黄土高原水土保持型灌木林地土壤质量特征及评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原地区广泛种植的水土保持型灌木林地,既可防治水土流失,又对该地区的植被恢复和生态环境建设具有重要意义。本研究针对黄土高原地区的主要水土保持型灌木林地的土壤质量问题,以宁夏固原上黄试区的柠条林地、甘肃定西团结乡高泉沟流域的沙棘林地和陕西延安飞马河流域的天然次生林地为研究对象,通过野外调查采样,室内土壤分析,并结合方差分析、相关性分析、因子分析、逐步回归分析等数理统计方法,系统研究了黄土高原地区这三种水土保持型灌木林地土壤质量的基本特征、剖面及水平分异,优选出了灌木林地土壤质量评价的指标体系及评价模型,并对这三种灌木林地的土壤质量进行了综合评价。主要结论如下:
     1.三种灌木林地土壤的机械组成随坡向的变化趋势为砂粒及粉粒含量阴坡>半阴半阳坡>阳坡,而粘粒含量则表现为阴坡<半阴半阳坡<阳坡;随坡位的变化趋势为:砂粒及粉粒含量坡上部>坡中部>坡下部,而粘粒含量却为坡上部<坡中部<坡下部。土壤团聚体含量在不同坡位上的变化规律是坡上部>坡中部>坡下部;在不同坡向间则为阴坡>阳坡>半阴半阳坡。灌木林地对土壤团聚体的改良效果为沙棘林地>天然次生林地>柠条林地。20年生柠条与10年生柠条相比砂粒含量相对减少,粉粒和粘粒含量均相对增大,土壤相对“粘化”;总团聚体含量、平均重量直径以及不同粒径的土壤团聚体含量均有少量增加。灌木林地土壤容重均随着剖面深度的增加而逐渐增大,对土壤容重和孔隙性能的改良作用次序为:沙棘林地>柠条林地>天然次生林地。
     2.三种灌木林地表层有机质、全氮、碱解氮、速效钾、CEC、CaCO_3含量等基本都属“中”水平,其中仅柠条林地和天然次生林地的碱解氮属“低”水平,天然次生林地速效钾属“较高”水平,柠条林地CEC属“低”含量水平,CaCO_3含量属“高”水平。柠条和沙棘林地表层全磷含量均属“高”水平,天然次生林地则为“较高”水平;速效磷含量均属“极低”水平,全钾含量均属“较高”水平;
     三种灌木林地表层有机质、CaCO_3、速效钾含量和电导率EC均随剖面深度的增大而降低,各层次间具有显著性差异;而全氮和碱解氮、全钾含量在剖面上无明显分异。
     三种灌木林地土壤有机质和全氮含量在不同坡位上具有相似的分异规律,柠条林地和沙棘林地表现为坡上部>坡中部>坡下部,而天然次生林地却相反,从坡上部、坡中部到坡下部依次增大。全磷量和速效磷在不同坡位上的分异规律都是从坡上部-坡中部-坡下部依次增大。土壤有机质、全氮、全磷和速效磷在不同坡向间的变化趋势相同,均是阴坡>半阴半阳坡>阳坡,而碱解氮没有表现出坡向分异。全钾和速效钾含量在不同坡位及不同坡向上的含量变化很小。
     与10年生柠条林地土壤相比,20年生柠条林地表层土壤中全磷,速效磷、CaCO_3含量和pH值等四项土壤化学指标的数值有小幅度的降低,而有机质、全氮、速效氮、全钾、速效钾、阳离子代换量(CEC)和电导率(EC)等化学指标的数值均有所增大。总体来看,随灌木林地生长年限的加长,土壤的各种养分含量及土壤综合质量均逐渐提高。
     3.林地表层土壤酶的稳定性为碱性磷酸酶>蔗糖酶>脲酶。土壤蔗糖酶和碱性磷酸酶的活性顺序均为:柠条林地>沙棘林地>天然次生林地,而脲酶的活性依次为:柠条林地>天然次生林地>沙棘林地。三种酶的活性具有明显的垂直分异性,都随着剖面土层加深而下降。从水平分异来看,坡向对土壤酶活性的影响不显著。而坡位对土壤酶的活性有明显的影响,坡上部酶活性高于坡下部,坡中部波动较大。土壤酶活性随灌木林龄的增加而增大。
     4.在15项物理指标(含有机质)中,除了粗粘粒、细粉粒、粗粉粒、含水量等4项土壤物理属性外,其余11项土壤物理性质间绝大多数呈现出极显著相关。12项土壤化学指标间也大多表现出显著及极显著相关。土壤理化性质的相关分析结果表明,细粘粒与有机质、全氮、速效氮、全磷、速效磷、全钾、速效钾、阳离子代换量和CEC等8项化学指标均呈极显著正相关,而与pH值和CaCO_3含量之间呈极显著负相关。细粘粒、细粉粒、细砂粒和有机质含量对土壤养分的保蓄及土壤质量的改善具有积极意义。三种灌木林地土壤的脲酶、磷酸酶和蔗糖酶三者之间均表现出极显著正相关关系。
     5.优选出了黄土高原地区灌木林地土壤质量评价的指标9项:有机质、全氮、全磷、全钾、碱解氮、蔗糖酶活性、CEC、CaCO_3和含水量。建立了黄土高原地区灌木林地土壤质量评价指标体系及加权和法指数评价模型并评价了三种灌木林地土壤的综合质量,结果表明土壤质量的高低次序为沙棘林地>柠条林地>天然次生林地。土壤质量分级表明沙棘林地为Ⅱ级,土壤质量较高;柠条林地和天然次生林地均为Ⅲ级,土壤质量中等。建议黄土高原地区灌木造林时的树种选择应首选沙棘,次之为柠条,最后为天然次生林。灌木林地土壤质量有明显的剖面分异性,随土层深度的增加而减小,且层间都具有显著性差异,不同坡位之间无明显差异,而在不同坡向之间表现为阴坡>半阴半阳坡>阳坡。随着生长年限增加,灌木林地土壤质量逐步得到改善。
The wide planted shrub lands of soil and water conservation in Loess Plateau can prevent soil and water loss and have important effect on both revegetation and the ecological environment construction. This research aimed at the soil quality problem of shrub lands, took three kinds of shrub lands as research object as below: the Caragana Korshinskii Kom. Land (CKK) of Shanghuang experimental field in Gu yuan City, Ningxia Hui Autonomous Region,the Hippophae Rhamnoides L. land (HRL) of Gaoquangou watershed in Dingxi City, Gansu province and the Natural Secondary Forest land (NSF) of Feimahe watershed in Yan’an City, Shaanxi province. This thesis systematically researched the basic feature, the vertical and horizontal distribution, indicator system and comprehensive assessment of soil quality by soil sample collection, field investigation, laboratory analysis on soil physical, chemical and soil enzyme indicators, and statistic methods of variance analysis, correlation analysis, factor analysis and stepwise regression analysis. The main results were as follow:
