基于模型诊断的若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子技术的快速发展,混合电路系统的集成度和复杂度也不断提高,这给电路的故障诊断带来了全新的挑战。近二十年来,一些关键性的大型现代化设备出现重大故障,造成了重大的损失,为避免这些严重性灾难事件的发生,诊断问题越来越受到研究人员的重视。基于模型的诊断理论快速发展成熟,为我们提供了一种对系统进行合理诊断的有效途径。基于模型的诊断是指对一个给定的系统,通过系统模型与对系统行为的观测,确定系统是否按照预期行为运行。
     本文主要针对静态模型下的诊断方法,以及离散事件系统下的最小测试集计算,系统模型化简,系统的可诊断性等,进行如下研究:(1)基于静态模型的诊断算法:应用基于假设的真值维护系统(ATMS)的相关技术,阐述了利用元件与输出端的关联信息来解决诊断问题从而找到可选择的合理诊断解的方法。提出了以元件与输出端的关联信息对系统模型的理论域进行分层抽象的双层模型诊断技术。该模型包含了和系统输出有关的元件信息,在故障产生时通过这些关联信息来直接获得与故障相关的元件集合从而获得极小诊断,避免了传统的诊断方法中对系统极小冲突集的求解和由极小冲突集求解极小碰集的繁琐过程,因而提高了求解效率。我们还将该方法应用到MFMC的求取当中,因此我们的方法有着更好的灵活性和应用性;(2)在混合电路中,电路的测试与诊断已经被广泛的研究,但系统最小测试集的计算依旧是该领域的关键和困难问题。而近些年发展起来的离散事件系统理论为数字信号和模拟信号电路的测试提供了一个统一的建模方法,在离线模型中,故障被定义为状态而非事件,而故障的表征被定义为事件。因此诊断过程就是通过观察表征来不断划分不同状态集合直到得到最优分区(区分出故障)为止。为了在DES模型上寻找到最小的测试集,本文提出了基于离散事件系统提出了一种新的计算“更精细”划分的算法,进一步,本文给出了一种全新的计算极小测试集的方法,该方法能够同步计算出了最优分区和极小测试集,有很高的效率;(3)针对系统模型呈指数级爆炸增长的趋势,本文提出了一种模型化简的方法,给出了基于有限状态自动机的化简不可观测事件以及合并冗余状态的规则。该方法化简了确定可观测事件系统中所有不可观测事件,同时不改变原系统模型的可观测轨迹集合。降低了系统模型的规模,减少了可诊断性算法和在线诊断算法执行中对模型的冗余探索,极大地提高了算法执行效率。以往对于DES模型中不可观测事件的处理局限于在算法中动态删除或者忽略,使算法增加了许多冗余操作,大规模系统可诊断性判别效率低,同时也不符合在线诊断对实时性的要求。我们这里利用自动机模型的相关性质,提供了一个新的化简模型的方法,化简了系统中的不可观测事件,提高了在其上执行算法效率。本模型虽然为可诊断性判别算法及在线诊断算法提供了一个合适的模型,但如何解决一般性问题是今后研究的方向。(4)同时我们给出了两种不同的判断系统可诊断性的方法,矩阵化DES模型的分类算法和逆向Twin-Plant模型诊断方法,这两种算法应用局部完全向前探索模型的思想,无需全局求解,有很高的效率。具体的说,我们的方法只考虑子路径上的路径比较情况而无需考虑全局模型的全部路径比较情况,因此算法的执行时间被大大缩短了,同时更容易在实际模型中应用。
With the rapid development and application of the electronic technology in modernindustry, the integration level and the complexity grade in the mixed-signal circuit alsodramatically increase. In the last two decades, possible faults appear in a number of keylarge-scale modern equipments, resulting in significant losses. In order to avoid theseriousness of the disaster from occurring, diagnose problems attract more and more attention.A recently developed theory of model-based diagnosis provided a uniform method for test ofthe digital and analog signal in the mixed-signal circuits. Model-based diagnosis is adiagnostic method which uses internal system constructions and behavior knowledge todiagnose possible faulty functions of a system.
