数字集成电路多故障测试生成算法和可测性设计的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微电子技术是当今发展最快的技术领域之一。随着集成电路设计及工艺技术的发展,电路的规模和复杂度日益增大,芯片故障的测试日趋困难,对电路的测试也提出了更高的要求,从而推动了测试生成算法的研究。传统的测试生成算法已不能满足要求,因此集成电路测试研究的重点主要集中于研究新的更加有效的测试生成算法和电路可测性设计技术。
     本论文主要研究数字集成电路中组合电路的多故障测试生成算法和可测性设计技术,以提高算法的故障覆盖率、减少测试生成时间及减少测试矢量的产生和施加为研究目标,主要研究了以下内容:
     在深入研究了二值神经网络模型基础上,建立了三值神经网络模型,并将三值神经网络成功应用于组合电路测试生成算法中。通过构建被测电路的约束网络,采用遗传算法并使用本文提出的适应度函数,求出约束网络对应能量函数的最小值点。通过编程仿真,在基准电路上得到故障的测试矢量。给出了三值模型与二值模型测试的比较结果。用三值神经网络表示数字电路,可以减小搜索空间,避免很多不必要的赋值,因此可以在保证具有较高故障覆盖率的情况下,减少测试生成时间,提高算法的测试生成效率。
     研究了基于布尔差分的组合电路测试生成算法。针对布尔差分算法需要进行大量的异或运算,特别是求解多故障测试矢量时,求解高阶布尔差分更加繁琐的问题,提出了将组合电路多故障转换成单固定故障或双固定故障后,采用具有约束条件的一阶、二阶布尔差分简化法的方法,可不用异或运算,而是通过求解恒等式及约束条件来得到完全测试集,避免了大量的布尔差分运算。
     在EST(equivalent state hashing)算法的基础上,利用E-前沿的控制关系,对基于搜索状态控制的组合电路测试生成算法进行了研究,通过实例证明了该算法可以更有效的减小搜索空间;通过仿真验证了所求测试矢量的正确性。
     症候群测试不需要产生测试矢量,因此对电路的症候群测试进行了深入研究。针对传统的症候群可测性判定条件需要写出电路的逻辑表达式,对于大规模集成电路,按照传统的方式很难进行判断,本文推导出了一元症候群和二元症候群可测性判定条件的新形式,并由此推出了多元症候群的判定条件。利用该判定条件,既可直接进行多元症候群判定,不必写出电路的逻辑表达式,又可保证症候群可测。
     研究了基于Reed-Muller模式的组合电路的可测性。针对组合电路产生测试矢量开销大的问题,对Reed-Muller模式的组合电路进行了研究。该方法采用通用型测试集测试的电路结构或模块进行电路设计。用此种方法不但可以方便的检测出电路的单固定型故障,而且可以确定单故障的具体位置,对于双故障以及多故障也可用此方法检测出来。
     为了减少测试矢量,有必要对电路中的故障加以分析,寻找各类故障之间的关系,以求压缩测试矢量。本文提出了一种将并行故障仿真与布尔约简法相结合来确定测试矢量最小测试集的方法。该方法通过编制软件程序进行并行故障仿真,利用并行故障仿真结果确定出故障点和测试矢量的对应关系,然后即可根据布尔约简法求出测试矢量的最小测试集
Microelectronic technique is one of the most rapidly developing techniquesin technological field at present. With the advancement of its design andproduction process, integrated circuits (ICs) are becoming more and morecomplex and larger and larger in scale, making the test for the chips increasinglydifficult. In the meantime, higher requirements for circuits test have been putforward, thus the research on test generation algorithms are drived forward. Asthe traditional test generation algorithms no longer meet the requirements, thekey points in ICs testing research mainly focus on new and more effective testgeneration algorithms and design for testability of Digital Integrated Circuits.