     1. The change trend of sand and silt particle content of the three shrub lands on different slope aspect is shady slope>half sunny slope>sunny slope, and clay particle content is shady slope>half sunny slope>sunny slope; the difference of sand and silt particle content on different slope position is upper>middle>lower position of slope, and contrary sequence for clay particle content. The soil aggregate content on the upper position of slope>middle>lower position of slope, and it showed shady slope>sunny slope>half sunny slope on different slope aspect. The improve effect sequence of shrub lands on siol aggregate is HRL>CKK>NSF. Compare with 10 years old CKK, the 20 years old ones had less sand particle and more silt and clay content, this showed the soil has a little changed to fine soil. The total soil aggregate content, mean weight diameter and the soil aggregate content of different diameter all increased a little. The Bulk Density of shrub lands increased by the depth increase on the soil profile and the improve sequence is HRL>CKK>NSF.
     2. The content of organic matter (OM), total N (TN), alkali-hydrolyzed nitrogen (AHN), available K(AK), CEC, and CaCO_3 in the topsoil of shrub lands is mostly“middle”level except AHN of CKK and NSF is“lower”level, AK of NSF is“sub-high”level, CEC of CKK is“lower”level, CaCO_3 of CKK is“high”level. The total P (TP) content of CKK and HRL is“high”level and NSF is“sub-high”level; and the available P (AP) of three shrub lands is“much lower”level, at the same time, the total K of three shrub lands is“sub-high”level.
     The content of OM, CaCO_3、AK and EC of the topsoil of three shrub lands decreased by the increase of soil depth on the profile, and there are significant differences between the different soil layers. On the other hand, the content of TN, AHN and TK showed no significant difference on the profile.
     The OM and TN content of the topsoil showed same distribution regular pattern, that is upperhalf sunny slope>sunny slope between different slope aspects, but AHN didn’t show the same trend. Meanwhile, the content of TK and AK showed no significant difference between both different slope positions and different slope aspects.
     Compare with 10 years old CKK, the 20 years old ones had less TP, AP, CaCO_3 and lower pH, but had more OM, TN, AHN, AK, CEC and EC. In a word, the soil nutrition contents and soil quality will improve with the increase of age of shrubs.
     3. The activity sequence of phosphatase and Invertase of the topsoil of three shrub lands is CKK>HRL>NSF, but it is CKK>NSF>HRL for urease. Slope aspects had no notability influence on soil enzyme activities but the slope positions obviously influenced the soil enzyme activities, the enzyme activities of the upper slope positions are generally higher than lower slope positions. The soil enzyme activities enhanced as the tree ages increasing and fell down as the depth of soil profile increasing.
     4. It showed very significant correlation between most of physical features of the researched 15 physical properties, and also for the researched 12 chemical properties except coarse clay particle, fine and Coarse silt particle and water content. The fine clay particle, fine silt particle, fine sand particle and OM had significant improvement on the nutrition conservation and soil quality enhancement. It showed very significant correlation between the soil enzyme (urease, phosphatase, Invertase) activities of three shrub lands.