     In this paper, to achieve the diagnostic goal, we propose some methods about associationinformation between outputs and components, computing the minimal test set, simplifiedmodel, diagnosability of system, incomplete model and so on. Details as follows:(1) Basedon Assumption-based truth maintenance system (ATMS), the paper proposes a method to getthe reasonable multiple faults diagnosis solutions based on the relationship between outputsand components in systems. In this paper, we set up a bilayer model which is a sort ofLayered Structure of Abstraction based on the relationship between outputs and components.This model contains all the components information of system outputs and allows us to obtainminimal diagnoses directly by obtaining the related components based on the informationassociated when the faults occur. It avoids deriving the minimal conflict set and the minimalhitting set based on the conventional diagnosing methods, and which can remarkably improveefficiency. Furthermore, we apply this method to MFMC and it shows that the method hasgreat flexibility and application.(2) In the mixed-signal circuit, test and diagnosis of thecircuit under test (CUT) have been studied widely. But the computing of the minimal test setof circuits is still a key and difficulty in this field. A recently developed theory of discreteevent system (DES)[13] provided a uniform method for test of the digital and analog signalin the mixed-signal circuits. In an off-line model, the fault was described by state not event,and the phenomena of the fault were defined by events. So the process of diagnosing was touse the phenomena to divide the fault into partitions until the partition was fine enough. Asfor finding the minimal test set of circuits in the testability study based on DES, We also propose a new algorithm for computing finer partitions. Furthermore, we give a new methodfor computing the minimal test set, which is efficient for computing the optimal partitioningand the minimal test set.(3) As the trend of exponential growth of system’s scale, we give amethod to reduce the redundant information of the model and propose some rules of mergingdifferent states. In this research, we give some reducing rules of DES model. These rulescould reduce the unobservable events and merge the states connected by unobservable events.What is more, we reconstruct the paths leading to these states based on new rules, so that, theobservation could be compatible with the model.(4) In the same time, we give two differentmethods of diagnosability testing and optimizing: Matrix-based testing algorithm andreverse-twin-plant-based testing algorithm and there is no need to generate a complete copy ofthe DES model to determine the diagnosability in all the two methods. Our methods onlyconsider the paths on sub-model instead of all paths on global model. So the execution time islargely reduced, and the methods are feasible in actual application.
引文
1.等价是指在粗诊断的程度上,域中不同部件发生故障造成输出端故障的情况相同。
    2.本文中把故障定义在事件上,但对于永久性故障,它们可以等价的定义在状态上。本文中只考虑永久性故障。
    3.所谓扰动现象就是指一个状态通过相同事件可能到达不同状态,我们称这种现象为扰动现象,称有这种现象的系统为非确定系统。
    4对于诊断器,我们需要在正常路径上相应地设置诊断终止节点,因为我们不需要将诊断终止节点后面的路径与故障路径进行相容判断。我们这里的d可以是时间也可以是事件数,它们是等价的。因为观测的数目是有传感器在给定时间内获得的。
    5所谓路径存在歧义是指不存在足够可区分的观测以使得在一个有限的延迟内唯一地标识不同路径的故障类型。
    6所谓故障类型不同是指两条路径上的发生了不同类型的故障事件;或者一条是正常路径,一条是故障路径。
    7符号化技术使用大规模状态集合操作来代替枚举法。这意味着算法中的数对都可以使用符号化工具来表示。例如,如果枚举出图5.4中所有的状态,则在数目上是DES上状态的2次方级。而如果我们使用笛卡尔积来表示的话,就可以避免组合爆炸的情况()。
    [1] De kleer, Mackworth J. A. and Reiter R. Characterizing diagnoses and systems [J].Artificial Intelligence,1992,56(2-3):197-222.
    [2] Reiter R. A theory of diagnosis from first principles [J]. Artificial Intelligence,1987,32:57-95.
    [3] Poole D. Normality and faults in logic-based diagnosis [C]. In: Proceedings of theEleventh International Joint Conference on Artificial Intelligence. Detroit MI,1989,1304-1310.
    [4] Vittorio Brusoni, Luca Console, Paolo Terenziani et al. A spectrum of definitions fortemporal model-based diagnosis [J]. Artificial Intelligence,1998,102:39-79.
    [5] C. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Vol.11of theKluwer International Series in Discrete Event Dynamic Systems [M]. Kluwer AcademicPublisher, Boston, MA,1999.
    [6] J. Lunze. Discrete-event modeling and diagnosis of quantized dynamical systems [C]. In:Proc.10th International Workshop on Principles of Diagnosis (DX-99), Loch Awe, UnitedKingdom,1999,147-154.
    [7]赵相福.离散事件系统基于模型诊断的若干问题研究[D].博士学位论文,长春:吉林大学,2009.
    [8] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. C. Teneketzis.Diagnosability of discrete event systems [J].IEEE Transactions on Automatic Control,1995,40(9):1555-1575.