     In this dissertation, the multi-fault test generation algorithms and design fortestability of combinational circuits have been studied for the purpose ofimproving faults coverage, reducing the test generation time, the generation andapplication of test patterns. The main contents of this thesis are as follows:
     Based on the research on two-valued neural networks model, three-valuedneural networks model for combinational circuits has been established andapplied successfully to test generation algorithms for combinational circuits. Byconstructing the constraint networks of circuits to be tested, using geneticalgorithm and fitness function proposed in this paper, through programming, theminimum of the energy function to correspond with the constraint network can begotten. By means of simulation, the test patterns of faults can be obtained forbenchmark circuits. Further, the comparative results of three-valued and two-valuedmodels have been presented. If digital circuits are represented by three-valuedneural networks model, the search space can be reduced and many unnecessaryassignments can be avoided. Therefore, the method can reduce test time andimprove test efficiency.
     The test generation algorithms based on Boolean difference forcombinational circuits has been studied. Considering that there are a lot ofexclusive OR operations in the Boolean difference, we proposed single fault ordouble faults test generation simplified method with constraint conditions. In thisway, multi-fault can be equated into single fault or double faults forcombinational circuits, test patterns can be obtained only by solving the identityand constraint conditions without exclusive OR operations.
     In accordance with EST algorithm, a kind of test generation algorithm hasbeen studied based on search state dominance for combinational circuits. Takingthe advantage of the dominance relation of the E-frontier (evaluation frontier),we can prove through some examples that this algorithm can prune the searchspace more effectively than the EST algorithm. The calculated test patterns candetect the given faults with the help of the simulation.
     Since generating test patterns are not needed in the course of Syndrometesting, Syndrome of circuits has been thoroughly studied. As the logicalexpression is needed to be given for the traditional Syndrome test, it is difficultto test for the VLSI. In this dissertation, first order and second order Syndrometestable new conditions have been derived, and the high-order test Syndrometestable condition can be obtained therefrom. By making use of it, we can fulfillthe judgment of high-order Syndrome directly with no need of giving the logicalexpression. In addition, it can be ensured that Syndrome of circuits would betestable.
     Design for testability based on Reed-Muller pattern for combinational circuitshas been studied. In consideration of the problem that test patterns generation ofcombinational circuits needs much resource, we have made a research on thecombinational circuits based on Reed-Muller pattern. The circuit structure ormodule designed in this way may be tested by general test patterns set. It can notonly detect single-fault easily, but also define ihe fault location. Besides, thedouble-fault and multi-fault can also be detected by this method.
     In order to decrease the test patterns, it is necessary to analyze the faults incircuits and find out the relationships among all kinds of faults. This paperpresents a kind of method that combines parallel faults simulation with Booleansimplified method for determining the minimum test patterns set. By using the results of parallel faults simulation, the corresponding relationship between faultpoints and test patterns can be determined, also, the minimum test patterns setcan be gotten based on Boolean simplified method.