     5. The simple assessing indicator system of 9 indicators for soil quality had been ascertained for the shrub lands on Loess Plateau: OM, TN, TP, TK, AHN, Invertase activities, CEC, CaCO_3 and water content. The assessing model had been established and was used to assess the soil quality of the three shrub lands. The result showed the soil quality sequence is HRL>CKK>NSF. The soil quality of HRL is gradeⅡ, but the quality of CKK and NSF is gradeⅢ. The best shrub type should be HRL when we plant shrub in Loess Plateau, the second should be CKK, and the last one should be NSF. The soil quality of the three shrub lands was obviously different on the soil profile, decreasing with the soil depth increase, and there were significant difference between different soil layers on the profile. The soil quality of different slope position had no significant difference, but that of different slope aspects was shady slope>half sunny slope>sunny slope. The soil quality improved with the increase of shrub ages.
引文
安韶山,黄懿梅. 2006.黄土丘陵区柠条林改良土壤作用的研究[J].林业科学, 42(1): 70-74
    安战士,徐明岗. 1988.陕西三种土壤的有机质和粘粒对土壤阳离子交换量的贡献.土壤, 20(6): 310-313
    包耀贤. 2008.黄土高原坝地和梯田土壤质量特征及评价(博士论文) [D].陕西杨凌,西北农林科技大学: 54
    鲍士旦. 2005.土壤农化分析(第三版).北京:中国农业出版社:205-234
    北京林业大学. 1981.土壤学(上册)[M].中国林业出版社:140-143, 208
    曹慧,杨浩,孙波,赵其国. 2002.不同种植时间菜园土壤微生物生物量和酶活性变化特征.土壤, 4:197-200
    曹慧,孙辉,杨浩. 2003.土壤酶活性及其对土壤质量的批示研究进展[J].应用与环境生物学报,9(1): 105-109
    曹志洪. 2001.解译土壤质量演变规律,确保土壤资源持续利用.世界科技研究与发展, 23 (3) :28-32
    常庆瑞,安韶山,刘京. 1999.黄土高原恢复植被防止土地退化研究.土壤侵蚀与水土保持学报, 5(4): 6-9
    常学向,顾生贵.1997.黄土高原沟壑区地形特征与土壤蚀关系研究[J].甘肃林业科技, 22(2): 65-70
    陈恩凤,周礼恺,武冠云. 1994.微团聚体的保肥供肥性能及其组成比例在评判土壤肥力水平中的意义.土壤学报, 31(1): 18-25.
    陈立新. 2003.落叶松人工林土壤质量变化规律月调控措施的研究(博士论文)[D].北京:中林业科学研究院
    陈秀端,任志远. 2005.黄土丘陵沟壑区城郊植被生产力的动态评估-以延安市宝塔区为例[J]. 22(3): 306-311
    程积民,董建国. 1995.上黄试区主要灌木树种蒸腾作用的试验研究.水土保持通报,15(2): 22-25
    程积民. 1996.上黄试区草地资源与评价[J ] .水土保持研究, 3 (1) :46 - 153
    崔德杰,刘永辉,隋方功,张玉龙. 2005.长期定位施肥对土壤钾素形态的影响[J].莱阳农学院学报, 22(3):165-167.
    樊军,郝明德. 2003a.黄土高原旱地轮作与施肥长期定位试验研究Ⅰ-长期轮作与施肥对土壤酶活性的影响[J].植物营养与肥料学报, 9(1):9-13
    樊军,郝明德. 2003b.黄土高原旱地轮作与施肥长期定位试验研究Ⅱ-土壤酶活性与土壤肥力[J]. 植物营养与肥料学报, 9(2):146-150
    巩杰,陈利顶,傅伯杰. 2004.黄土丘陵区小流域土地利用和植被恢复对土壤质量的影响[J].应用生态学报, 15(12): 2292-2306
    关联珠. 2007.普通土壤学.北京:中国农业大学出版社:264
    关松荫. 1996.土壤酶及其研究方法[M].北京:中国农业出版社: 260-312
    郭旭东,傅伯杰,陈利顶. 2001.低山丘陵区土地利用方式对土壤质量的影响——以河北省遵化市为例[J].地理学报, 56(4):447-455
    郭兆元. 1992.陕西土壤[M].北京:科学出版社: 363-369; 394-406; 424-431;445-457
    郝仕龙,李志萍. 2007.半干旱黄土丘陵区生态建设与经济发展模式探讨-以固原上黄试区为例[J].中国水土保持科学, 10(5): 11-15
    何鑫. 2004.成都平原土壤肥力综合评价与空间变异研究(硕论)[D].雅安:四川农业大学
    侯扶江,南志标,肖金玉. 2002.重牧退化草地的植被、土壤及耦合特征.应用生态学报, 13(8): 915-922
