢.玉米咸水沟灌试验研究[J].山西水利,2006,(4):65~66.
    59.肖振华,王学锋,尤文瑞.冬小麦节水灌溉及其对土壤水盐动态的影响[J].土壤,1995,27(1):28~34.
    60.辛承松,董合忠,唐薇,等.不同肥力滨海盐土对棉花生长发育和生理特性的影响[J].棉花学报,2007,19(2):124~128.
    61.辛景峰,等.土壤盐渍度不同表示方法的比较和相关研究[C]//石元春.盐渍土的水盐运动.北京:北京农业大学出版社,1986:57~60.
    62.熊毅,刘文政.排水在华北平原防治土壤盐渍化中的重要意义[J].土壤,1962,(3):6~
    11.
    63.雪静,王全九,毕远杰.微咸水间歇供水土壤入渗特征[J].农业工程学报,2009,25(5):14~19.
    64.严晔端,李悦.发展咸淡水混灌技术合理开发地下水资源[J].地下水,2000,(4):153~
    156.
    65.杨传杰,罗毅,孙林,等.灌溉水矿化度对玛纳斯流域棉花生长影响的试验研究[J].资源科学,2012,34(4):660~667
    66.杨永胜,孙东磊,杨雪川,等.河北省中南部棉纤维品质与气象因子相关关系性研究[J].中国农学通报,2010,26(1):222~226.
    67.叶武威,刘金定,樊宝相,等.盐分(NaCl)对陆地棉纤维性状的影响[J].中国棉花,1997,24(3):17~18.
    68.于天仁,等.土壤分析化学[M].北京:科学出版社,1988.
    69.余隆新,唐仕芳,王少华,等.湖北省棉纤维品质生态区划及研究[J].棉花学报,1993,5(2):15~20.
    70.张国伟,路海玲,张雷,等.棉花萌发期和苗期耐盐性评价及耐盐指标筛选[J].应用生态学报,2011,22(8):2045~2053.
    71.张俊莲,张国斌,王蒂.向日葵耐盐性比较及耐盐生理指标选择[J].中国油料作物学报,2006,28(2):l76~l79.
    72.张妙仙,王仰仁,王仲熊.山西省涑水河盆地小麦棉花耐盐度方程[J].土壤侵蚀与水土保持学报,1999,5(6):123~126.
    73.张亚哲,申建梅,王莹,等.河北平原地下(微)咸水的分布特征及开发利用[J].农业环境与发展,2009(6):29~33.
    74.张余良,陆文龙,张伟,等.长期微咸水灌溉对耕地土壤理化性状的影响[J].农业资源科学学报,2006,25(4):969~973.
    75.张豫,王立洪,孙三民,等.阿克苏河灌区棉花耐盐指标的确定[J].中国农业科学,2011,44(10):2051~2059.
    76.中国农业科学院棉花研究所.中国棉花栽培学[M].上海:上海科技出版社,2013.
    77.中国土壤学会盐溃土专业委员会编.中国盐渍土分类分级文集[M].南京:江苏科技出版社,1989,152~158.
    78.周玲玲,孟亚利,王友华,等.盐胁迫对棉田土壤微生物数量与酶活性的影响[J].水土保持学报,2010,24(2):241~246.
    79.周晓妮,刘少玉,王哲,等.华北平原典型区浅层地下水化学特征及可利用分析——以衡水为例[J].2008,(2):56~59.
    80.周在明,张光辉,王金哲,等.环渤海微咸水区土壤盐分及盐渍化程度的空间格局[J].农业工程学报,2010,26(10):15~20.
    81. Ahmad S., Khan N., Iqbal M.Z., et al.. Salt tolerance of cotton (Gossypium hirsutum L.)[J].Asian J. Plant Sci.,2002,1:715~719.
    82. Andrews S.S., Karlen D.L., Mitchell J.P.. A comparison of soil quality of indexing methodsfor vegetable production systems in northern California[J]. Agriculture, Ecosystems andEnvironment,2002,90:25~45.