引文
1 于云华,石寅.数字集成电路故障测试策略和技术的研究进展.电路与系统学报,2004,9(3):83~91
    2 向东.数字系统测试及可测性设计.科学出版社,1997:2~11
    3 刘峰,梁勇强.大规模集成电路可测性设计及其应用策略.玉林师范学院学报,2005,(5):29~33
    4 刘晓东.集成电路测试生成算法的研究.哈尔滨工业大学博士论文,2003:1~20
    5 曾芷德.数字系统测试与可测性.国防科技大学出版社,1992:15~25
    6 Yau.S.S, Tang. Y.S. An Efficient Algorithm for generation Complete Tests for Combinational Logic Circuits. IEEE Trans. On Computers, 1971, 11 (20): 15~20
    7 SeijiKajihara, KoheiMiyase: On Identifying Don't Care of Test Patterns for Combinational Circuits. IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281), 2001: 364~369
    8 S.C.Seth, B.B.Bhattacharya.An Exact Analysis for Efficient Computaion of Random-Pattern Testability in Combinational Circuits. IEEE Trans. On Computer, 1983: 318~323
    9 J. M. Silva, Y.Glass. Combinational Equivalence Checking Using Satisfiability and Recursive Learning. Proc. Design Automation and Test in Europe (DATE). 1999: 145~149
    10 Emil Gizdarski, Hideo Fujiwara: SPIRIT: A Highly Robust Combinational Test Generation Algorithm. Proceedings 19th IEEE VLSI Test Symposium. VTS 2001, 2001: 346~351
    11 Yong Chang Kim, Vishwal D.Agrawal, and Kewal K. Saluja.Combinational Automatic Test Pattern Generation for Acyclic Sequential Circuit. v 24, n 6, June 2005: 948~956
    12 D.xiang and Y.Xu.Partial Reset for Synchronoous Sequential Circuits Using Almost Independent Reset Signals. Proe. IEEE Trans. Test Conf. Apr. 2001: 82~87
    13 刘小东,张毅刚,孙圣和.时序电路的模糊化测试生成算法.微电子学计算机,2002,(10):24~25
    14 龙望宁,闵应骅,杨士元,李忠诚.一个有效的通路时滞故障测试生成系统DTPG.计算机学报,1998,21(4):315~319
    15 S.C.Seth, B.B.Bhattacharya. An Exact Analysis for Efficient Computaion of Random-Pattern Testability in Combinational Circuits. IEEE Trans. On Computer, 1983: 318~323
    16 McClusky, E.J., "Verification testing A Pseudo Exhaustive Test Technique, " IEEE Trans. On Computers, June1984, Vol. C-33: 541~546
    17 Wagner, K.D., C. K.Chin and E. J.McCluskey. Pseudorandom Testing. IEEE Trans. On Computers, Vol C-36, March 1987: 332~342
    18 N.Jha and S.Guputa: Testing of Digital Systems, Cambrige University Press 2003: 1~20
    19 GHOSHI, FUJITA. Automatic Test Pattern Generation for Functional Register-transfer Level Circuits Using Assignment Design Diagrams[J]. IEEE Yeans Computer-Computer-Aided Design, 2001, 20(3): 402~415
    20 HYUNGWONk, HAYES J P. High-coverage ATPG for Datapath Circuits with Unimplemented Blocks[J]. IEEETrans Computer-Aided Design, 2001, 20(2): 290~306
    21 P. H. Ibarra, S.K.Sahni. Polynomally complete fault detection problems. IEEE Teans.Comput, 1985, 24(3): 242~249
    22 J. P. Roth. Diagnosis of automata failures: a calculus and a method. IBM Journal of Research and Development, 1966, 10(4): 278~291
    23 曾芷德,刘蓬侠.一个基于故障敏化模式分解的并行ATPG算法.计算机应用,2001,(8):177~180
    24 L. G. Silva, L. M. Silveira, J.M. Silva. Algorithms for Solving Boolean Satisfiability in Combinational Circuits. Proc.DATE. 1999: 526~530
    25 魏道政.产生功能级数字电路测试码的一种算法—主路径敏化法.计算机学报,1982,(2):125~139
    26 Bardell, P.H., W.H.MoAnney, and J.Savir. Built-in Test for VLSI: Pseudorandom Techniques, Wiley Somerset, NJ, 1987
    27 S.Y.Chakrdhar, M.L.Bushnell, V.D.Agrawal. Towards Massively Parallel Automatic Test Generation. IEEE Trans. Computer-Aided Design, 1990, 5: 981~993
    28 陈永刚,张彩珍.组合电路的故障测试生成D算法研究.兰州铁道学院学报,2002,(12):14~16
    29 P. Goel. An implicit enumeration algorithm to generate test for combinationnal circuits. IEEE Trans. On Computers, 1981, C-30(3): 215~222
    30 H. Fujiwara. FAN: a fanout-oriented test pattern generation algorithm. IEEE Proceedings, ISCAS85, 1985: 671~674