    [9] L. Console, C. Picardi, and M. Ribaudo. Process algebras for systems diagnosis [J].Artificial Intelligence,2002,142(1):19-51.
    [10] J. Hillston. A Compositional Approach to Performance Modeling [M]. CambridgeUniversity Press, New York, NY, USA,1996.
    [11] A. Aghasaryan, R. Boubour, E. Fabre, C. Jard, and A. Benveniste. A petri net approach tofault detection and diagnosis in distributed systems [R]. Technical Report1117, Irisa,1997.
    [12] Hamscher W. Modeling digital circuits for troubleshooting [J]. Artificial Intelligence,1991,51(1-3):223-271.
    [13] Darwiche. Model-based diagnosis using strured system descriptions [J]. Journal ofArtificial Intelligence Research,8:165-222.
    [14] Williams B., Nayak P. A model-based approach to reactive self-configuring systems [C].In: Proceedings AAAI-96, Portland, OR,1996,971-978.
    [15] Luca Chittaro and Roberto Ranon. Hierarchical model-based diagnosis based onstructural abstraction [J]. Artificial Intelligence2004,155:147-182.
    [16] Mozetic, I. Hierarchical diagnosis [M]. In: W H L Console, J de kleer, eds. Readings inModel-based Diagnosis, CA,1992,354-372.
    [17] Chittaro L, Ranon R. Hierarchical diagnosis guided by observations [C]. In: Proceedingsof IJCAI-2001, Seattle, WA, Morgan Kaufmann, San Mateo, CA,2001,573-578.
    [18] Provan, G. Hierarchical model-based diagnosis [C]. In: Proceedings of the12thInternational Workshop on Principles of Diagnosis-DXO1, San Sicario, Italy,329-362.
    [19] De kleer, J. and Williams, B. C. Diagnosing multiple faults [J]. Artificial Intelligence,1987,32:97-130.
    [20] De kleer. Using crude probability estimates to guide diagnosis [J]. Artificial Intelligence,45(3):381-391.
    [21] Pietro Torasso, Gianluca Torta. Compact diagnoses representation in diagnostic problemsolving [J]. Computational Intelligence,2004(21):37-68.
    [22] Lucas P J F. Bayesian model-based diagnosis [J]. Int J Approximate Reasoning,2001,27:99-119.
    [23] Ildik’o Flesch, Peter Lucas, Theo van der Weide. Conflict-based diagnosis: addinguncertainty to model-based diagnosis [J]. In: proceedings of the International JointConference on Artificial Intelligence-IJCAI07, Chambery, France,2007,59-66.
    [24] Kurien J, P Pandurang Nayak. Back to the future for consistency-based trajectorytracking [C]. In: Proceedings of the17thNational Conference on ArtificialIntelligence-AAAI2000,370-377.
    [25] Long W. Temporal reasoning for diagnosis in a causal probabilistic knowledge base [J].Artificial Intelligence in Medicine,1996,8(3):193-216.
    [26] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. C. Teneketzis.Diagnosability of discrete event systems [J].IEEE Transactions on Automatic Control,1995,40(9):1555-1575.
    [27] S. Jiang, Z. Huang, V. Chandra, and R. Kumar. A polynomial algorithm for testingdiagnosability of discrete event systems [J]. IEEE Transations on Automatic Control,2001,46(8):1318-1321.
    [28] T. S. Yoo and S. Lafortune. Polynomial-time verification of diagnosability of partiallyobserved discrete-event systems [J]. IEEE Transations on Automatic Control,2002,47(9):1491-1495.
    [29] Y Pencolé. Diagnosability analysis of distributed discrete event systems [C]. In: Proc.16th European Conference on Artificial Intelligence (ECAI-04), Valencia, Spain,2004,43-47.
    [30] L. Briones, A. Lazovik,and Ph. Dague. Optimal observability for diagnosability [C]. InNineteenth International Worshop on Principles of Diagnosis (DX-08),2008.
    [31] Alban Grastien. Symbolic Testing of Diagnosability [C]. In Twentith InternationalWorshop on Principles of Diagnosis (DX-09),2009.
    [32]林海,孙吉贵.一种模型不完备条件下的诊断方法[J].广西师范大学学报,2003,21(1):79-82.
    [33] David L.Yeung and Raymond H. Kwong. Fault diagnosis in discrete-event systems:Incomplete models and learning [J]. In Proceedings of the2005American ControlConference, volume5,2005.
    [34] De Kleer, J., An assumption-based TMS [J], Artifical Intelligence28(1986)127-162.