    83. Ashraf M., Ahmad S.. Influences of sodium chloride on ion accumulation, yield components,and fibre characteristics in salt-tolerances and salt-sensitive lines of cotton (Gossypiumhirsutum L.)[J]. Field Crops Res,2000,66:115~127.
    84. Ayars J.E., Phene C.J., Hutmacher R.B., et al.. Subsurface drip irrigation of row crops: areview of15years of research at the Water Management Research Laboratory[J]. AgriculturalWater Management,1999,42:1~27.
    85. Ayers R.S., Wadleigh C.H., and O.C. Magistad. The interrelationships of salt concentrationand soil moisture content with the growth of beans[J]. J. Am. Soc. Agron.1943,35:796~
    810.
    86. Ayers A.D., Westcot D.W.. Water quality for Agriculture[A]. Irrigation and Drainage Paper29,Revision1. FAO, Rome.1985.
    87. Barnard J H, Rensburg L D, Bennie A T. Leaching irrigated saline sandy to sandy loam apedalsoils with water of a constant salinity[J]. Irrigation Science,2010,28:191~201.
    88. Batchelor C.H., Lovell C.J., Murata M.. Simple microirrigation techniques for improvingirrigation efficiency on vegetable gardens[J]. Agricultural Water Management,1996,32:37~
    48.
    89. Beltrán J.M.. Irrigation with saline water: benefits and environmental impact[J]. AgriculturalWater Management,1999,40(2-3):183~194.
    90. Bezborodov G.A., Shadmanov D.K., Mirhashimov R.T., et al.. Mulching and water qualityeffects on soil salinity and sodicity dynamics and cotton productivity in Central Asia[J].Agriculture, Ecosystems and Environment,2010,138:95~102.
    91. Brugnoli E., Bjorkman O.. Growth of cotton under continuous salinity stress: influence onallocation pattern, stomatal and nonstomatal components of photosynthesis and dissipation ofexcess light energy[J]. Planta,1992,187:335~347.
    92. Brugnoli E., Lauteri M.. Effects of salinity on stomatal conductance, photosynthetic capacity,and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitivebean (Phaseilus vulgaris L.) C3non-halophytes[J]. Plant Physiology,1991,95:628~635.
    93. Caldwell B.A.. Enzyme activities as a component of soil biodiversity: A review[J].Pedobiologia,2005,49:637~644.
    94. Carter D.R., Cheeseman J.M.. The effect of external NaCl on thylakoid stacking in lettuceplants[J]. Plant, Cell&Environment,1993,16:215~223.
    95. Carter M.R., Gregorich E.G., Anderson D.W., et al.. Concepts of soil quality and theirsignificance[A]. In: Gregorich, R.G., Carter, M.R.(Eds.), Soil Quality for Crop Productionand Ecosystem Health[M]. Developments in Soil Science25. Elsevier, Amsterdam,1997, pp.1~9.
    96. Cetin O., Bilgel L.. Effects of different irrigation methods on shedding and yield of cotton[J].Agricultural Water Management,2002,54(1):1~15.
    97. Chaudhury J., Mandal U.K., Sharma K.L., et al.. Assessing soil quality under long-termrice-based cropping system[J]. Communication Soil Sci. Plant Analysis,2005,36:1141~
    1161.
    98. Chen W.P., Hou Z.A., et al.. Evaluating salinity distribution in soil irrigated with saline waterin arid regions of northwest China[J]. Agricultural Water Management,2010,97:2001~
    2008.
    99. Datta K.K. and de Jong C.. Adverse effect of waterlogging and soil salinity on crop and landproductivity in northwest region of Harvana, India[J]. Agricultural Water Management.2002,57:223~228.
    100.de Clercq W.P., Van Meirvenne M.. Effect of long-term irrigation application on the variationof soil electrical conductivity in vineyards[J]. Geoderma,2005,128:221~233.
    101.Dick R.P., Myrold D.D., Kerle E.A.. Microbial biomass and soil enzyme activities incompacted and rehabilitated skid trail soil[J]. Soil Science Society of America Journal,1988,52:512~516.