    31 Tom. Kirkland, M.Ray Merce. A Topological Search Algorithm for ATPG. 24th Design Automation Conference, 1987: 502~508
    32 M.H.Schulz, E.Trischler. SOCRATES: A highly efficient automatic test pattern generation system. IEEE Transactions on Computer-Aided Design, 1988, 7(1): 126~136
    33 H.Fujiwara. SPIRIT: A highly Robust Combonational test generation Algorithm. IEEE Transactions on Computer-Aided Design, 2002, 21(12): 1446~1450
    34 P. Tafertshofer, A. Ganz, M. Henftling. A SAT-based Implication Enging for Efficient ATPG, Equivalence Checking, and Optimization of Netlists. Proc. Int. Conf. Computer-Aided Design, ICCAD. 1997: 648~655
    35 刘歆.SAT数据结构与组合测试生成.微电子学与计算机,2003,(5):39~44
    36 H.Fujiwara. A framework for low complexity static learning. Proceeding, Design AutomationConference, 2001: 546~549
    37 T.Cibakova, M.Fischerova, E.Gramatova. Hierarchical Test Generation for Combinational Circuits with Real Defects Coverage. Microelectronics Reliability, 2002, 42: 1141~1149
    38 V.M.Vedula, J.A. Abraham.FACTOR: A Hierarchical Methodology for Functional Test Generation and Testability Analysis. IEEE Proc. Europ Conference and Exhibition in Design, Automation and Test, 2002: 731~734
    39 S.Ravi, N.K.Jha. Fast Test Generation for Circuits with RTL and Gate-level Views. IEEE Proc. International Test Conference, 2001: 1069~1076
    40 Satoshi Ohtake, Kouhei Ohtani, Hideo Fujiwara. A Method of Generation for Path Delay faults Using Stick-at Fault Test Generation Algorithms. Proceedings of the Design, Automation and Test in Europe Conference and Exhibi- tion, 2003: 43~45
    41 G. L. Smith. Model for Delay Faults Based Upon Paths. Proc. International Test Conference, 1985: 342~349
    42 M. Hamad, A.K.Cherri. Modeling and Analysis of Path Delay Faults in VLSI Circuits: A Statistical Approach. ICECS, 2003: 587~589
    43 Shweta Chary Michael.Bushnell. Automatic Path-Delay Fault Test Generation for Combined Resistive Vias, Resistive Bridges, and Capacitive Crosstalk Delay Faults. Proceddings of the 19th International Conference on VLSI Design, Jan. 2006: 3~7
    44 E.S.Park, M.R.Mercer. Robust and Nonrobust Tests for Path Delay Faults in a Combinational Circuit. Proc. International Test Conference, 1987: 1027~1034
    45 JOONHWANY, HAYES J P. A Fault Model for Function and Delay Testing[A]. Test Workshop, IEEE European[C].[s.1.]:[s.n.], 2002
    46 Hiroshi Takahashi, Kewal K.Saluja, Yuao Yakamatsu. An Alternative Method of Generation Test for Path Delay Faults Using N_i-Detection Test sets, IEICE Transactions on Information and Systems, v E86-D, n 12, Dec. 2003: 2650~2658
    47 T.Kwok, KA.Smith. Experimental Anlysis of Chaotic Neural Network Modle For Combinatorial Optimization Under A Unifying Framework Neural Networks, 2001, 13: 731~744
    48 陈朝阳,丁明跃.基于神经网络测试码生成的一个鲁棒算法.华中理工大学学报,1999,27(9):90~91
    49 徐建斌,李智.神经网络在组合电路故障模拟测试生成算法中的应用.电路与系统学报,2001,6(4):109~110
    50 潘中良,张光昭.数字电路多故障测试生成的神经网络方法研究.仪器仪表学报,1999,20(3):232~234
    51 刘小东,孙圣和.基于遗传算法的自适应测试生成.微电子学与计算机,2002,(3):14~16
    52 刘小东,孙圣和.基于神经网络的组合电路测试生成算法.哈尔滨工业大学学报,2002,(4):255~257
    53 徐红兵,祝颖,王厚军.组合电路测试生成的神经网络建模研究与实现.仪器仪表学报,2002,(10):137~140
    54 徐红兵,李焱骏,王厚军.一种基于混沌神经网络自动测试生成算法.仪器仪表学报,2002,(10):77~79
    55 康波,吕炳朝等.基于混沌搜索的组合电路测试生成算法.电路与系统学报,2002,(7):108~111
    56 薛月菊,王红,杨士元,邢建辉,邓雨春.数字电路的层次化测试生成新趋势.哈尔滨工业大学学报,2003,11(35):1281~1283
    57 曾芷德.特大规模组合电路高速测试生成系统.国防科技大学学报,1999,21(2):38~41
    58 P. Muth. A nine-valued cirduit model for test generation. IEEE Trans. On Computers, 1976, C-25(6): 630~636
    59 W. T. Cheng. The BACK algorithm for sequential test generation. Proc. Int. Conf. on Computer Design, 1988: 66~69
