北京市崇文区绿地表层土壤质量研究与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市绿地功能的发挥离不开土壤,城市的居住适宜性、环境质量和人们的生活品质都与城区内土壤所行使的功能密切相关。本研究分析测定了北京市崇文区公园绿地、街旁绿地、居住绿地和行道树绿带土壤的理化性质、重金属污染水平以及微生物数量和活性,揭示了崇文区绿地土壤存在的主要问题,评价了绿地土壤的肥力质量、环境质量和生物质量。研究显示:
     (1)崇文区绿地土壤理化性质
     崇文区4类绿地土壤总体上均属于砂质土。崇文区绿地土壤容重变幅为1.12~1.69 g/cm3,平均1.35g/cm3;行道树绿带土壤容重显著高于其它3类绿地,但压实程度尚未达到影响植物生长的水平。崇文区绿地土壤总孔隙度平均为49.14%;公园、街旁和居住绿地土壤总孔隙度均在适宜范围之内(一般适于植物生长发育的总孔隙度为50~56%),只有行道树绿带土壤的孔隙度偏低(40.95%),对植物根系生长可能具有一定影响。崇文区各类绿地土壤紧实度均低于2.5 Mpa;一般情况下,紧实度测量值达到2.5 Mpa时会限制根系生长,因此,对土壤紧实度的测定结果也表明崇文区4类绿地土壤不存在明显的土壤压实问题。
     崇文区4类绿地土壤pH值介于7.73~8.58之间,所有样点的土壤均为碱性。崇文区绿地土壤有机质、全氮、全磷、全钾含量的均值分别为18.79 g/kg、0.91g/kg、0.96 g/kg和17.07 g/kg。速效氮、速效磷和速效钾的平均含量分别为50.66 mg/kg、29.91 mg/kg和44.16 mg/kg。崇文区绿地土壤碳氮比平均为13.03。依据全国第二次土壤普查土壤肥力标准,崇文区4类绿地土壤有机质含量总体上处于中等水平,部分行道树绿带样点的土壤有机质含量较低;4类绿地土壤全氮含量总体属于中等偏下水平,但各类绿地土壤速效氮含量总体上处于低或很低水平;崇文区绿地土壤总体上非但不缺磷,而且全磷含量普遍较高,速效磷在各绿地土壤中也均不是主要的限制性因子,4类绿地中以居住绿地土壤全磷和有效磷含量为最高; 4类绿地土壤速效钾含量均存在不同程度的缺乏,其中行道树绿带土壤速效钾缺乏问题最为严重。
     土壤肥力综合指数的计算结果显示,公园绿地土壤养分勉强达到中等水平,街旁绿地、居住绿地和行道树绿带土壤养分总体状况均为低等,主要是由于各绿地土壤速效氮和速效钾含量较低所致。
     (2)崇文区绿地土壤环境质量
     崇文区绿地土壤Zn、Cu、Pb、Cr、Ni、As的平均含量分别为63.78 mg/kg、53.72 mg/kg、46.53 mg/kg、25.80 mg/kg、15.76 mg/kg和11.74 mg/kg。参照北京市土壤背景值、中国土壤背景值、国家土壤环境质量一级或二级标准值,崇文区各类型绿地土壤均不存在Cr和Ni污染,但As、Cu、Pb、Zn均有不同程度的超标现象。4类绿地中,行道树绿带土壤的Zn、Pb、Cr含量均最高;而居住绿地土壤Cu含量最高,Pb含量最低,Zn含量也处于最高一级水平;总体上,公园绿地土壤重金属污染相对轻于其它3种绿地类型。
     (3)崇文区绿地土壤生物质量
     对全崇文区绿地土壤而言,脲酶活性平均为0.63 mg NH3-N·g-1·24h-1,脱氢酶活性平均92.06 mg TPF·kg-1·h-1,过氧化氢酶活性平均10.48 ml KMnO4·g-120min-1,酸性磷酸酶活性平均29.02 mg C6H5NO3·kg-1·h-1,碱性磷酸酶的平均酶活性为30.28 mg C6H5NO3·kg-1·h-1。不同土壤酶之间以及土壤酶活性与土壤物理性质、养分和重金属含量之间存在着不同程度的相关关系。在测定的5种土壤酶中,过氧化氢酶、脲酶和碱性磷酸酶比较适于作为城市绿地土壤质量的酶学评价指标。
     崇文区绿地土壤微生物生物量碳、微生物生物量氮的平均含量分别为417.14 mg/kg和62.86 mg/kg;绿地土壤基础呼吸速率平均值为0.480 mg CO2-C·kg-1·h-1;土壤微生物熵平均为4.09 %;代谢熵平均为1.53 mg·g-1·h-1。4类绿地土壤3大微生物类群总数量平均为4.69×106个·g-1,其中细菌所占的比例达到88.87%。在测定的各土壤微生物指标中,只有土壤基础呼吸和土壤微生物量碳氮比与其它指标的相关性较差;除此之外,各微生物指标之间几乎均存在两两间的显著相关关系。崇文区绿地土壤微生物指标与土壤物理指标普遍具有显著的相关性,与部分化学指标和重金属元素也呈显著相关关系。在研究的所有微生物指标中,细菌、真菌和放线菌数量、微生物量碳、微生物量氮最适合作土壤质量评价的微生物指标。
     (4)比较所有测定指标的方差分析和多重比较结果,无法确定4类绿地土壤总体质量状况间的显著性差异,仅可概括出总体趋势为:公园绿地土壤质量优于街旁和居住绿地,这3类绿地均优于行道树绿带。然而,通过主成分分析(PCA)可计算出崇文区绿地所有土壤样点的综合主成分值,从而可对研究地点的土壤质量进行定量、综合的评价;该方法不仅可以对所有调查样点的土壤质量进行排序,更可清晰的说明公园绿地、街旁绿地、居住绿地和行道树绿带土壤质量从大到小依次降低,且两两间存在显著差异。
     另外,本文将“数字地球”软件应用于城市绿地土壤采样方案设计中,对于城市土壤研究中的调查取样问题可能会有借鉴作用。
     目前,有关城市绿地土壤质量的评价体系(如评价方法、指标体系、质量标准)以及与此紧密相关的绿地土壤管理体系尚未建立,本文在综合评价城市绿地土壤方面进行了探索性研究,并对上述相关问题进行了具有作者鲜明观点的探讨。作者认为,绿地土壤质量评价的合适研究尺度应是地块水平,这一尺度不仅与绿化施工、绿地管理实践活动的尺度相符,也避免了在更大的研究尺度上探讨城市土壤质量问题所面临的高度土壤异质性问题。因此,城市绿地土壤研究未来的发展趋势将是面向科学城市土壤管理和健康人居环境的土壤质量监测和评价,研究尺度将缩小到地块水平以与地块尺度的建设或管理活动相统一。
The urban green area functions exertive can not be separated from the soil. The urban residential environmental suitability, environment quality and people's life quality are closely related to urban soil functions. In this study, soil samples from four types of urban green areas in Chongwen District of Beijing, including park green area, settlement green area, roadside green area and street tree greenbelt, were collected. And soil physical and chemical properties, heavy metal pollution level, as well as microorganism quantity and activeness were determined. The main problems of green areas soil of Chongwen District were revealed. Fertility quality, environment quality and biological quality of green areas soil were evaluated. The research demonstrated:
     (1) Soil physical and chemical properties of urban green areas in Chongwen district
     Four types of urban green areas soil in Chongwen District are sandy soils. The amplitude of Chongwen District green areas soil bulk density is 1.12~1.69 g/cm3, and average value is 1.35 g/cm3.The bulk density of street tree greenbelt is significantly higher than the other three types of green areas, but the compaction degree not yet reached the level of impact on plant growth. The average value of Chongwen District green areas soil total porosity is 49.14%; Soil total porosity of park green area, settlement green area, and roadside green area is in suitable scope (generally, suitable scope of soil total porosity for plant growth is 50~56%). Only soil total porosity of street tree greenbelt is low (40.95%), which is possibly has certain influence on growth of plant root. The compaction of Chongwen District green areas soil is lower than 2.5Mpa; In general case, growth of plant root will be limited when the soil compaction reaching 2.5Mpa. Therefore, the result of soil compaction shows that there is no obvious soil compaction problem.