    102.Dong H.Z., Li W.J., Tang W., et al.. Furrow seeding with plastic mulching increase standestablishment and lint yield of cotton in a saline field[J]. Agron. J.2008,100:1640~1646.
    103.Dong H.Z., Li W.J., Tang W., et al.. Early plastic mulching increases stand establishment andlint yield of cotton in saline fields[J]. Field Crops Research,2009,111:269~275.
    104.Dong H.Z.. Combating salinity stress effects on cotton with agronomic practices[J]. AfricanJournal of Agricultural Research,2012,34(7):4708~4715.
    105.Doran J.W., Coleman D.C., Bezdick D.F., et al.(eds): Defining soil quality for a sustainableenvironment[A]. SSSA special publication.No.35,1994.
    106.Du Plessis H.M.. On the concept of leaching requirement for salinity control[J]. S Afr J PlantSoil,1986,3:181~184.
    107.Elfving D.C.. Crop response to trickle irrigation[J]. Hortic. Rev.,1982,4:1~48.
    108.Erkossa T., Itanna F., Stahr K.. Indexing soil quality: a new paradigm in soil scienceresearch[J]. Aust. J. Soil Res.,2007,45:129~137.
    109.Evans R.G., Smith G.J., et al.. Saline water application effects on furrow infiltration ofred-brown earths[J]. Transactions of the ASAE,1990,33(5):1563~1572.
    110.Frenke H.L.. Solution of gypsum and improvement of sodic soil arousedby elementexchange[J]. J. Soil Sci.,1989,40(3):599~611.
    111.Ghollarata M., Raiesi F.. The adverse effects of soil salinization on the growth of Trifoliumalexandrinum L. and associated microbial and biochemical properties in a soil from Iran[J].Soil Biology and Biochemistry,2007,39(7):1699~1702.
    112.Hamdy A.. A review paper on: Soil salinity, crop salt response and crop salt tolerancemechanism[A]. In: Proceedings of Advances in Soil Salinity and Drainage Management toSave Water and Protect the Environment[M].2002, Alger, Algeria. P.3~72.
    113.Hayward H.B. and Long E.M., Anatomical and physiological responses of the tomato tovarying concentrations of sodium chloride, sodium sulphate and nutrient solutions[J]. Bot.Gaz.,1941,102:437~462.
    114.Hemmat A., Khashoel A.A.. Emergence of irrigated cotton in flatland planting in relation tofurrow opener type and crust-breaking treatments for Cambisols in central Iran[J]. Soil Till.Res.,2003,70:153~162.
    115.Karin. The effect of NaCl on growth, dry mater allocation and ion uptake in salt marsh andinland population of America Maritima[J]. New phytol,1997,135:213~225.
    116.Karlen D.L., Scott D.E.. A framework for evaluating physical and chemical indicators of soilquality[A]. In: Dorman J.W. et al. ed. Defining Soil Quality for a Sustainable Environment[M].Soil Science Society of American Publication No35. Inc, Madison, Wisconsin, USA,1994:53~72.
    117.Karlen D.L., Parkin, T.P., Eash, N.S.. Use of soil quality indicators to evaluate conservationreserve program sites in Iowa[A]. In: Doran, J.W., Jones, A.J.(Eds.), Methods for assessingsoil quality[M]. SSSA, Madison,1996, pp.345~355.
    118.Koyro H.W.. Effect of salinity on growth, photosynthesis, water relations and solutecomposition of the potential cash crop halophyte Plantago coronopus (L.)[J]. Environmentaland Experimental Botany,2006,56:136~146.
    119.Larson W.E., Pierce F.J.. The Dynamics of Soil Quality as a Measure of SustainableManagement[A]. In: Defining Soil Quality for a Sustainable Environment[M]. Doran J.W.,Coleman, D.C., Bezdicek, D.F., Stewart, B.A., Eds.; SSSA, Spec. Pub. No.35. ASA, CSSAand SSSA, Madison, WI,1994, pp.37~51.