    胡斌,段昌群,王震洪. 2002.植被恢复措施对退化生态系统土壤酶活性及肥力的影响[J].土壤学报, 39(4): 604-608
    胡金明,刘兴土. 1999.三江平原土壤质量变化评价与分析[J].地理科学, 19(5) :417-421
    胡月明,万洪富,吴志峰,吴谷丰,李华兴. 2001.基于GIS的土壤质量模糊变权评价[J].土壤学报, 38(3): 266-274
    黄宇,汪思龙,冯宗炜.不同人工林生态系统林地土壤质量评价.应用生态学报2004, 15(12)∶2199~2205
    黄昌勇. 2000.土壤学.北京:中国农业出版社: 164-165
    黄昌勇. 2004.土壤学[M].北京:中国农业出版社: 95
    黄懿梅,安韶山,曲东.2007.黄土丘陵区植被恢复过程中土壤酶活性的响应与演变[J].水土保持学报, 21(1):152-155
    黄占斌,徐炳成,苏敏,徐军宏,吴发启. 2002.延安飞马河试验示范区农业生产的调查研究[J]. 水土保持通报, 22(3):73-75
    江景宽,王铁宇,张旭东. 2002.黑土土壤质量演变初探Ⅰ-不同开垦年限黑土主要质量指标演变规律[J].沈阳农业大学学报, 33(1):43-47
    李勇. 1989.试论土壤酶活性与土壤肥力[J].土壤通报,20(4): 190-193.
    李壁成,焦锋,马小云. 1996a.固原上黄试区土地利用动态监测与分析评价[J].水土保持研究,1996,3(1):122-128,153
    李壁成,焦锋,马小云. 1996b.固原上黄试区土壤侵蚀环境与综合治理效益评价[J].水土保持研究,1996,3(1):14-21
    李凤民,徐进章,孙国钧. 2003.半干旱黄土高原退化生态系统的修复与生态农业发展.生态学报, 23(9):1901-1909
    李光录,赵晓光,吴发启,刘秉正. 1995.水土流失对土壤养分的影响研究.西北林学院学报,10(增):28-33
    李桂林,陈杰,孙志英. 2007.基于土壤特征和土地利用变化的土壤质量评价最小数据集确定[ J ].生态学报, 27 (7) : 2715 - 2724
    李海鹰,姜小三,潘剑君,廖启林,邹松梅,吴新民. 2007.土壤阳离子交换量分布规律的研究—以江苏省溧水县为例[J]. 39 (3): 443~447
    李瑞雪,薛泉宏,杨淑英,冯立孝,周旭升. 1998.不同林龄油松、刺槐人工林土壤化学性质研究. 水土保持学报,4(1): 14-21
    李双异. 2005.黑龙江中部黑土区土壤肥力质量时空变异规律与评价(硕论)[D].辽宁:沈阳农业大学
    李西祥,白红英,丁琦. 2007.黄土区冬小麦田土壤理化性状、磷酸酶活性与氧化亚氮的排放[J]. 生态学杂志, 26(8):1187-1192
    李香兰. 1992.黄土高原不同林型对土壤物理性质的影响.林业科学, 28(2): 98-105
    李志洪,王淑华. 2000.土壤容重对土壤物理性状和小麦生长的影响[J].土壤通报, 31(2):55-58
    林大仪. 2002.土壤学.北京:中国林业出版社: 190
    刘国彬. 1997.黄土高原草地植被恢复与土壤抗冲性形成过程Ⅱ:植被恢复不同阶段土壤抗冲性特征.水土保持研究, 4(5): 122-128
    刘康,赵麦焕,马乃喜,韩贵峰,梁保平. 2002.宝塔区生态环境特征及其生态建设研究[J].水土保持通报, 22(1): 68-71,75
    刘晓冰,邢宝山,Stephen J.Herbert. 2002.土壤质量及其评价指标[J].农业系统科学与综合研究, 18(2):109-112
    刘学功,成金环. 2003.红壤土地资源开发中数量质量的深化.新乡师范高等专科学校学报, 17(6): 19-23
    刘苑球,杨家林,杜天真.2002.重建森林对退化红壤土壤酶特性影响[J].江西农业大学学报(自然科学版), 24(6): 791-795
    刘增文,李雅素. 1997.黄土丘陵区柠条林地养分状况及其循环规律.生态学杂志, 16(6): 27-29
    楼一平,盛炜彤. 1998.人工林长期立地生产力研究概述[J].世界林业研究, (5):18-25
    吕春花. 2006.子午岭地区植被恢复对土壤质量的影响研究(硕士论文)[D].陕西杨凌:西北农林科技大学
    罗伟祥. 1998.黄土高原渭北生态经济型防护林体系建设模式研究.北京:中国林业出版社: 165-169
    莫翼翔,吴发启. 2002.泥河沟小流域土壤养分的分布与保护.水土保持学报,(3):17-23
    穆兴民. 2000.黄土高原土壤水分与水土保持措施相互作用[J].农业工程学报, 16(2): 41-45
    南京农业大学主编. 1985.土壤农化分析.北京:农业出版社
    牛西午,张强,杨治平,等.2003.柠条人工林对晋西北土壤理化性质变化的影响研究.西北植物学报, 23(4): 628-632
    潘成忠,上官周平,刘国彬. 2006.黄土丘陵沟壑区退耕草地土壤质量演变[J].生态学报, 26(3): 690-696
    庞敏,侯庆春,薛智德,韩蕊莲. 2005.延安研究区主要自然植被类型土壤水分特征初探[J]. 水土保持学报, 19(2): 138-141
    彭新华,张斌,赵其国. 2003.红壤侵蚀裸地植被恢复极土壤有机碳对团聚体稳定性的影响[J]. 生态学报, 23(10):2176-2183
    邱莉萍,张兴昌,张晋爱. 2006黄土高原长期培肥土壤团聚体中养分和酶的分布[J].生态学报, 26(2):364-373
    任天志. 2000.持续农业中的土壤生物指标研究.中国农业科学, 33(1):68-75
    尚武龙. 2009.延安市宝塔区赵庄流域退耕还林效益评价[J].陕西林业科技, (2) :105-108