     The amplitude of Chongwen District green areas soil pH is 7.73~8.58. Almost all the soil samples are alkaline. The average value of organic matter, total nitrogen, total phosphorus, and total potassium content is 18.79 g/kg, 0.91 g/kg, 0.96 g/kg and 17.07 g/kg, respectively. The average content of available nitrogen, available phosphorus and available potassium is 50.66 mg/kg, 29.91mg/kg and 44.16mg/kg, respectively. The soil C/N of Chongwen District green areas is 13.03. According to soil fertility standard of the second national soil survey, the soil organic matter content of Chongwen District green areas is in the medium level. Some of street tree greenbelt soil samples’organic matter content is low. The soil total nitrogen content of Chongwen District green areas is in lower-middle level. But the soil available nitrogen content is in low or very low level. The Chongwen District green areas soil does not lack the phosphorus grossly, moreover the total phosphorus content is generally high, and available phosphorus is not the main limited factor in Chongwen District green areas soil. Among the four types green areas soil, settlement green area soil total phosphorus and available phosphorus content is highest. About one-third street tree greenbelt soil samples lack total potassium. The other three types green areas soil do not have the problem. But available potassium has the varying degree lacking in four type of green areas soil. The street tree greenbelt soil available potassium is the most serious lacking.
     The result of soil fertility comprehensive index shows that the park green area soil nutrient reaches the medium level. The settlement green area, roadside green area and street tree greenbelt soil nutrient is in low level. It is maybe because that available nitrogen and available potassium are low.
     (2) Soil envioronmental quality of urban green areas in Chongwen district
     The average concentration of Zn, Cu, Pb, Cr, Ni and As in the green areas of Chongwen District is 63.78, 53.72, 46.53, 25.80, 15.76 and 11.74 mg/kg, respectively. According to BVB, BVC, NSEQS-Ⅰo r NSEQS-Ⅱ, the green area soil of Chongwen District is unpolluted by As and Ni, but As, Cu, Pb, Zn is over standard in different degree.
     Among the four types of green areas, the average concentrations of Zn, Pb and Cr in the soils of the street tree greenbelts are the highest. Cu concentrations in the soils of the settlement green area are the highest, and its Pb concentrations are the lowest. In general, the concentrations of heavy metals in the soils of park green area are lower than those of the other types of green areas.
     (3) Soil biological quality of urban green areas in Chongwen district
     The average enzyme activity of urease (UA), dehydrogenase (DHA), catalase (CA), acid phosphatase (acid-Pa) and alkaline phosphatase (alk-Pa) in the green areas of Chongwen District is 0.63 mg NH3-N·g-1·24h-1, 92.06 mg TPF·kg-1·h-1, 10.48 ml KMnO4·g-120min-1, 29.02 mg C6H5NO3·kg-1·h-1, and 30.28 mg C6H5NO3·kg-1·h-1, respectively. There are varying degrees of relevance among different soil enzymes as well as soil enzyme activities with soil physico-chemical properties. On the whole, soil enzyme activities in park green areas are the highest, soil enzyme activities in street tree greenbelts are the lowest. No significant differences are found in soil enzyme activities between settlement and roadside green areas. Among the five kinds of soil enzymes, catalase, urease and alkalinity phosphatase are suitable for soil quality enzymatic assessment in urban green areas.
     The average concentration of soil microbial biomass carbon and soil microbial biomass nitrogen of green areas in Chongwen District is 417.14 mg/kg and 62.86 mg/kg, respectively. The soil basal respiration rate is 0.480 mg CO2-C·kg-1·h-1 in average. The average values of soil microbial quotient and metabolic quotient is 4.09 % and 1.53 mg·g-1·h-1. The total number of microbes (bacteria, fungi and actinomycete) is 4.69×106 CFU·g-1, among which, the proportion of bacteria reached 88.87%. A poor correlation between BR (soil basal respiration), Cmic: Nmic (soil microbial biomass carbon nitrogen ratio) and other soil microbial indicators are demonstrated in this study. In addition, almost anyone microbial indicator is significantly related with another microbial indicator. Soil microbial indicators are significantly with most physical indicator and are significantly correlated with a portion of chemical parameters and heavy metal elements. In all microbial indicators, the number of soil micrbes, Cmic (soil microbial biomass carbon) and Nmic (soil microbial biomass nitrogen) are best suitable for evaluating soil quality.
     (4) The results of variance analysis and multiple comparisons of all parameters are compared, but significant difference of overall quality condition among four kind of green area soil does been determined, only a general trend can be summed up as follows: the soil quality of park green area is superior to roadside and settlement green area and they all are better than the street tree green area. However, we can get the comprehensive principal component values of all sampling points through the principal component analyzes (PCA), thus having a quantitatively and comprehensively soil quality evaluation to all sampling points. This method not only may carry on sorting to soil quality of all investigation sampling point, but also clearly explain that the quality decrease in order of park green area>roadside green area>settlement green area>street tree greenbelt. And there is significant difference between every two types.
     In addition, this article applied“digital globe”the software to the urban green area soil sampling program, may be used for reference to the study of urban soil sampling survey.
     At present, soil quality evaluation system (such as the evaluation principles, methods, indicators, quality standards) of the urban green areas as well as the green areas management system which is closely related with this not yet been established, this article has also conducted the exploring research on the synthetic evaluation of urban green areas soil quality, and above-mentioned related issues were discussed with a clear viewpoint of the author. The author believed that the suitable scale of green area soil quality assessment study should be block-scale level, this research criterion not only matched with afforested construction, green areas management practice criterion, also avoided high degree of heterogeneity problem of urban soil in larger-scale studies on urban soil quality. Therefore, development trend of urban green areas soil research are soil quality monitoring and evaluation which facing urban soil management and healthy living environment. And research-scale will be reduced to the plots level which matching with the building or land management activities.
