二氧化碳地下封存与强化采油利用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温室气体二氧化碳的大量排放给全球气候和环境带来的巨大影响已经引起了全世界的广泛关注。实现二氧化碳的深度减排是人类可持续发展的必由之路。人为的将二氧化碳封存到地层中和利用二氧化碳驱油提高采收率是实现二氧化碳深度减排的两个可选途径。在成熟的技术方案和合理的封存场地得到保证的前提下,二氧化碳地下封存是封存储量最大、前景最好的二氧化碳减排方案。而利用二氧化碳驱油提高采收率不但可以封存二氧化碳还能够提高石油可采储量,是一种实现社会效益和经济效益双赢的二氧化碳减排方案。本文以开发二氧化碳长期、安全封存技术为研究背景,在实验室内模拟二氧化碳封存的沉积层环境,研究海底沉积层中二氧化碳水合物封存、二氧化碳咸水层封存和二氧化碳驱油提高采收率过程中的基础问题,获得相关的实验数据和规律,为阐明二氧化碳封存中的相关机理提供支持。
     首先开发了一套模拟海洋沉积层环境的填砂水合物相平衡实验系统,系统具有较高的测量精度和易操作性。该系统可以通过填砂方式模拟海洋沉积层,通过改变填砂粒径尺寸来改变沉积层的孔隙尺寸,还可以模拟含盐分的海水进行相关实验研究。
     应用填砂水合物相平衡实验系统开展了多孔介质的孔隙尺寸、孔隙水盐度和二氧化碳混合氮气对二氧化碳水合物相平衡的影响特性研究。通过研究发现随着孔隙尺寸减小、孔隙水盐度增大和混入氮气百分比的增加,二氧化碳水合物相平衡向高压、低温方向移动。与在纯水中相比在海洋沉积层中二氧化碳水合物需要更高的压力和更低的温度保持其稳定性。通过对水合物生成过程中多孔介质渗透率的测量,发现渗透率随水合物饱和度成指数下降趋势。
     基于磁共振成像仪(MRI)开发了沉积层中二氧化碳水合物可视化实验系统和二氧化碳-水-油多相流动的可视化实验系统。系统以一台400MHz磁共振成像仪为主体,周边设备采用通用设备组合的方式来满足多种实验需求。
     应用MRI对多孔介质中水合物生成过程的诱导时间、饱和度等参数以及水合物生长模式进行了定量测量和可视化分析。实验结果表明水合物生成诱导时间随过冷度增大和压力升高而大大降低,而水合物生成的饱和度和过冷度、压力成正比关系。通过对水合物生长模式的研究发现在玻璃砂堆积多孔介质中水合物主要以胶结模式生成。
     对填砂多孔介质的孔隙度进行了MRI平均亮度法分析,与传统的孔隙度测量方法获得的孔隙度吻合较好,并且得到了多孔介质的局部孔隙度。在进行模拟沉积层中超临界二氧化碳驱水实验研究时发现,由于浮升力的作用二氧化碳在含孔隙水多孔介质中有明显的窜流和指进现象,特别是某些局部渗透率较大的通道是二氧化碳在咸水层封存中产生流动“惰性”的主要因素。通过MRI相位迁移速度成像法可以准确测量多孔介质中水的流速分布,通过MRI饱和度分析和达西渗透理论结合能够获得二氧化碳在多孔介质中的流速分布。
     采用MRI图像亮度分析可以准确判断二氧化碳与油的混相状态,并且通过对压力与图像亮度的拟合可以定量获得最小混相压力。在简单通道内水驱油的实验结果表明,润湿特性对水驱效果有较大影响,在并联孔隙中容易产生孤立油珠,被圈闭在孔隙中的油珠是残余油形成的一个主要因素。
     对二氧化碳非混相气驱与超临界二氧化碳混相驱进行了对比研究,发现超临界二氧化碳混相驱形成活塞状的驱替前缘可以提高扫掠效率、延长突破时间,是混相驱效率优于非混相驱的一个重要原因。二氧化碳混相驱最终的驱替效率要远远高于非混相驱。
It has been widely concerned about the impacts on global climate and environment caused by carbon dioxide (CO2) green-house gas emission. Mitigation of CO2 emission to the atmospere has great importance to the sustainable development of mankind. CO2 underground sequestration and enhanced oil recovery are the two main options of many mitigation metods. Underground sequestration based on mature techniques and appropriate locations is a method with the most potential capacity. On the other hand, enhanced oil recovery is considered to be a win-win method for both economic and environmental benefits because it may not only storage CO2 underground but also improve oil recoverable reserves. This project is proposed against the background of long term and safe storage of CO2. Experiments for CO2 storage in artificial sediments were inducted at laboratory scale. Fundamental studies on CO2 hydrate storage in ocean sediments, storage in saline aquifer and enhanced oil recovery were carried out for obtaining basic data and mechanism in expectation of theoretical support for CO2 sequestration.