    盛炜彤.人工林地力衰退[M].北京:中国科学技术出版社,1992.1-120
    史衍玺,唐克丽. 1998.人为加速侵蚀下土壤质量的生物学特性变化.土壤侵蚀与水土保持学报,4(1): 28-33, 40
    史奕,陈欣,沈善敏. 2002.有机胶结形成土壤团聚体的机理及理论模型[J].应用生态学报, 13(11):1495-1498.
    孙波,赵其国,张桃林. 1997.土壤质量与持续环境[J].土壤, (5): 225~234
    孙波,赵其国. 1999.红壤退化中的土壤质量评价指标及评价方法[J].地理科学进展, (2):53-63
    万存绪,张效勇. 1991.模糊数学在土壤质量评价中的应用[J].应用科学学报, 9(42): 359-365
    王国梁,刘国彬,许明祥. 2002.黄土丘陵区纸坊沟流域植被恢复对土壤养分的激应.水土保持通报, 22(1): 1-5
    王建国,杨林章,单艳红. 2001.模糊数学在土壤质量评价中的应用研究[J].土壤学报, 38(2): 176-183
    王生芳,何世玉. 1998.柠条人工林地土壤肥力的评价.青海农林科技, (3): 29-31
    王万忠,焦菊英. 2002.黄土高原侵蚀产沙强度的时空变化特征.地理学报, 57(2): 210-217
    王效举,龚子同. 1998.红壤丘陵小区域不同利用方式下土壤变化的评价与预测[J].土壤学报, 35(1):135-139
    王效举,龚子同. 1997.红壤丘陵小区域水平上不同时段土壤质量变化的评价和分析[J].地理科学, 17(2):141-148
    王晔立. 2010.黄土丘陵沟壑区小流域水土流失治理效益评价-以甘肃定西市高泉小流域为例[J]. 西北农林科技大学学报(社会科学版), 10(1): 37-42
    韦泽秀,梁银丽,井上光弘,周茂娟,黄茂林,古建锋,吴燕. 2009.水肥处理对黄瓜土壤养分、酶及微生物多样性的影响[J].应用生态学报, 20(7): 1678- 1684
    魏义长,康玲玲,王云璋等. 2003.水土保持措施对土壤物理性状的影响-以黄土高原水土保持世界银行贷款项目区为例[J].水土保持学报, 17(5):114-116
    吴彦,刘世全,付秀琴. 1997.植物根系提高土壤水稳性团粒含量的研究.土壤侵蚀与水土保持学报, 3(1): 45-49
    吴钦孝,丁汉福,刘克俭. 1989.黄土丘陵半干旱地区柠条根系的研究.水土保持通报, 9(3): 45-49
    吴钦孝,关秀琦,施立民,刘向东. 1989.固原县黄土丘陵区灌木“三料”林研究简介[J].水土保持研究, 4(2): 35-38
    武伟,唐明华,刘洪斌. 2000.土壤养分的模糊综合评价[J].西南农业大学学报, 22(3): 270-272
    谢德体. 1995.土壤地理学[M].成都:成都科技大学出版社: 158
    刑存旺,陈峻崎,金子明. 1998.整地对滨海盐碱地土壤物理性状的影响[J].河北林业科技, (1): 17-20
    熊东红,贺秀斌,周红艺. 2005.土壤质量评价研究进展,世界科技研究与发展, 27(1): 71-75
    熊毅. 1987.中国土壤.北京:科学出版社
    徐军宏,吴发启,杨立社,张青峰,张会. 2002.延安飞马河试验示范区社会经济状况的调查研究[J].陕西农业科学, 12: 23-25
    许光辉,郑洪元.1986.土壤微生物分析方法手册[M].北京:中国农业出版社: 245-285
    许明祥,刘国彬,赵允格. 2005a.黄土丘陵区侵蚀土壤质量评价[J].植物营养与肥料学报, 11(3): 285-293
    许明祥,刘国彬,赵允格. 2005b.黄土丘陵区土壤质量评价指标研究[J].应用生态学报, 16(10): 1843-1848
    许明祥. 2003.黄土丘陵区生态恢复过程中土壤质量演变及调控(博士论文)[D].陕西杨凌:中科院水土保持研究所
    薛立,邝立刚,陈红跃,谭绍满. 2003.不同林分土壤养分、微生物与酶活性的研究[J].土壤学报, 40(2):280-285
    严昶升.1988.土壤肥力研究方法[M].北京:农业出版社:263-269
    杨勤业,景可,申元村. 2001.黄土高原生态环境建设与减灾.中国减灾, 11(1):19-22
    易志军,吴晓芙,胡曰利. 2008.人工林地土壤质量指标及评价.林业资源管理, (4):31-34
    俞海. 2002.农地制度及改革对土壤质量演变的影响(博士论文)[D].北京:中国农业科学院
    俞慎,李勇,王俊华,车玉萍,潘映华,李振高. 1999.土壤微生物生物量作为红壤质量生物指标的探讨.土壤学报, 36(3):413-422
    岳庆玲,常庆瑞,刘京. 2007.黄土高原不同土地利用方式对土壤养分与酶活性的影响[J].西北农林科技大学学报(自然科学版), 35(12):103-108
    岳庆玲. 2007.黄土丘陵沟壑区植被恢复重建过程土壤效应研究(博士论文)[D].陕西杨凌:西北农林科技大学
    张猛,张健. 2003.林地土壤微生物、酶活性研究进展[J].四川农业大学学报,21(4): 347-351
    张成娥,杜社妮,白岗栓. 2001.黄土源区果园套种对土壤微生物及酶活性的影响[J].土壤与环境, 10(2):121-123
    张成娥,梁银丽.1999.高原沟壑区套作苹果幼园土壤养分及酶活性研究[J].干旱地区农业研究, 17(4):22-26
    张海林. 2002.土壤质量与土壤可持续管理.水土保持学报, 16(6):119-122
    张会民,吕家珑,李菊梅,徐明岗,刘红霞. 2007.长期定位施肥条件下土壤钾素化学研究进展[J]. 西北农林科技大学学报(自然科学版), 35(1):155-160.
    张建旗,张继娜,杨虎德,吴永华,李文哲. 2009.兰州地区土壤电导率与盐分含量关系研究[J]. 甘肃林业科技, 34(2): 21-24,30