引文
Abrahams P W. Soils: Their Implications to Human Health. The Science of the Total Environment, 2002, 291 (1~3): 1~32
    Albasel N, Cottenie A. Heavy Metal Contamination near Major Highways, Industrial and Urban Areas in Belgian Grassland. Water, Air, and Soil Pollution, 1985, 24(1): 103~109
    Alexander M. Agriculture’s Responsibility in Establishing Soil Quality Criteria. In: Environmental Improvement-Agriculture’s Challenge in the Seventies. Washington: National Academy of Sciences, 1971, 66~71
    Alexandrovskaya E I, Alexandrovskiy A L. History of the Cultural Layer in Moscow and Accumulation of Anthropogenic Substances in It. Catena, 2000, 41(1~3): 249~259
    Anderson T H, Domsch K H. Ratios of Microbial Biomass Carbon to Total Organic Carbon in Arable Soils. Soil Biology and Biochemistry, 1989, 21(4): 471~479
    Andrews S S, Flora C B, Mitchell J P et al. Growers' Perceptions and Acceptance of Soil Quality Indices. Geoderma, 2003, 114(3~4): 187~213
    Andrews S S, Karlen D L, Mitchell J P. A Comparison of Soil Quality Indexing Methods for Vegetable Production Systems in Northern California. Agriculture, Ecosystems and Environment, 2002, 90(1): 25~45
    Avery B W. Soil Classification for England and Wales: Higher Categories. Harpenden: Rothamsted Experimental Station, 1980
    Barrios E, Delve R J, Bekunda M et al. Indicators of Soil Quality: A South-South Development of a Methodological Guide for Linking Local and Technical Knowledge. Geoderma, 2006, 135: 248~259
    Bauhus J, Pare D, Cote L. Effects of Tree Species, Stand Age and Soil Type on Soil Microbial Biomass and Its Activity in a Southern Boreal Forest. Soil Biology and Biochemistry, 1998, 30: 1077~1089
    Beck T. Methods and Application of Soil Microbiological Analysis at the Landensanstalt für Bodenkultur und Pflanzenbau (LBB) in Munich for the Determination of Some Aspects of Soil Fertility. In 5th Symposium on Soil Biology. Budapest: Romanian National Society of Soil Science, 1984, 13~20
    Birch G F, Scollen A. Heavy Metals in Road Dust, Gully Pots and Parkland Soils in a Highly Urbanised Sub-catchment of Port Jackson, Australia. Australian Journal of Soil Research, 2003, 41(7): 1329~1342
    Blume H P, Felix-Henningsen P, Fischer W R et al. Handbuch der Bodenkunde. Landsberg: EcomedVerlagsgesellschaft, 1996, 47
    Brookes P C, Landman A, Pruden G et a1. Chloroform Fumigation and the Release of Soil Nitrogen, a Rapid Direct Extraction Method to Measure Microbial Biomass Nitrogen in Soil. Soil Biology and Biochemistry, 1985, 17: 837~842
    Brown R J, Huddleston J H, Anderson J L. Managing Soils in an Urban Environment. Madison: American Society of Agronomy, 2000
    Bullock P, Gregory P J. Soils in the Urban Environment. Boston: Wiley-Blackwell, 1991 Burns R C. Soil Enzymes. New York: Academic Press, 1978
    Carpenter-Boggs L, Stahlb P D, Lindstromc M J et al. Soil Microbial Properties under Permanent Grass, Conventional Tillage, and No-till Management in South Dakota. Soil and Tillage Research, 2003, 71(1): 15~23
    Chander K, Goyal S, Nandal D P et al. Soil Organic Matter Microbial Biomass and Enzymy Activities in a Tropical Agroforesty System. Biology and Fertility of soil, 1998, 27,168~172
    Chatterjee A, Banerjee R N. Determination of Lead and Other Metals in a Residential Area of Greater Calcutta. The Science of the Total Environment, 1999, 227(2~3): 175~185
    Chiesura A. The Role of Urban Parks for the Sustainable City. Landscape Urban Plan, 2004, 68, 129~138
    Chronopoulos J, Haidouti C, Chronopoulou-Sereli A et al. Variations in Plant and Soil Lead and Cadmium Content in Urban Parks in Athens, Greece. Science of the Total Environment, 1997, 196(1): 91~98 CJJ/T85-2002城市绿地分类标准北京:中国建筑工业出版社
    Compell C A, Biederbeck V O, Zenter R P et al. Effect of Crop Rotation and Cultural Practices on Soil Organic Matter, Microbial Biomass and Respiration in a Thin Black Chernozen. Canadian Journal of Soil Science, 1991, 71: 363~376
    Conry M J, Clinch P. The Effect of Soil Quality on the Yield Class of Forest Species Grown on the Slieve Bloom Mountain and Foothills. Forest, 1989, 62: 397~407
    Craul P J, Klein C J. Characterization of Streetside Soils in Syracuse, New York. Metropolitan Tree Improvement Alliance (METRIA) Proceedings 3 , 1980, 3: 88~101
    Craul P J. A Description of Urban Soils and Their Desired Characteristic. Arboriculture Journal, 1985, 11(11): 330~339
    Craul P J. Urban Soil in Landscape Design. New York: John Wiley, 1992
    Craul P J. Urban Soil, Application and Practices. New York: John Wiley, 1999
    Culbard E B, Thornton I, Watt J et al. Metal Contamination in British Urban Dusts and Soils. Journal of Environmental Quality, 1988, 17(2): 226~234
    DBJ08-231-98园林栽植土质量标准上海市园林管理局
    De Kimpe C R, Morel J L. Urban Soil Management: A Growing Concern. Soil Science, 2000, 165(1): 31-40