     A high precision and maneuverable experimental system for CO2 hydrate equilibrium study in simulated ocean sediments was developed. Ocean sediment environment with different pore size and salinity was built up using glass beads with different grain size and brine with different concentration.
     Experimental studies on the effect of pore size, salinity and nitrogen fraction on CO2 hydrate equilibrium were carried out using the experimental system of hydrate equilibrium. Results showed that equilibrium of CO2 hydrate moves toward high pressure and low temperature direction as pore size decreses as well as salinity and nitrogen faction increases. It needs higer pressure and lower temperature for the stability of CO2 hydrate in ocean sediments than in pure water. It was also shown that permeability decreases exponentially with hydrate saturation as hydrate grows in porous media.
     Another experimental system based on a 400 MHz magnetic resonance imaging (MRI) device and its peripheral equipments was also developed which can be applied to the visualization of CO2 hydrate and CO2-water-oil multiphase flow in porsous media.
     Induction time and saturation were measured and growth pattern was visualized as hydrate formed in porous media. Results showed that induction time decreases greatly as super cooling temperature and initial pressure increase. Final saturation of hydrate was linear relation with super cooling temperature and initial pressure. Hydrate grows in a pattern of cementing with glass beads pack-simulated sediments in our experiments.
     Porosity obtained using MRI intensity analysis was shown to be identical with tradition methods and local porosity was also obtained. Channeling and fingering phenomenon arose by buoyancy was obviously detected in CO2 flooding through water saturated sediments. Experiment results showed that paths with higher permeability are the main reasons which make CO2 become lazy in saline aquifer storage. Phase velocities of water and CO2 flowing in porous media were also obtained by using MRI pahse shift imaging and MRI saturation analysis combined with Darcy's theory.
     Miscible status of CO2 with oil was detected and minimum miscibility pressure (MMP) was quantified exactly using MRI intensity analysis. Water flooding experiments in simple channels showed that wettability has great effect on oil displacement. Results showed that isolated oil drops trend to form in bifurcate channels which is a main inducement of oil trap after water flooding.
     Comparison of immiscible and miscible displacement of CO2 showed that pistion-like miscible zone of CO2 and oil can improve the sweep coefficiency and enlarge the breakthrough time during CO2 flooding. It showed that a much higher displacement coefficient can be obtained in CO2 miscbile displacement than in immiscible displacement.
引文
[1]IPCC. Climate Change 2007:The Physical Science Basis. Contribution of Working Group to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge University Press, Cambridge, UK,2007.
    [2]IPCC.2001a:Climate Change 2001-Mitigation, The Third Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge University Press, Cambridge, UK,2001.
    [3]IEA. CO2 emissions from fuel combustion highlights (2010 edition). International Energy Agency[M].75739 Paris Cedex, France, OECD/IEA,2010.
    [4]IPCC.2001b:Climate Change 2001-The Third Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge University Press, Cambridge, UK,2001.
    [5]IPCC.1996b:Technologies, Policies, and Measures for Mitigating Climate Change IPCC Technical Paper Ⅰ[M]. Cambridge University Press, Cambridge, UK,1996.
    [6]Gipe, P. Wind Power:Renewable Energy for Home, Farm,& Business[M]. Chelsea Green Publishing Co., USA, 2004.