    张晋爱,张兴昌,邱丽萍.2007.黄土丘陵区不同年限柠条林地土壤质量变化[J].农业环境科学学报, 26(增刊): 136-140
    张俊华,常庆瑞,贾科利,陈涛,岳庆玲,李云驹. 2003黄土高原植被恢复对土壤质量的影响研究水土保持学报, 17(4): 38-41
    张丽萍,程积民,王继军. 2009.黄土丘陵区上黄试区农业生态经济系统演变阶段划分及其驱动力初探[J].西北农林科技大学学报(社会科学版), 9(4): 24-28, 34
    张茂省,孙传尧,校培喜,魏兴丽,黄玉华,李林,王佳运,武文英. 2007.延安市宝塔区地质灾害详细调查示范[J].西北地质,40(2):29-55
    张桃林,潘剑君,赵其国. 1999.土壤质量研究进展与方向.土壤, 1:1-7
    张桃林,王兴祥. 2000.土壤退化研究的进展与趋向.自然资源学报, 15(3):280-284
    张文彤. 2002a. SPSS统计分析教程(基础篇).北京:北京希望电子出版社:218-239
    张文彤. 2002b. SPSS统计分析教程(高级篇).北京:北京希望电子出版社:64-121,190-212
    张小文,张世强,蔡迪花,张延平,孙雪英. 2008.黄土高原西部不同土地利用与土壤侵蚀的相互作用.兰州大学学报(自然科学版), 44(2): 9-14
    张学雷,张甘霖,龚子同. 2001. SOTER数据库支持下的土壤质量综合评价—以海南岛为例[J].山地学报, 19(4):377-380
    赵其国,孙波,张桃林. 1997a.土壤质量与持续环境. I土壤质量的定义及评价方法.土壤,(3):113-118
    赵其国,孙波,张桃林. 1997b.土壤质量与持续环境Ⅱ—土壤质量评价的生物学指标. Chinese Science, 1997, 29(5):225-234
    赵其国,孙波,张桃林. 1997c.土壤质量与持续环境Ⅲ.土壤质量评价的生物学指标, 29(5): 225-234
    中国科学院南京土壤研究所. 1981.土壤理化分析.上海:上海科学技术出版社
    周健民,曹志洪. 2002土壤质量演变规律与持续利用.中科院院刊,(1):45-47
    周礼恺. 1987.土壤酶学[M].北京:科学出版社: 116-190
    Acosta M V, Zobeck T M, Gill T E, Kennedy A C. 2003. Enzyme activities and microbial community structure in semiarid agricultural soils. Biology and Fertility of soils, 3, 0178-2762: 216-227
    Amiotti N M, Sanchez L F, Peinemann N. 2000. The impact of single trees on properties of loess derived grassland soils in Agentina. Ecology, 81(12): 3283-3290
    Badiane N N Y, Chotte J L, Pate E, Masse D, Rouland C. 2001. Use of soil enzyme activities to monitor soil quality in natural and improved fallows in semi-arid tropical regions. Aplied soil ecology, 18(3): 229-238
    Bandick A K, Dick R P. 1999. Field management effect on soil enzyme activity [J]. Soil Biologyical and Biochemistry, 31:1471-1479
    Binkley D, Sigrid C Resh. 1999. Rapid changes in soils following Eucalyptusafforestation in Hawaii. Soil Sci Soc Am J, 63(1): 222-225
    Brookes P C, Landman A, Pruden G, Jenkinson D S. 1985. Chloroform fumigation and the release of soilnitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol.Biochem., 17: 837-842
    Burger J A, Kelting D L. 1998. The Contributions of Soil Science to the Development of and Implementation of Criterion and Indicators for Sustainable Forest Management [J]. Soil Science Society of America Journal, (53):1-67
    Carter M R, Gregorich E G, Anderson D W. 1997. Concepts of soil quality and their significance [M]. Developments in Soil Science, (25):1-19
    Cogo NP. 1983. Tillage induced roughness and runoff velocity on size distribution of eroded soil aggregates. Soil Sci Soc Am J, 47:1005-1008