    Dick R P, Breakwill D, Turco R. Soil Enzyme Activities and Biodiversity Measurements as Integrating Biological Indicators. In: J W Doran, A J Johns. Handbook of Methods for Assessment of Soil Quality. Madison: SSSA, 1996, 247~272
    Dick R P, Myrold D D, Kerle E A. Microbial Biomass and Soil Enzyme Activities in Compacter and Rehabilitated Skid Trail Soils. Soil Science Society of America Journal, 1988, 52: 512~516
    Dick R P. Enzyme Activities as Integrative Indicators of Soil Healthy. In: C E Parkhurst, B M Doube, V V S R Gupta. Bioindicators of Soil Health. Oxon: CAB International, 1997, 121~157
    Dick R P. Soil Enzyme Activities as Indicators of Soil Quality. In: J W Doran, D C Coleman, D F Bezdicek, B A Stewart. Defining Soil Quality for a Sustainable Environment. Madison: SSSA, 1994, 107~124
    Ding M M, Yi W M, Liao L Y et al. Effects of Afforestation on Microbial Biomass and Activity in Soils of Tropical China. Soil Biology and Biochemistry, 1992, 24: 865~872
    Doran J W, Coleman D C, Bezdicek D F, Stewart B A. Defining Soil Quality for a Sustainable Environment. Madison: SSSA, 1994
    Doran J W, Parkin T B. Defining and Assessing Soil Quality. In: J W Doran, D C Coleman, D F Bezdicek, B A Stewart. Defining Soil Quality for a Sustaining Environment. Madison: SSSA, 1994, 3~21
    FAO (Food and Agriculture Organization of the United Nations). Guidelines for Soil Description. Roma: Food and Agriculture Organization of the United Nations. ftp://ftp.fao. org/agl/agll/docs/ wsrr 103 e.pdf, 2006
    Filip Z. International Approach to Assessing Soil Quality by Ecologically-related Biological Parameters. Agriculture, Ecosystems and Environment, 2002, 88(2): 169~174
    Fu B J, Liu S L, Chen L D et al. Comparing the Soil Quality Changes of Different Land Uses Determined by Two Quantitative Methods. Journal of Environmental Sciences, 2003, 15 (2): 167~172
    García C, Roldán A, Hernández T. Ability of Different Plants Species to Promote Microbiological Processes in Semiarid Soil. Geoderma, 2005, 124: 193~202
    GB15618-1995土壤环境质量标准
    Glover J D, Reganold J P, Andrews P K. Systematic Method for Rating Soil Quality of Conventional,Organic and Integrated Apple Orchards in Washington State. Agriculture, Ecosystems and Environment, 2000, 80: 29~45
    Harris R F, Bezdicek D F. Descriptive Aspects of Soil Quality/Health. In: J W Doran, D C Coleman, D F Bezdicek, B A Stewart. Defining Soil Quality for a Sustainable Environment. Madison: SSSA, 1994, 23~35
    Haynes R J. Size and Activity of the Soil Microbial Biomass under Grass and Arable Management. Biology and Fertility of Soils, 1999, 30: 210~216
    Head C P, Fisher R, O’Brien M. Best Management Practices for Community Trees-A Technical Guide to Tree Conservation in Athens-Clarke County, Georgia. Georgia: Landscape Management Division Office, 2001
    Herget J. R?umliche Differenzierung der Schadstoffgehalte in Stadtb?den Gelsenkirchens. Berichte zur Deutschen Landeskunde, 1996, 70 (1): 183~201
    Hiller D A, Meuser H. Urbane B?den. Berlin: Springer, 1998
    Hogg D, Barth J, Favoino E et al. Comparison of Compost Standards within the EU, North America, and Australasia. UK: Waste and Resources Action Programme Committee, 2002
    Hollis J M. Proposal for the Classification, Description and Mapping of Soils in Urban Areas. Peterborough: English Nature, 1992
    Hu K L, Zhang F R, Li H et al. Spatial Patterns of Soil Heavy Metals in Urban-rural Transition Zone of Beijing. Pedosphere, 2006, 16 (6):690~698
    Hudek V. Ecological Footprint, Climate Change and Cities. European Commission LIFE Programme, 2007
    Insam H, Domsch K H. Relationship between Soil Organic Carbon and Microbial Biomass on Chronosequences of Reclamation Sites. Microbial Ecology, 1988, 15: 177~188
    Insam H, Haselwandter K. Metabolic Quotient of Soil Microflora in Relation to Plant Succession. Oecologia, 1989, 79: 174~178
    Jan F, Alena N.Development of Soil Microbial Properties in Topsoil Layer during Spontaneous Successionin Heaps after Brown Coal Mining in Relation to Humus Microstructure Development. Geoderma, 2005, 129(1~2): 54~64
    Jim C Y. Soil Characteristics and Management in an Urban Park in Hong Kong. Environmental Management, 1998b, 22(5): 683~695
    Jim C Y. Soil Compaction as a Constraint to Tree Growth in Tropical and Subtropical Urban Habitats.Environmental Conservation, 1993, 20(1): 35~49
    Jim C Y. Urban Soil Characteristics and Limitations for Landscape Planting in Hong Kong. Landscape and Urban Planning, 1998a, 40(4): 235~249
    Jordan D, Kremer R J, Bergfield W A et a1. Evaluation of Microbial Methods as Potential Indicators of Soil Quality in Historical Agriculture Fields. Biological Fertilizer and Soils, 1995, 19(4): 297~302
    Kandeler E, Luftenegger G. Influence of Heavy Metals on the Functional Diversity of Soil Microbial Communites. Biology and Fertility of Soil, 1997, 23: 299~306
    Karlen D L, Ditzler C A, Andrews S S. Soil Quality: Why and How? Geoderma, 2003, 114(3~4): 145~156