    120.Leffelaar P.A., Sharma P. Leaching of highly saline sodic soil[J]. J. Hydrol.,1977,32:203~
    218.
    121.Letey J.. Is irrigated agriculture sustainable? Soil and Water Science: Key to UnderstandingOur Global Environment[M]. SSSA Special Publication41, SSSA, Madison,1994, WI. pp.23~27.
    122.Maas E.V. and Hoffman, G.J.. Crop salt tolerance-current assessment[J]. ASCE J. Irrig. Drain.Div.,1977,103:115~134.
    123.Malash N.M., Flowers T.J., Raga R.. Effect of irrigation systems and water managementpractices using saline and non-saline water on tomato production[J]. Agricultural WaterManagement,2005,78(1):25~38.
    124.Malash N.M., Flowers T.J., Ragab R.. Effect of irrigation methods, management and salinityof irrigation water on tomato yield, soil moisture and salinity distribution[J]. IrrigationScience,2008,26(4):313~323.
    125.Mandal U.K., Warrington D.N., Bhardwaj A.K., et al. Evaluating impact of irrigation waterquality on a calcareous clay soil using principal component analysis[J]. Geoderma,2008,144:189~197.
    126.Marcelis L.F.M. and Hooijdonk J. Van. Effect of salinity on growth, water use and nutrientuse in radish (Raphanussativus L.)[J]. Plant and Soil,1999,215:57~64.
    127.Meloni D.A., Oliva M.A., Ruiz H.A., et al.. Contribution of proline and inorganic solutes toosmotic adjustment in cotton under salt stress[J]. J. Plant Nutr.,2001,24:599~612.
    128.Minhas P.S.. Saline water management for irrigation in India[J]. Agricultural WaterManagement,1996,30(1):1~24.
    129.Moreno F., Cabera F., et al.. Water-movement and salt leaching in drained and irrigated marshsoils of southwest Spain[J]. Agricultural water management,1995,27(1):25~44.
    130.Oster J.D. and Schroer F.W.. Infiltration as influenced by irrigation water quality[J]. SoilScience Society of America Journal,1979,43(3):444~447.
    131.Pascale S.D., Barbieri G.. Effects of soil salinity from long-term irrigation with saline-sodicwater on yield and quality of winter vegetable crops[J]. Scientia Horticulturae,1995,64:145~157.
    132.Pessarakli M.. Handbook of Plant and Crop Physiology[M]. New York: Marcel Dekker, Inc.
    1994.
    133.Qadir M., Shams M.. Some agronomic and physiological aspects of salt tolerance in cotton(Gossypium hirsutum L.)[J]. J. Agron. Crop Sci.,1997,179:101~106.
    134.Qadir M., Noble A.D., Qureshi, A.S., et al.. Salt-induced land and water degradation in theAral Sea basin: a challenge to sustainable agriculture in Central Asia[J]. Natural ResourcesForum,2009,33:134~149.
    135.Quilchano C., Maranon T.. Dehydrogenase activity in Mediterranean forest soils[J]. Biol.Fertil. Soils,2002,35:102~107.
    136.Rajak D., Manjunatha M.V., Rajkumar G.R., et al.. Comparative effects of drip and furrowirrigation on the yield and water productivity of cotton (Gossypium hirsutum L.) in a salineand waterlogged vertisol[J]. Agricultural Water Management,2006,83:30~36.
    137.Rathert G.. Effects of high salinity stress on mineral and carbohydrate metabolism of twocotton varieties[J]. Plant and Soil,1983,73:247~256.
    138.Rhoades J.D., Kandiah A., Mashali A.M.. The use of saline waters for crop production-FAOirrigation and drainage paper48[A]. Rome: Food and Agriculture Organization of the UnitedNations Rome,1992.
    139.Rietz D.N., Haynes R.J.. Effects of irrigation-induced salinity and sodicity on soil microbialactivity[J]. Soil Biology&Biochemistry,2003,35:845~854.