    Dexter A R. 1988. Advances in characterization of soil structure. Soil & Tillage Research, 11: 199-238.
    Dick R P, Breakwell D P, Turco R F. 1996. Soil enzyme activities and biodiversity measurements asintegrative microbiological indicators. Doran J W, Jones A J. Handbook of methods for assessing soil quality: Soil Society of America special publication 49. Madison, W. I: Soil Society of America: 247-272
    Dick, R P, Yamaoh C, Diack M, Badiane A. 2001. In G. Tian (ed) The role of microorganisms in nutrient cycling and soil quality. Managing Soils for Soil Fertility in West Africa. Soil Sci. Soc. Am. Spec. Publ., Madison WI.
    Dick, R P. 1994. Soil enzyme activities as indicators of soil quality. In Doran et al. (eds.) Defining Soil Quality for a Sustainable Environment. Soil Sci. Soc. Am. Special Publication, Madison, WI. pp. 107-124
    Dick, R P. 1997. Enzyme activities as integrative indicators of soil health. In C. E. Parkhurst et al. (eds.) Bioindicators of Soil Health. CAB International, Oxon, United Kingdom pp. 121-156
    Doran J W, Coleman D C, Bezdicek D F, and Stewart B A. (Eds). 1994. Defining Soil Quality for a Sustainable Environment. SSSA Spec. Pub. 35. Soil Science Society of America, Madison, WI. (608-273-8080)
    Doran J W, Parkin T B. 1994. Defining and assessing soil quality. In: J.W. Doran et al., (ed.) Defining Soil Quality for a Sustainable Environment. SSSA Spec. Publ. No. 35, Soil Sci. Soc. Am., Madison, WI.: Inc. and Am. Soc. Agron., Inc.: 3-21
    Doran J W. Jones A J. (Eds). 1996. Methods for Assessing Soil Quality. SSSA Spec. Pub. 49. Soil Science Society of America, Madison, WI. (608-273-8080)
    FAO, 1976. A framework for land evaluation. Fao Soil Bulletin No. 32. Rome, pp: 72., www.fao.org/docrep/ x5310e/x5310e00.htm
    Glover J D, Reganold J P, Andrews P K. 2000. Systematic method for rating soil quality of conventional, organic and integrated apple orchards inWashington State [J]. Agriculture, Ecosystems and Environment, 80: 29 - 45
    Hammond A, Adriaanse A, Rodenburg E, Bryant D Woodward R. 1995. Environmental indicators: A Systematic Approach to Measuring and Reporting on Environmental Policy Performance in the Context of Sustainable Development, Washington D. C.: World Resources Institute
    Islam K R, Weil R R. 2000. Soil quality indicator properties in mid Atlantic soils as influenced by conservation management [J]. J Soil Water Conser, 50.226-228
    Karlen, D L, Mausbach M J, Doran J W, Cline R G, Harris R F, Schuman G E. 1997. Soil quality: A concept, definition, and framework for evaluation. Soil Sci. Soc. Amer. J. 61:4-10.