    Karlen D L, Eash N S, Unger P W. Soil and Crop Management Effects on Soil Quality Indicators. American Journal of Alternative Agriculture, 1992, 7: 48~55
    Karlen D L, Mausbach M J, Doran J W et al. Soil Quality: A Concept, Definition, and Framework for Evaluation. Soil Science Society of America Journal, 1997, 61: 4~10
    Karlen D L, Stott D E. A Framework for Evaluating Physical and Chemical Indicators of Soil Quality. In: J W Doran, D C Coleman, D F Bezdicek, B A Stewart. Defining Soil Quality for a Sustainable Environment. Madison: SSSA,1994, 53~72
    Kays B L, Associates P A. Soils Assessments for Urban Tree Plantings. In: METRIA 5: Proceedings of the 5th Conference of the Metropolitan Tree Improvement Alliance. PA: University Park, www.ces.ncsu. edu/letcher/programs/nursery/ metria/ metria5/ m53.pdf, 1985, 13~17
    Kelting D L, Burger J A, Patterson S C et al. Soil Quality Assessment in Domesticated Forests-A Southern Pine Example. Forest Ecology and Management, 1999, 122(1~2): 167~185
    Khan K S, Xie Z M, Huang C Y. Effects of Cadmium、Lead and Zinc on Size of Microbial Biomass in Red Soil. Pedosphere, 1998, 8: 27~32
    Klausnitzer B. Fauna. In: H Sukopp, R Witting. Stadt?kologie, Stuttgart: Fisher Verlag, 1993, 239~270
    Konijnendijk C C, Nilsson K, Randrup T B et al. Urban Forests and Trees: a Reference Book. Berlin: Springer, 2005
    Kuser J E. Urban and Community Forestry in the Northeast. Dordrecht: Springer, 2007
    
    Landsberg H E. The Urban Climate. International Geophysical Series (28). London: Academic Press, 1981
    Larson W E, Pierce F J. Conservation and Enhancement of Soil Quality. In: J Dumanski. Evaluation for Sustainable Land Management in the Developing World. Proceedings of the International Workshop, Chiang Rai, Thailand, 15~21 Sept. 1991. Technical papers Vol.2 Bangkok: International Board for SoilResearch and Management, 1991, 175~203
    Larson W E, Pierce F J. The Dynamics of Soil Quality as a Measure of Sustainable Management. In: J W Doran, D C Coleman, D F Bezdicek, B A Stewart. Defining Soil Quality for a Sustainable Environment. Madison: SSSA, 1994, 37~52
    Markus J A, McBratney A B. An Urban Soil Study: Heavy Metals in Glebe, Australia. Australian Journal of Soil Research, 1996, 34(3): 453~465
    McCall G J H, De Mulder E F J, Marker B R. Urban Geoscience. London: Taylor & Francis, 1996
    Mcgrath S P, Chaudhri A M. Long Term Effects of Metals in Sewage on Soils Micro-organisms and plant. Journal of Industrial Microbiology, 1995, 14: 94~101
    Michael B C. The U.S. Environmental Protection Agency’s (EPA’s) Part 503 Rule. U.S. Environmental Protection Agency Office of Wastewater, 1994
    Monkiedje A, Spiteller M, Fotio D et al. The Effect of Land Use on Soil Health Indicators in Peri-urban Agriculture in the Humid Forest Zone of Southern Cameroon. Journal of Environmental Quality, 2006, 35: 2402~2409
    Mount H.Temperature Signatures for Anthropogenetic Soils in New York City. In: J M Kimble, R J Ahrens, R B Bryant. Classification, Correlation and Management of Anthropogenic Soils. Proceedings-Neveda and California, Sep.21~Oct.2, 1998. Lincoln: USDA, National Soil Survey Center, 1999, 137~140
    Murray K S, Rogers D T, Kaufman M M. Heavy Metals in an Urban Watershed in Southeastern Michigan. Journal of Environmental Quality, 2004, 33(1): 163~172
    Myrod D D. Relationship between Microbial Biomass Nitrogen and Nitrogen Availability Index. Soil Science Society of America Journal, 1987, 51: 1047~1049
    Nortcliff S. Standardisation of Soil Quality Attributes. Agriculture, Ecosystems and Environment, 2002 , 88: 161~168
    Olga M, Jaromir K, Jitka M. Some Microbiological Characteristics and Enzymatic Activities in Soils Polluted with Heavy Metals. 17th WCSS: Symposium No.12, 2002
    Patterson J C. Urban Forest Soils Field Trip Log: Washington, D.C. Washington, D C: National Capital Parks, 1981
    Pichtel J, Sawyerr H T, Czarnowska K. Spatial and Temporal Distribution of Metals in Soils in Warsaw, Poland. Environmental Pollution, 1997, 98(2): 169~174
    Powlson D S. The Soil Microbial Biomass: Before, Beyond and Back. In: K Ritz. Beyond the Biomass.Chichester: Wiley, 1994, 3~20
    Purves D, Mackenzi E J. Trace-element Contamination of Parklands in Urban Areas. Journal of Soil Science, 1969, 20(2): 288~290
    Purves D. Contamination of Urban Garden Soils with Copper and Boron. Nature, 1966, 210(5040): 1077~1078
    Puskás I, Farsang A. Diagnostic Indicators for Characterizing Urban Soils of Szeged, Hungary. Geoderma, 2009, 148(3~4): 267~281
    Radtke U, Th?nnessen M, Gerlach R. Die Schwermetallverteilung in Stadtb?den. Untersuch - ungen aus Duisburg und Düsseldorf. Geographische Rundschau, 1997, 49: 556~561
    Rao M A, Violante A, Gianfreda L. Interactions of Acid Phosphatase with Clays, Organic Molecules and Organo-mineral Complexes. Soil Biology and Biochemistry, 2000, 32: 1007~1014