    60 R. Marlett. EBT: A Comprehensive Test Generation Technique for Highly Sequential Circuits. Proc. Design Automation Conference, 1978, 6: 332~339
    61 T. Niermann, J. H. Patel. HITEC: A test ge.neration package for sequential circuit. Proc. Design automation Conf, 1991: 215~217
    62 M. H. Schule, E. Auth. ESSENTIAL: An efficient self-learning test pattern generation algorithm for sequential circuit. IEEE Proc. International Test Conference, 1989: 27~36
    63 T. P. Kelsey, K. K. Saluja, S. Y. Lee. An efficient algorithm for sequential test generation. IEEE Trans. On computer. 1993, 42(11): 1362~1370
    64 V. D. Agrawal, K. T Cheng, P. Agrawal. CONTEST: A concurrent test generator for sequential circuit. IEEE Proc. 25th ACM Design automation Conf, 1988: 84~89
    65 F. Corno, P. Prinetto, M. Rebaudengo, M. Sreorda. GATTO: A genetic algorithm for automatic test pattern generation for large synchronous sequential circuit. IEEE Transaction on Computer-Aided Design of Integrated Circuit and System, 1996, 15(8): 990~998
    66 D. G. Saab, Y. G. Saab, J. A. Abraham. CRIS: A test cultivation program for sequential VLSI circuit. Proc. Int. Conf. Computer-Aided Design, 1992: 216~219
    67 E. M. Rudnic, J. H. Patel, G. S. Greestein, T. M. Niermann. Sequential circuit test generation in a genetic algorithm framework. Proc. Design automation Conf, 1994: 698~704
    68 H. K. T. Ma, S. Devadas, A. R. Newton, A. S. Vincentelli. Test generation for sequential circuit. IEEE Transaction on Computer-Aided Design. 2000, 7(10): 1081~1092
    69 Ghosh, S. Devadas, A. R. Newton. Test generation and verification for highly sequential circuit. IEEE Transaction on Computer-Aided Design, 1991, 10(5): 655~666
    70 Hideo Fujiwara. A Method of Generation for Path Faults in Banlanced Sequential Circuits. Proceeding of the 20th IEEE VLSI Test Symposium. 2002
    71 Michiko Inoue. Sequential Circuits with Combinational Test Generation Complexity under Single-Fault Assumption. Journal of Electronic: Theory and Applications, 20021: 55~58
    72 Tsuyoshi Iwagaki, Satoshi Ohtake Hideo Fujiwara. Acceleration of Transition Test Generation for Acyclic Sequentiai Circuits Utilizing Constrained Combinational Stuck-at Test Generation. Proceedings of 10th IEEE European Test Symposium, May 22-25 2005, Tallinn, Estonia: 48~53
    73 阮根鸿.异步时序电路的测试生成算法—H算法.电子学报,1983,(1):49~57
    74 杨士元.数字系统的故障诊断与可靠性设计.第二版 清华大学出版社,2000
    75 Jerry Gao, Ph. D. and Ming-Chih Shih. A component Testability Model for Verification and Measurement. Proceddings of the 29th Annual International Computer Software and Applications Conference. 2005, 1 (1): 211~218
    76 D. xiaog and J. H. Patel. Agloobal Algotithm for the Partial Scan Design Problem Using Circuit State Information. Proc. IEEE int'l Test Conf., Oct. 1996: 548~557
    77 Pomeranz, S. M. Reddy. Functional Test Generation for Full Scan Circuits. Proc. Design, Automation and Test in Europe, 2000: 396~401
    78 Debesh K. Das, Bhargab B. Bhattacharya, Satoshi Ohtake and Hideo Fujiwara. Testable Design of Sequential Circuit with Improved Fault Efficiency. Fourteenth International Conference on VLSI Design, 2001: 128~133
    79 潘中良.基于逻辑函数的电路可测性设计及多故障测试.应用科学学报,2002,(6):111~115
    80 潘中良.数字电路可测性设计的一种故障定位方法.中国工程科学,2002,(1):69~74
    81 Dong Xiang, Yi Xu, Hideo Fujiwara. Non-Scan Design for Testability for Synchronous Sequential Circuits Based on Conflict Analysis. Information and Systems, v E86-D, n 11, November, 2003, 2407~2417
    82 张立明.人工神经网络的模型及应用.复旦大学出版社,2000:45~48
    83 杨行峻,郑君里.人工神经网络与盲信号处理.清华大学出版社,2003:32~36
    84 Hideo Fujiwara. Three-Valued Neural Networks for Test Generation. Proc. of 20th Fault-Tolerant Computing Symposium, 1990: 66~67.