    [7]Goldemberg J and Johansson T B. World Energy Assessment, Overview:2004 Update [M]. United Nations Development Programmer, New York,2004.
    [8]IPCC. 2001c: Climate Change 2001 - The Scientific Basis Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge University Press. Cambridge, UK,2001.
    [9]Aresta M and Forti G. Carbon Dioxide as a Source of Carbon:Biochemical and Chemical Use[M]. Kluwer, the Haguc,1987.
    [10]Seifritz W. The Terrestrial Storage of CO2-ice as a Means to Mitigate the Greenhouse Effect[J]. Hydrogen Energy Progress Ⅸ. 1992,34(9-11):59-68.
    [11]Seifritz W. CO2 Disposal by Means of Silicates[J]. Nature.1990,345(6275):486.
    [12]Dunsmore HE. A geological perspective on global warming and the possibility of carbon dioxide removal as calcium carbonate mineral[J]. Energy Conversion and Management.1992,33(5-8):565-572.
    [13]Uchida T, Hondo T, Mae S, et al. Physical data of CO2 hydrate In Direct Ocean Disposal of Carbon Dioxide[M]. N. Handa and T. Ohsumi (eds), Terrapub, Tokyo,1995,45-61.
    [14]Marchetti C. On Geo-engineering and the CO2 Problem [J]. Climate Change.1977,1:59-68.
    [15]Cole KH, Stegen GR, and Spencer D.. The capacity of the deep oceans to absorb carbon dioxide[J]. Energy Conversion and Management.1993,34(9-11):991-998.
    [16]Holoway S. Underground Sequestration of Carbon Dioxide-a Viable Greenhouse Gas Mitigation Option[J]. Energy.2005,30(11-12):2318-2333.
    [17]Blunt M, Fayers FJ, and Orr Jr FM. Carbon Dioxide in Enhanced Oil Recovery[J]. Energy Conversion and Management.1993,34(9-11),1197-1204.
    [18]Stevens SH and Gale J. Geologic C02 Sequestration [J]. Oil and Gas Journal. 2000,15:40-44.
    [19]Koide H, Tazaki Y, Noguchi Y, et al. Subterranean Containment and Long-term Storage of Carbon Dioxide in Unused Aquifers and in Depleted Natural Gas Reservoirs [J]. Energy Conversion and Management.1992,33(5-8):619-626.
    [20]Gunter WD, Gentzis T, Rottengusser BA.,et al. Deep Coalbed Methane in Alberta, Canada: a Fuel Resource with the Potential of Zero Greenhouse Gas Emissions[J]. Energy Conversion and Management.1997,38(1):217-222.
    [21]Korbol R and Kaddour A. Sleipner Vest C02 Disposal-Injection of Removed C02 into the Utsira Formation[J]. Energy Conversion and Management.1995,36(3-9):509-512.
    [22]Baklid A, Korb(?)l R, and Owren G. Sleipner Vest C02 disposal:C02 injection into a shallow underground aquifer[C]. Paper presented at the 1996 SPE Annual Technical Conference, Denver, Colorado, USA. SPE paper 36600,1996,1-9.
    [23]Gale J, Christensen NP, Cutler A, et al. Demonstrating the Potential for Geological Storage of C02, The Sleipner and GESTCO Projects[J]. Environmental Geosciences.2001,8(3):160-165.
    [24]Fer I and Haugan PM. Dissolution from a liquid C02 lake disposed in the deep ocean [J]. Limnol Oceanogr.2003,48(2):872-883.
    [25]周蒂.C02的地质存储[J].自然科学进展.2005,7(15):782-787.
    [26]张二勇,李旭峰,何锦,张福存.地下咸水层封存CO2的关键技术研究[J].地下水.2009.5(31):15-19.
    [27]张洪涛,文冬光,李义连,等.中国CO2地质封存条件分析及有关建议[J].地质通报.2005,12(24):1107-1110.
    [28]李小春,刘延峰,白冰,等.中国深部咸水含水层CO2储存优先区域选择[J].岩石力学与工程学报.2006,25(5),963-968.
    [29]Li X, Wei N, Liu Y, et al. CO2 point emission and geological storage capacity in China [J]. Energy Procedia.2009(1):2793-2800.