    Renger M. Boden-und Grundwasserhaushalt. In: H Sukopp, R Wittig. Stadt?kologie. Stuttgart: Fischer Verlang, 1993, 172~182
    Ross D J, Kelliher F M, Tate K R. Microbial Processes in Relation to Carbon, Nitrogen and Temperature Regimes in Siberian Pinus Sylvestris L. Forest. Soil Biology and Biochemistry, 1999, 31: 757~767
    Rossiter D G, Burghardt W. Classification of Urban and Industrial Soils in the World Reference Base for Soil Resources. In: J L Morel. SUITMA 2003. Nancy(F): Conference CD-ROM: 1028.pdf, 2003
    Rossiter D G. Classification of Urban and Industrial Soils in the World Reference Base for Soil Resources. Journal of Soils and Sediments. 2007, 7 (2): 96~100
    Rossiter D G. Classification of Urban and Industrial Soils in the World Reference Base for Soil Resources. EUROSOIL 2004: 2nd European Soil Science Conference, Freiburg, 2004
    Scharenbroch B C, Lloyd J E, Johnson-Maynard J L. Distinguishing Urban Soils with Physical, Chemical, and Biological. Pedobiologia-international Journal of Soil Biology, 2005, 49(4): 283~296
    Schindelbeck R R, Vanes H M, Abawi G S et al. Comprehensive Assessment of Soil Quality for Landscape and Urban Management. Landscape and Urban Planning, 2008, 88(2~4): 73~80
    Sicardi M, arcía-Préchacb F G, Frionic L. Soil Microbial Indicators Sensitive to Land Use Conversion from Pastures to Commercial Eucalyptus Grandis (Hill ex Maiden) Plantations in Uruguay. Applied Soil Ecology, 2004, 27(2): 125~133
    Smith J L, E A Paul. The Significance of Soil Microbial Biomass Estimations. In: G Stotzky, J M Bollag. Soil Biochemistry Vol.6, New York: Marcel Dekker, 1991, 359~396
    Smith J L, Halvorson J J, Papendick R I. Multiple Variable Indicator Kriging: A Procedure for Integrating Soil Quality Indicators. In: J W Doran, D C Coleman, D F Bezdicek, B A Stewart. Defining Soil Quality for a Sustainable Environment. Madison: SSSA, 1994, 149~157
    Sparling G P. Ratio of Microbial Biomass Carbon to Soil Organic Carbon as a Sensitive Indicator of Changes in Soil Organic Matter. Australian Journal of Soil Research, 1992, 30, 195~207
    Stefanie F, Ellade G, Chirnageanu J. Researchers Concerning a Biological Index of Soil Fertility. In 5th Symposium on Soil Biology. Budapest: Romanian National Society of Soil Science, 1984, 35~45 Stefanovits P, Filep Gy, Füleky Gy. Talajtan. Mez?gazda Kiadó. Budapest,1999
    Stenberg B. Monitoring Soil Quality of Arable Land: Microbiological Indicators. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 1999, 49 (1): 1~24
    Stroganova M N, Myagkova A D, Prokof’eva T V. The Role of Soils in Urban Ecosystems. Eurasian Soil Science, 1995, 30, 82~86
    Stroganova M N, Myagkova A D, Prokofieva T. Soils of Moscow and Urban Environment. Moscow: Moscow State University Press, 1998
    Taylora J P, Wilsona B, Millsb M S et al. Comparison of Microbial Numbers and Enzymatic Activities in Surface Soils and Sub-soils Using Various Techniques. Soil Biology and Biochemistry, 2002, 34(3): 387~401
    Tessier L, Gregorich E G, Topp E. Spatial Variability of Soil Microbial Biomass Measured by the Fumigation Extraction Method, and KEC as Affected by Depth and Manure Application. Soil Biology and Biochemistry, 1998, 30: 1369~1377
    Tiller K G, Smith L H, Merry R H et al. The Dispersal of Automotive Lead from Metropolitan Adelaide into Adjacent Rural Areas. Australian Journal of Soil Research, 1987, 25(2): 155~166
    USDA. A Manual for the State Forestry Agencies in the Southern Region. USDA Forest Service, http://www.urbanforestrysouth.org/pubs/ufmanual/soils/index.htm, 2004
    USDA. Soil Quality Test Kit Guide. United States Department of Agriculture, Agricultural Research Service and Natural Resources Conservation Service-Soil Quality Institute. http://soils.usda.gov/sqi/kit2. html, 1999
    USDA. Urban Soil Primer http://soils.usda.gov/use/urban/downloads/ primer (screen).pdf, 2005
    Van Gestel M, Ladd J N, Amato M. Carbon and Nitrogen Mineralization from Two Soils of Contrasting Texture and Microaggregate Stability: Influence of Sequential Fumigation, Drying and Storage. SoilBiology and Biochemistry, 1991, 23: 313~322
    Vance E D, Brookes P C, Jenkinson D S. An Extraction Method for Measuring Soil Microbial Biomass C. Soil Biology and Biochemistry, 1987, 19: 703~707
    Vr??aj B, Poggio L, Marsan F A. A Method for Soil Environmental Quality Evaluation for Management and Planning in Urban Areas. Landscape and Urban Planning, 2008, 88(2~4): 81~94
    Warkentin B P. The Changing Concept of Soil Quality. Journal of Soil and Water Conservation, 1995, 50(3): 226~228
    Wheater C P, Wright J. Urban Habitats. New York: Routledge, 1999
    Wick B, Kühne R F, Vlek P L G. Soil Microbiological Parameters as Indicators of Soil Quality under Improved Fallow Management Systems in South-western Nigeria. Plant and Soil, 1998,202: 97~107
    Witting R. ?kologische der Grosstadtflora. Stuttgart: UTB Ulmer-Verlag, 1991