    85 潘中良,陈翎.基于神经网络的电路多故障测试及并行实现.仪器仪表学报,2002,(6):680~681
    86 潘中良.数字电路多故障测试生成方法的研究与实现.电子科技大学博士论文,1997:10~24
    87 潘中良,陈光与.测试图形生成的遗传算法研究.电子科技大学学报,1997,26(5):511~514
    88 潘中良,张光昭.基于模拟与遗传进化的电路测试生成方法研究.仪器仪表学报,1999,20(5):470~472
    89 王小平.遗传算法理论与应用.西安交通大学出版社,2002:28~50
    90 Yong Chang Kim, Vishwani D. Agrawal, Kewal K. Saluja. Multiple Faults: Modeling, Simulation and Test. Proceedings of the 15th International Conference on VLSI Design, 2002: 24~26
    91 梁玉英,蔡金英等.组合逻辑多故障诊断.微电子学,2002,3(3):185~187
    92 J. Giraldi and M. L. Bushnell. EST: The new frontier in automatic test pattern generation. Proc. 27th ACMIIEEE Design Automation Conf. June 1990: 667~672
    93 T. Fujino and H. Fujiwara, An efficient test generation algorithm based on search state dominance, in Proc. Intl. Symposium on Fault-Tolerant Comp. 2002: 246~253
    94 刘晓东,张毅刚,孙圣和.具有最小搜索空间的优化测试生成算法.仪器仪表学报,2002,(6):32~34
    95 牛为华,孟建良,张素文.成对测试中的测试生成策略研究.计算机仿 真,2003,(7):111~115
    96 金娜,姚秀华.数字集成电路的可测性设计及其应用,微处理机,1998,(5):63~67
    97 Yin-He Su, Ching-Hwa Cheng and Shih-Chieh Chang. Novel Techniques for Improving Testability Analysis, Fundamentals of Electronics, Communications and Computer Sciences, v E85-A, n 12, December, 2002: 2901~2912
    98 Benoit Baudry, Yves Le Traon, Gerson Sunye and Jean-Marc Jezequel. Measuring and Improving Design Patterns Teseability. Proceddings of the Ninth International Software Metrics Symposium, 2003: 50~59
    99 Savir J. Syndrme-testable Design Test of Combinational Circuirts. IEEE Trans, Comput. 1980, c-29(9): 16~19
    100 Bhattachaya B B, B Gupta. Syndrme Testable Design Test of Combinational Network for Detecting Stuck-at and Bridging Faults. Pro.Int.Test Conf. 1983.
    101 Barzilai Z, Savir J, Markowsky G, Smith M G. The Weighted Syndrme Sums Approach to VISL Testing. IEEE Trans, Comput: 1981, c-30(1-2): 23~26
    102 Shiyi Xu. High-Order Syndrome Testing for VLSI Circuits. Proceedings 11th Pacific Rim International Symposium on Dependable Computing, Hunan, China, 12-14 Dec. 2005: 8~12
    103 Abramovici, M. P. M. Menon and D. T. Mill. Critical Path Tracing: An Alternative to fault simulation. IEEE Design and Test of Computers, 1984: 83~93
    104 W. Kuzmicz, W. Pleskacz, J. Raik and R. Ubar. Defect-Oriented Fault Simulation and Test Generation in Digital Circuits. Proceedings of the IEEE 2001. The 2nd International Symposium on Quality Electronic Design, 2001: 365~371

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700