    [35] Worawa, F.A variant of reiter’s hitting-set algorithms [C]. Information Processing Letters,2001,79(1):43-51.
    [36] Zhao Xiang-fu, Ouyang Dan-tong. A New Method of Computing Hitting Sets Applied todiagnosis Generation [J]. Journal of Jilin University (Scienc Edition),2006,44(3):385-390.
    [37] Li Zhan-shan, Wang Kun, Ai Yang. Computing Minimal Diagnosis with Binary DecisionDiagrams Algorithm [C]. FSKD2009.
    [38] Torta, G., Torasso, P.: Automatic abstraction in component-based diagnosis driven bysystem observability [C]. Proc. IJCAI (2003):394-400.
    [39] Fattah Y. E.,Dechter R., Diagnosing tree-decomposable circuits [C]. In: Proceedings ofInternational Joint Conference on Artificial Intelligence, Montreal, Canada,1995,572-578.
    [40] Stumptner M.,Wotawa F., Diagnosing tree-structured systems [J]. Artificial Intelligence,2001,127(1):1-29.
    [41] I.Mozetic. Hierarchical model-based diagnosis [J]. Int. Journal of Man-MachineStudies,35(3):329362,1991.
    [42] Darwiche, A. New advances in compiling CNF into decomposable negation normal form
    [C]. In Proceedings of the16th European Conference on Artificial Intelligence (ECAI),328-332.
    [43] Darwiche, A. Decomposable negation normal form [J]. Journal of the ACM,2001,48(4):608-647.
    [44] Torasso, P., Torta, G.: Computing Minimum-Cardinality Diagnoses Using OBDDs [J].Lecture Notes in Artificial Intelligence2821(2003)224-238.
    [45] Siddiq S, Huang J. Hierarchical Diagnosis of Multiple Faults [C]. Proceedings of the20th International Joint Conference on Artificial Intelligence. Hyderabad: AAAI Press,2007:581-586.
    [46] De Kleer.An Improved Approach for Generating Max-Fault Min-Cardinality Diagnoses
    [C]. Proceedings of the19th International Workshop on Principles of Diagnosis(DX-08):247-252.
    [47] Jinbo Huang, Adnan Darwiche. On compiling system models for faster and morescalable diagnosis [C]. In AAAI, pages:300-306,2005.
    [48]赵屹涛,赵修民.现场高压和大电流互感器测量原理的探讨[J].电测与仪表,1998,(8).
    [49]赵修民.电流互感器[M].山西科学教育出版社,1990.
    [50]张菲菲,鲁昌华,王妍妍.几种求取电路最小测试集算法的比较研究[J].电测与仪表,2006,5(43).
    [51] LIN F, MARKEE J, RADO B.Design and test of mixed-signal circuit:a discrete-eventapproach [C]. In Proceedings of the32nd Conference on Decisiom andControl,IEEE,1993:217-222.
    [52] Feng Lin.Zhang Hui Lin.William Lin T A Uniform Approach to Mixed-Signal CircuitTest[J]. International Journal of Circuit Theory and Applications,1997(25):81-93.
    [53]万锴,马齐爽.混合电路测试中的离散事件模型[J].仪器仪表学报,2006,12(27).
    [54] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. C. Teneketzis.Failure diagnosis using discrete event systems [J]. IEEE Transactions on ControlSystems Technology,1996,4(2):105-124.
    [55] A. Grastien, M. Cordier, C. Largouet. Incremental Diagnosis of Discrete-Event Systems
    [C].15thInt. Work. On Principles of Diagnosis (DX05),2005.
    [56] A. Grastien, Anbulagan, J. Rintanen, and E. Kelareva. Diagnosis of discrete-eventsystems using satisfiability algorithms [C]. In Proc. of19thAAAI, pp.305-310,(2007).
    [57] Schumann and Y. Pencol′e. Scalable diagnosability checking of event-driven systems [C].In M. Veloso, editor, Twentieth International Joint Conference on Artificial Intelligence(IJCAI-07), AAAI Press,2007.
    [58] Yuhong Yan, Lina Ye and Philippe Dague,(2010). Diagnosability for Patterns inDistributed Discrete Event [C]. Proceeding of21thInternational Worshop on Principlesof Diagnosis(DX’10).
    [59] Feldman, A, Provan, G, Generating manifestations of max-fault min-cardinalitydiagnoses[C]. In Biswas, G.; Koutsoukos, X.; and Abdelwahed, S., eds., Working Papersof the Eighteenth International Workshop on Principles of Diagnosis.83-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700