    Wu J, Joergensen R G, Pommerening B et al. Measurement of Soil Microbial Biomass C by
    Fumigation-extraction-an Automated Procedure. Soil Biology and Biochemistry, 1990, 22(8): 1167~1169
    白建峰,林先贵,尹睿等.砷污染土壤的生物修复研究进展土壤,2007,39(5):692~700
    包兵,丁武泉,吴丹重庆市城区园林土壤质量现状研究环境科学与技术,2008,31(12):51~52,156
    包兵,向见,黄小强浅谈市街绿地土壤存在的主要问题及改良对策遵义科技,2007,35(1):17~18
    鲍士旦土壤农化分析(第三版)北京:中国农业出版社,2000,8~23
    北京市土壤肥料工作站北京市土壤养分分等定级标准http://soil.bjny. gov.cn/ new %20 soil/ trfl–yfpj - pingjiafangfa.html,2007
    闭向阳,马振东,任利民鄂东南矿集区土壤砷环境地球化学特征物探与化探,2003,27(6):480~483
    曹承绵,严长生,张志明等.关于土壤肥力数值化综合评价的探讨土壤通报,1983,14(4):13~15
    曹志洪继承传统土壤学的成果,促进现代土壤学的发展——论“土壤质量演变规律与可持中国基础科学,2000,10:11~16
    曹志洪解译土壤质量演变规律,确保土壤资源持续利用世界科技研究与发展,2001,23(3):28~32
    柴楠,邱文成,尹林克等.克拉玛依中心城区城市园林绿地系统土壤养分综合评价新疆农业大学学报,2008,31(2):51~55
    常青,殷中意,李宏等.重庆市郊土壤中锌的调查分析重庆工商大学学报(自然科学版),2004,21(3):226~228
    陈红跃,闫雪燕,陈明洁等.不同大气污染区林木根区土壤重金属和酶活性研究生态环境,2006,15(3):513~518
    陈立新,赵淑苹,段文标哈尔滨市不同绿地功能区土壤重金属污染及评价林业科学,2007,43(A01):65~71
    陈龙乾,邓喀中,徐黎华等.矿区复垦土壤质量评价方法中国矿业大学学报,1999,28(5):449~452
    陈清硕城市土壤的概念及其研究意义南京农专学报,1999,15(2):44~49
    陈同斌,黄铭洪,黄焕忠等.香港土壤中的重金属含量及其污染现状地理学报,1997,52(3):228~236
    陈同斌,宋波,郑袁明等.北京市蔬菜和菜地土壤砷含量及其健康风险分析地理学报,2006,61(3):297~310
    陈同斌,郑袁明,陈煌等.北京市不同土地利用类型的土壤砷含量特征地理研究,2005,24(2):229~235
    陈同斌,郑袁明,陈煌等.北京市土壤重金属含量背景值的系统研究环境科学,2004,25(1):117~122
    陈祥,包兵重庆主城区园林土壤存在的主要问题及改良措施现代农业科技,2008,23:58~59
    程绪珂,胡运骅生态园林的理论与实践北京:中国林业出版社,2006
    崔晓阳,方怀龙城市绿地土壤及其管理北京:中国林业出版社,2001
    戴全厚,刘国彬,姜峻等.黄土丘陵区不同植被恢复模式对土壤酶活性的影响中国农学通报,2008,24(9):429~434
    戴伟和陈晓东北京低山地区土壤酶活性与土壤理化性质的关系河北林学院学报,1995,10(1):13~18
    单奇华,俞元春,张金池城市林业土壤质量评价林业科技开发,2007,21(5):12~15
    邓碧云,陈玉成城市土壤铅污染的分布特征及治理措施微量元素与健康研究,2006,23(4):36~38
    邓南荣,吴志峰,刘平等.城市园林绿化用地土壤肥力诊断与综合评价—以广州市长虹苗圃为例土壤与环境,2000,9(4):287~289
    董军,栾天罡,蓝崇钰等.铅锌矿冶区土壤酶活性特征研究生态环境,2005,14(5):668~671
    方海兰园林土壤质量管理的探讨—以上海为例中国园林,2000,16(6):85~87
    方海兰,陈玲,黄懿珍等.上海新建绿地的土壤质量现状和对策林业科学,2007,43(A01):89~94
    菲尔汉?汉杰尔,潘丽英,陈勇等.汽车废气中的铅对城市土壤污染状况调查干旱环境检测,2002,16(3):154~155,161
    葛宝明程宏毅郑祥等.浙江金华不同城市绿地大型土壤动物群落结构与多样性生物多样性,2005,13(3):197~203
    耿玉清,白翠霞,赵铁蕊等.北京八达岭地区土壤酶活性及其与土壤肥力的关系.北京林业大学学报,2006,28(5):7~11
    关松荫土壤酶及其研究法北京:农业出版社,1986
    管东生,陈玉娟,阮国标广州城市及近郊土壤重金属含量特征及人类活动的影响中山大学学报(自然科学版),2001,40(4):93~96,101
    管东生,何坤志广州城市绿地土壤特征及其对树木生长的影响环境科学研究1998,11(4):51~54
    郭岩,杨国义,董巧香等.汕头市典型区域土壤重金属污染特征及评价环境科学,2007,28(5):1067~1074
    郭彦军,韩建国农牧交错带退耕还草对土壤酶活性的影响草业学报,2008,17(5):23~29
    韩新宁土壤酶对土壤环境质量的作用及影响内蒙古农业科技,2008,4:90~92
    郝冠军,郝瑞军,沈烈英等.上海世博会规划区典型绿地土壤肥力特性研究上海农业学报,2008,24(4):14~19
    郝瑞军,方海兰,沈烈英等.城市不同功能区绿地土壤有机碳矿化和酶活性变化中国农学通报,2009,25(2):229~235
    和文祥,朱铭莪,张一平土壤酶与重金属关系的研究现状土壤与环境,2000,9(2):139~142
    胡建忠山杨混交类型生产力及土壤质量综合评价水土保持研究,1995,2(1):44~50
    胡素英,刘豫明广州地区园林土壤质量现状分析广东农业科学,2003(5):36~38
    胡学玉,孙宏发,陈德林大冶矿区土壤重金属积累对土壤酶活性的影响生态环境,2007,16(5):1421~1423
    胡亚林,汪思龙,颜绍馗影响土壤微生物活性与群落结构因素研究进展土壤通报,2006,37(1):170~176
    胡月明,万洪富,吴志峰等.基于GIS的土壤质量模糊变权评价土壤学报,2001a,38(3):266~274
    胡月明,吴谷丰,江华等.基于GIS与灰关联综合评价模型的土壤质量评价西北农林科技大学学报,2001b,29(4):39~42
    黄昌勇土壤学北京:中国农业出版社,2000
    黄辉,陈光水,谢锦升等.土壤微生物生物量碳及其影响因子研究进展湖北林业科技,2008,152:34~41
    黄辉,檀满枝,陈杰等.南通市城市边缘带土壤肥力时空特征分析土壤,2006,38(3):276~281
    黄勇,郭庆荣,任海等.城市土壤重金属污染研究综述热带地理,2005,25(1):14~18
    纪立东,孙权,马秀琴等.宁夏引黄灌区农田土壤酶活性及其空间变异生态环境,2007,16(6):1737~1741
    金茜,钟永科,吴爱香等.遵义市区土壤中重金属Cu、Zn含量的测定遵义师范学院学报,2007,9(3):55~56,58
    阚文杰,吴启堂一个定量综合评价土壤肥力的方法初探土壤通报,1994,25(6):245~247
    黎妍妍,许自成,肖汉乾等.湖南省主要植烟区土壤肥力状况综合评价西北农林科技大学学报,2006,34(11):179~183
    李桂林,陈杰,檀满枝等.基于土地利用变化建立土壤质量评价最小数据集土壤学报,2008,1:16~25
    李国雷,刘勇,甘敬等.飞播油松林地土壤酶活性对间伐强度的季节响应北京林业大学学报,2008,30(2):82~88
    李杰,贺纪正,马延和等.生物耐铜的分子机理及铜污染环境的生物联合修复生态学报,2007,27(6):2615~2626
    李双霖不同蔗园土壤酶活性与土壤肥力相关性的研究甘蔗糖业,1987,(8):52~54
    李文芳,杨世俊,文赤夫等.土壤有机质的环境效应环境科学动态,2004,4:31~33
    李文革,刘志坚,谭周进等.土壤酶功能的研究进展湖南农业科学,2006,6:34~36
    李以康,韩发冉飞等.三江源区高寒草甸退化对土壤养分和土壤酶活性影响的研究中国草地学报,2008,30(4):51~58
    李月芬,汤洁,李艳梅用主成分分析和灰色关联度分析评价草原土壤质量世界地质,2004,23(2):169~174,200
    梁成华,唐咏,须湘成等.沈阳市郊区蔬菜保护地土壤盐分动态研究.见:谢建昌菜园土壤肥力与蔬菜合理施肥南京:河海大学出版社,1997,283~288
    廖晓勇,陈同斌,武斌等.典型矿业城市的土壤重金属分布特征与复合污染评价—以“镍都”金昌市为例地理研究,2006,25(5):843~852
    凌青根土壤质量研究与可持续发展华南热带农业大学学报,2002,8(1):54~56
    刘登义,沈章军,严密等.铜陵铜矿区凤丹根际和非根际土壤酶活性应用生态学报,2006,17(7):1315~1320
    刘凤枝农业环境监测实用手册北京:中国标准出版社,2001,590~596
    刘慧屿,魏丹,汪景宽等.黑龙江省双城市土壤有机质和速效养分的空间变异特征沈阳农业大学学报,2006,37(2):195~199
    刘漫萍,刘武惠,崔志兴等.上海城市绿化带土壤蜱螨目群落结构与生物指标生态学杂志,2007, 26(10): 1555~1562
    刘乃瑜,马小凡,谢忠雷等.长春市城市土壤中重金属元素的积累及其微生物特性研究吉林大学学报(地球科学版),2004,34(B10):134~138
    刘廷良,高松武次郎,佐濑裕之日本城市土壤的重金属污染研究环境科学研究,1996,9(2):47~51
    刘晓冰,邢宝山S J Herbert土壤质量及其评价指标农业系统科学与综合研究,2002,18(2):109~111
    刘玉燕,刘敏,刘浩峰城市土壤重金属污染特征分析土壤通报,2006a,37(1):184~188
    刘玉燕,刘敏,刘浩峰乌鲁木齐城市土壤中重金属分布干旱区地理,2006b,29(1):120~123
    卢铁光,杨广林,王立坤基于相对土壤质量指数法的土壤质量变化评价与分析东北农业大学学报,2003,34(1):56~59
    卢瑛,冯宏,甘海华广州城市公园绿地土壤肥力及酶活性特征水土保持学报,2007,21(1):160~163
    卢瑛,龚子同,张甘霖城市土壤的特性及其管理土壤与环境,2002a,11(2):206~209
    卢瑛,龚子同,张甘霖城市土壤磷素特征及其与地下水磷浓度的关系应用生态学报,2001,12(5):735~738
    卢瑛,龚子同,张甘霖等.南京城市土壤重金属含量及其影响因素应用生态学报,2004,15(1):123~126
    卢瑛,龚子同,张甘霖南京城市土壤Pb的含量及其化学形态环境科学学报,2002b,22(2):156~160
    鲁萍,郭继勋,朱丽东北羊草草原主要植物群落土壤过氧化氢酶活性的研究应用生态学报,2002,13(6):675~679