    140.Sadeh A., Ravina I.. Relationships between yield and irrigation with low-quality water—asystem approach[J]. Agricultural Systems,2000,64:99~113.
    141.Samani Z.A., Wallker W.R., Willardson L.S.. Infiltration under surge flow irrigation[J].Transactions of the ASAE,1985,28(5):1539~1542.
    142.Sandoval, F. M. and L. C. Benz. Effect of bare fallow, barley, and grass on salinity of a soilover a saline water table[J]. Soil Sci. Soc. Am. Proc.,1966,30(3):392~396.
    143.Saysel A.K., Barlas Y. A dynamic model of salinization on irrigated lands[J]. EcologicalModelling,2001,139(2-3):177~199.
    144.Schoenholtz S.H., Miegroet H.V., Burger J.A.. A review of chemical and physical propertiesas indicators of forest soil quality: challenges and opportunities[J]. Forest Ecology andManagement,2000,138:335~356.
    145.Sharma S.K., Gupta I.C.. Saline environment and plant growth[M]. India: Agro BotanicalPublishers.1986.
    146.Sharma S.K., Manchanda H.R.. Influence of leaching with different amounts of water ondesalinization and permeability behaviour of chloride and sulphate-dominated saline soils[J].Agricultural Water Management,1996,31:225~235.
    147.Singh D.K., Kumar S.. Nitrate reductase, arginine deaminase, urease and dehydrogenaseactivities in natural soil (ridges with forest) and in cotton soil after acetamiprid treatments[J].Chemosphere,2008,71:412~418.
    148.Smith J.L., Halvorson J.J., Papendick R.I.. Using multiple variable indicators Kriging forevaluating soil quality[J]. Soil Sci. Soc. Am. J.,1993,57:743~749.
    149.Steppuhn H., van Genuchten M.Th., Grieve C.M.. Crop ecology, management and quality,root-zone salinity: I. selecting a product-yield index and response function for croptolerance[J]. Crop Sci,2005,45(1):209~220.
    150.Tripathia S., Chakraborty A., Chakrabartia K., et al. Enzyme activities and microbial biomassin coastal soils of India[J]. Soil Biology&Biochemistry,2007,39:2840~2848.
    151.Ungar I.A. Seed germination and seed-bank ecology in halophytes. Seed development andgermination[M]. New York: Marcel Dekker,1995:599~628.
    152.van Genuchten M.Th. Analyzing crop salt tolerance data: Model description and user’smanual[R]. UDSA, ARS, U.S. Slinity Lab. Research Report No.120. U.S. Gov. PrintingOffice, Washington, DC.1983.
    153.Wan S.Q., Kang Y.H., Wang D., et al. Effect of drip irrigation with saline water on tomato(Lycopersicon esculentum Mill) yield and water use in semi-humid area[J]. Agricultural WaterManagement,2007,90:63~74.
    154.Wang F.H., Wang X.Q., Sayre K.. Comparison of conventional, flood irrigated, flat plantingwith furrow irrigated, raised bed planting for winter wheat in China[J]. Field Crops Research,2004,87:35~42.
    155.Wang R.S., Kang Y.H., Wan S.Q., et al.. Salt distribution and the growth of cotton underdifferent drip irrigation regimes in a saline area[J]. Agricultural Water Management,2011,100:58~69.
    156.Wang R.S., Kang Y.H., Wan S.Q., et al.. Influence of different amounts of irrigation water onsalt leaching and cotton growth under drip irrigation in an arid and saline area[J]. AgriculturalWater Management,2012,110:109~117.
    157.Weibull W.. A statistical distribution function of wide application[J]. J. Appl. Mech.1951,18:293~297.
    158.Xiao Z.H., Prendergast B., Rengasamy P.. Effect of irrigation water quality on soil hydraulicconductivity[J]. Pedosphere,1992,2(3):237~244.
    159.Yuan B.C., Xu X.G., Li Z.Z., et al.. Microbial biomass and activity in alkalized magnesic soilsunder arid conditions[J]. Soil Biology&Biochemistry,2007,393:3004~3013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700