    Krzie M, Newnan R F, Broersma K. 2003. Plant species diversity and soil quality in harvested and grazed boreal aspen stands of Northeastern British Columbia. Forest ecology and management, 182:315-325
    Larson W E, Pierce F J. 1991. Conservation and enhancement of soil quality. In Porc. of the Int. workshop on Evaluation for Sustainable Land Management in the Developing World. Vol. 2, IBSRAM Proc. 12(2). Int. Board for Soil Res. and Management Rangkok, Thailand
    Larson W E, Pierce F J. 1994. The dynamics of soil quality asmeasure of sustainable management [J]. Soil Science Society of America Jour-nal, (2):37-51
    Min H, Ye Y F, Chen Z Y. 2001. Effects of butchlor on microbial populations and enzyme activitiesin paddy soil[J]. Environmental Science Health, 36(5):581-595
    Morris L A, Miller R E. 1994. Impacts of Forest Harvesting on Long-term Site Production [M]. London: Chapman & Hall, 41-80
    Orellana JA de, Pilatti M A, Grenon D A, De Orellana J A. 1997. Soil quality: an approach to physical state assessment. Jorunal fo Sustainable Agriculture. 9, No. 2-3: 91-108
    Parr J F, Papendick R I, Hornick S B, and Meyer R E. 1992. Soil quality: Attributes and relationship to alternative and sustainable agriculture. Amer. J. Alternative Agric. 7:5-11
    Pennock D J, Anderson D W, and de Jong E. 1994. Landscape-scale changes in indicators of soil quality due to cultivation in Saskatchewan, Canada. Geoderma. 64: 1-19
    Pieri C, Dumanski, J, Hamblin, A, Young, A. 1995. Land Quality Indicators. World Bank Discussion Paper No.315. Washington, DC. World Bank: 51
    Power J F, Myers R J K. 1989. The maintenance or improvement of farming systems in North America and Australia. In J. W. B. Stewart(ed.). Soil quality in semi-arid agriculture. Proc. of an Int. Cong. Sponsored by the Canadian Int. Development Agency, Saskatoon, Saskatchewan, Canada, (6):11-16
    Powers R F, Tiarks A E, Boyle J R. 1998. Assessing soil quality: practicable standards for sustainable forest productivity in the United States [J]. Soil Science Society of America Journal, (54): 53-80
    Powlson D S, Brookes P C, Christensen B T. 1987. Measurement of soil microbial biomass provides an earlyindication of changes in total soil organic matter due to straw in corporation. Soil Biol. Biochem., 19:159-164
    Sarrantonio M, Doran J W, Liebig M A. Halvorson J J. 1996.On-farm assessment of soil quality and health. In: Doran, J W,Jones, A J (Eds.). Methods for Assessing Soil Quality. Soil Sci.
    Saviozzi A, Levi-Minzi R, Cardelli R, Riffaldi. R. 2001. A comparison of soil quality in adjacent cultivated, forest and native grassland soils. Plant and soil, Vol. 233, No. 2: 251-259
    Schloter M, Dilly O,Munch J C. 2003. Indicators for evaluating soil quality [J]. Agric Ecosyst Environ, 98:255-262
    Singer M J; Ewing S. 1999. Soil quality. Interdisciplinary aspects of soil science. In Handbook of Soil Science; Sumner, ME, Ed.; CRC Press: New York, 272–298
    Six J,Bossuyt B,Degryze H,Denef K. 2004. A history of research on the link between (micro) aggregates,soil biota,and soil organic matter dynamics. Soil & Tillage Research, 79: 7-31.
    Smith J L, Halvorson J J, and Papendick R I. 1993. Using Multiple-Variable Indicator Kriging for. Evaluating Soil Quality. Soil Sci. Soc. Am. J. 57: 743-749
    Soc. Am. Spec. Publication #49 SSSA, Madison, WI, pp. 83-105 Sparling G P, Schipper L A, Bettjeman w. 2004. Soil quality monitoring in New Zealand: practical lessons from a 6-year trial [J]. Agriculture, Ecosystems and Environment, 104: 523-534
    Sparling G P. 1992. Ratio of microbial biomass carbon to soil organic matter carbon as a sensitive indicator ofchanges in soil organic matter. Aust J Soil Res., 30:195-207
    Su Yongzhong, Zhao Halin. 2003. Soil properties and plant species in an age sequence of Caragana. Microphyll aplantations in the Horqin Sandy Land, north China. Ecological Engineering, 20: 223-235
    Wandde, M, yang, X. 2000. Influence of tillage on the dynamics of loose and occluded particulate and humified organic matter fractions[J]. Soil Biol. Biochem. (32):1151-1160
    Warkentin B P. 1995. The changing concept of soil quality. [J]. Soil Water Cons., 50:226-228
    Weetman G F. 1998. A forest management perspective on sustained site productivity. Forest Chron., (74): 75-76
    Yoder R E. 1936. A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses. Journal of the American Society of Agronomy, 28: 337-351

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700