    鲁如坤土壤农业化学分析方法北京:中国农业科技出版社,2000
    吕晓男,陆允甫,王人潮土壤肥力综合评价初步研究浙江大学学报(农业与生命科学版),1999,25(4):378~382
    马建华,张丽,李雅丽开封市城区土壤性质与污染的初步研究土壤通报,1999,30(2):93~96
    马强,宇万太,赵少华,等.黑土农田土壤肥力质量综合评价应用生态学报,2004,15(10):1916~1920
    潘峰,梁川,付强基于层次分析法的物元模型在土壤质量评价中的应用农业现代化研究,2002,23(2):93~97
    潘勇军,陈步峰,肖以华等.广州市城市森林土壤重金属污染状况及其评价生态环境,2008,17(1):210~215
    齐伟,张凤荣,牛振国等.土壤质量时空变化一体化评价方法及其应用土壤通报,2003,34(1):1~5
    乔胜英,李望成,何方等.漳州市城市土壤重金属含量特征及控制因素地球化学,2005,34(6):635~642
    秦建桥,夏北成,周绪等.粤北大宝山矿区尾矿场周围土壤重金属含量对土壤酶活性影响生态环境,2008,17(4):1503~1508
    秦明周,赵杰城乡结合部土壤质量变化特点与可持续性利用对策一以开封市为例地理学报,2000,55(5):545~554
    邱莉萍培肥土壤酶的空间变异规律西北农林科技大学硕士学位论文,2004
    全国土壤普查办公室中国土壤北京:中国农业出版社,1998
    沈菊培,陈振华,陈利军等.草甸棕壤水稻田磷酸酶活性及对施肥措施的响应应用生态学报,2005,16(3):583~585
    施泽明,倪师军,张成江等.成都市城市土壤中重金属的现状评价成都理工大学学报(自然科学版),2005,32(4):391~395
    史长青重金属污染对水稻土酶活性的影响土壤通报,1995,16(1):34~35
    史正军,卢瑛,钟晓等.深圳城市绿地土壤质量状况研究园林科技,2006,1:20~24
    史正军,吴冲,卢瑛深圳市主要公园及道路绿地土壤重金属含量状况比较研究土壤通报,2007,38(1):133~136
    孙波,赵其国,张桃林等.土壤质量评价的生物学指标土壤,1997,29 (5) :225~234
    孙福军,丁青坡,韩春兰等.沈阳市城市表土中微生物区系变化的初步研究土壤通报,2006,37(4):768~771
    孙华土壤质量对植物光合生理生态功能的影响研究进展中国生态农业学,2005,13(1):116~118
    索有瑞,黄雅丽西宁地区公路两侧土壤和植物中铅含量及其评价环境科学,1996,17(2):74~76
    谭和平,陈能武,黄苹等.四川茶区土壤重金属元素背景值及其评价西南农业学报,2005,18(6):747~751
    唐玉姝,魏朝富,颜延梅等.土壤质量生物学指标研究进展土壤,2007,39(2):157~163
    滕应,黄昌勇,龙健等.铜尾矿污染区土壤酶活性研究应用生态学报,2003,14 (11):1976~1980
    田佳昕,魏忠义沈阳市土壤重金属的空间变异规律分析江西农业学报,2008,20(4):54~56
    王博文,陈立新土壤质量评价方法述评中国水土保持科学,2006,4(2):120~126
    王成,郄光发,彭镇华有机地表覆盖物在城市林业建设中的应用价值应用生态学报,2005,16(11):2213~2217
    王焕华,李恋卿,潘根兴等.南京市不同功能城区表土微生物碳氮与酶活性分析生态学杂志,2005,24(3):273~277
    王建国,杨林章,单艳红模糊数学在土壤质量评价中的应用研究土壤学报,2001,38(2):176~183
    王磊,傅桦,杨伶俐北京城区土壤pH分布研究土壤通报,2006,37(2):398~400
    王绍强,于贵瑞生态系统碳氮磷元素的生态化学计量学特征生态学报,2008,28(8):3937~3947
    王效举,龚子同亚热带小区域水平上土壤质量时空变化的定量化评价热带亚热带土壤科学,1996,5(4):229~231
    王辛芝,张甘霖,俞元春等.南京城市土壤pH和养分的空间分布南京林业大学学报(自然科学版),2006,30(4):69~72
    王秀丽,徐建民,谢正苗等.重金属铜和锌污染对土壤环境质量生物学指标的影响浙江大学学报(农业与生命科学版),2002,28(2):190~194
    王岩,沈其荣,史瑞和等.土壤微生物量及其生态效应南京农业大学学报,1996,19 (4) :45~51
    吴克宁,韩春建,孙志英等.城市化过程中土壤肥力的时空变化分析土壤通报,2007,38(2):242~246
    吴新民,李恋卿,潘根兴等.南京市不同功能城区土壤中重金属Cu、Zn、Pb和Cd的污染特征环境科学,2003,24(3):105~111
    吴新民,潘根兴城市不同功能区土壤重金属分布初探土壤学报,2005,42(3):513~517
    吴志峰,文雅,张坚广州市长虹苗圃的土壤质量评价中国园林,2001,17(5):69~70
    希勒尔著尉庆丰译土壤物理学概论西安:陕西人民出版社,1988,196~197
    息朝庄,戴塔根,黄丹艳湖南长沙市土壤重金属污染调查与评价地球与环境,2008,36(2):136~141
    项建光,方海兰,杨意等.上海典型新建绿地的土壤质量评价土壤,2004,36(4):424~429
    熊东红,贺秀斌,周红艺土壤质量评价研究进展世界科技研究与发展2005,27(1):71~75
    杨金玲,汪景宽,张甘霖城市土壤的压实退化及其环境效应土壤通报,2004,35(6):688~694
    杨丽萍,田宁宁,褚福春土壤毛管渗滤污水净化绿地利用研究城市环境与城市生态,1999,12(3):4~7
    杨鹏,薛立,陈红跃等.不同混交林地土壤养分、微生物和酶活性的研究湖南林业科技,2004,31(4):43~45
    杨涛,徐慧,方德华等.樟子松林下土壤养分、微生物及酶活性的研究土壤通报,2006,37(2):253~257
    杨万勤,王开运森林土壤酶的研究进展林业科学,2004,40(2):152~159
    杨新敏城市园林绿地土壤调查简报四川农业大学学报,1990,8(4):383~384
    杨元根,Paterson E, Campbell C城市土壤中重金属元素的积累及其微生物效应环境科学,2001,22(3):44~48
    杨忠平,卢文喜,辛欣等.长春市城市土壤铅同位素组成特征及其来源解析吉林大学学报(地球科学版),2008,38(4):663~669
    姚槐应黄昌勇土壤微生物生态学及其实验技术北京:科学出版社,2006
    姚贤良,程云生土壤物理学北京:农业出版社,1986
    殷云龙,宋静,骆永明等.南京市城乡公路绿地土壤重金属变化及其评价土壤学报,2005,42(2):206~210
    于法展,尤海梅,李保杰等.徐州市不同功能城区绿地土壤的理化性质分析水土保持研究,2007,14(3):85~88
    于群英土壤磷酸酶活性及其影响因素研究安徽技术师范学院学报,2001,15(4):5~8
    张甘霖,朱永官,傅伯杰城市土壤质量演变及其生态环境效应生态学报,2003,23(3):539~546
    张猛,张健,徐雄等.土壤管理方式对果—草人工生态系统土壤性质影响林业科学,2006,42(8):44~49
    张鹏飞田长彦卞卫国等.克拉玛依农业开发区土壤质量评价指标的筛选干旱区研究,2004,21(2):166-170
    张庆费,辛雅芬城市枯枝落叶的生态功能与利用上海建设科技,2005,2:40~41
    张庆利,史学正,潘贤章等.江苏省金坛市土壤肥力的时空变化特征土壤学报,2004,41(2):315~319
    张桃林,潘剑君,赵其国土壤质量研究进展与方向土壤,1999,31(1):1~7
    张文彤SPSS11统计分析教程(高级篇)北京:希望电子出版社,2002
    张小磊,安春华,马建华等.长期施肥对城市边缘区不同作物土壤酶活性的影响土壤通报,2007,38(4):667~671
    张孝飞,林玉锁,俞飞等.城市典型工业区土壤重金属污染状况研究长江流域与环境,2005,14(4):512~515
    张雅清主成分分析法在西部地区投资环境综合评价中的有效应用黄冈师范学院学报,2005,25(6):23~25
    张贞,魏朝富,高明等.土壤质量评价方法进展土壤通报,2006,37(5):999~1006
    张志明苏州古典园林绿地土壤浅析土壤,1998,30(3):156~157,142
    章家恩生态学常用试验研究方法与技术北京:化学工业出版社,2007
    章家恩,徐琪城市土壤的形成特征及其保护土壤,1997,29(4):189~193
    赵杰,秦明周,郑纯辉等.城乡结合部土壤质量及其动态研究—以开封为例资源科学,2001,23(3):42~46
    赵其国,孙波,张桃林土壤质量与持续环境I.土壤质量的定义及评价方法土壤,1997,29(3):113~120
    赵庆良,马建华主成分分析在城市绿地土壤肥力模糊评价中的应用—以河南大学校园土壤为例现代农业科技,2008,11:28~29,34
    郑海龙,陈杰,邓文靖等.城市边缘带土壤重金属空间变异及其污染评价土壤学报,2006,43(1):39~45
    郑立臣,宇万太农田土壤肥力综合评价研究进展生态学杂志,2004,23(5):156~161
    郑诗樟,肖青亮,吴蔚东等.丘陵红壤不同人工林型土壤微生物类群、酶活性与土壤理化性状关系的研究中国生态农业学报,2008,16(1):57~61
    郑袁明,余轲,吴泓涛等.北京城市公园土壤铅含量及其污染评价地理研究,2002,21(4):418~424
    郑昭佩,刘作新土壤质量及其评价应用生态学报,2003,14(1):131~134
    中国科学院南京土壤研究所微生物室土壤微生物研究法北京:科学出版社,1985
    中国土壤环境监测总站中国土壤元素背景值北京:中国环境科学出版社,1990
    钟继洪,骆伯胜短轮伐林地土壤肥力的数值化综合评价农业系统科学与综合研究,2003,19(1):75~80
    周斌,乔木,王周琼长期定位施肥对灰漠土农田土壤质量的影响中国生态农业学报,2007,15(2):33~36
    周建斌,陈竹君,李生秀土壤微生物量氮含量、矿化特性及其供氮作用生态学报,2001,21 (10):1718~1723
    周礼恺土壤酶学北京:科学出版社,1987
    周礼恺,陈冠雄,陈利军等.土壤酶学研究的新近进展中国土壤学会第十次全国会员代表大会暨第五届海峡两岸土壤肥料学术交流研讨会论文集(面向农业与环境的土壤科学综述篇),2004,44~52
    朱凡,田大伦,闫文德等.四种绿化树种土壤酶活性对不同浓度多环芳烃的响应生态学报,2008,28(9):4195~4202
    卓文珊,唐建锋,管东生城市绿地土壤特性及人类活动的影响中山大学学报(自然科学版),2007,46(2):32~35,58
    左倬,王金凤,由文辉上海城市不同绿地类型土壤重金属污染研究生态科学,20 08,27(1):12~16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700