    [30]Metz B, IPCC Working Group Ⅲ. IPCC special report on carbon dioxide capture and storage[R]. Cambridge University Press, Cambridge, UK,2005.
    [31]Pruess K, Garcia J, Kovscek T, et al. Code intercomparison builds confidence in numerical simulation models for geologic disposal of CO2[J]. Energy.2004,29,1431-1444.
    [32]Pruess K. Leakage of C02 from geologic storage:Role of secondary accumulation at shallow depth[J]. International Journal of Greenhouse Gas Control.2008,2(1),37-46.
    [33]Qin D, Turner JV, and Pang Z. Hydrogeochemistry and groundwater circulation in the Xi'an geothermal field, China, Geothermics. 2005, 34, 471-494.
    [34]工业和信息化部赛迪研究院.新时期推进工业强国建设的思路与策略[J/OL].工业和信息化研究.2011,4(2011-4-15)http://image.ccidnet.com/
    [35]沈平平,江怀友.温室气体提高采收率的资源化利用及地下埋存[J].中国工程科学.2009,11(5):54-59.
    [36]Inui M, Komai T, Sakamoto Y, et al. Behavior of gas hydrate formation in marine sediments for C02 sequestration[C]. Proceedings of the Fifteenth international offshore and polar engineering conference, Seoul, Korea,June 19-24,2005.
    [37]Yang SO, Yang IM, Kim YS, et al. Measurement and prediction of phase equilibria for water+C02 in hydrate forming conditions[J]. Fluid Phase Equilibria,2000,175(1-2): 75-89.
    [38]Someya S, Bando S, Chen BX, et al. Measurement of C02 solubility in pure water and the pressure effect on it in the pressure of clathrate hydrate [J]. International journal of heat and mass transfer.2005,48:2503-2507.
    [39]Wendland M, Hasse H, Maurer G. Experimental Pressure-Temperature Data on Three-and Four-Phase Equilibria of Fluid, Hydrate, and Ice Phases in the System Carbon Dioxide-Water[J]. J. Chem. Eng. Data.1999,44:901-906.
    [40]Kang S, Chun M, Lee H. Phase equilibria of methane and carbon dioxide hydrates in the aqueous MgCl solutions [J]. Fluid Phase Equilibria,1998,147:229-238.
    [41]Mohammadi AH, Afzal W, Richon D. Gas Hydrates of Methane, Ethane, Propane and Carbon Dioxide in the Presence of Single NaCl, KC1 and CaCl2 Aqueous Solutions:Experimental Measurements and Predictions of Dissociation Conditions [J]. J. Chem. Thermodynamics.2008,40:1693-1697.
    [42]Zhong Y, Rogers R. Surfactant effects on gas hydrates formation[J]. Chemical Engineering Science,2000,55(19):4175—4187.
    [43]Zatsepina OY, Buffet BA. Nucleation of C02 hydrate in porous medium[J]. Fluid Phase Equilibria,2002,200:263-275.
    [44]Smith D, Wilder J, Seshadri K. Thermodynamics of Carbon Dioxide Hydrate Formation in Media with Broad Pore-Size Distributions [J]. Environ. Sci. Technol.2002, 36:5192-5198.
    [45]Handa YP, Stupin D. Thermodynamic properties and dissociation characteristics of methane and propane hydrate in 70-A-radius silica gel pores [J]. J. Phys. Chem,1992, 96:8599-8603.
    [46]Kumar A. Formation and dissociation of gas hydrates in porous media[D]. University of Calgary,2005.
    [47]Hirai S, Kuwano K, Ogawa K, et al. High-pressure magnetic resonance imaging up to 40 MPa[J]. Magnetic Resonance Imaging,2000,18:221-225.
    [48]Hirai S, Tabe Y, Kuwano K, et al. MRI Measurement of Hydrate Growth and an Application to Advanced C02 Sequestration Technology [J]. Annals of the New York Academy of Sciences, 2001,912 (GAS HYDRATES:CHALLENGES FOR THE FUTURE):246-253.
    [49]易敏,黄瑞瑶,孙良田,等.测量储层多孔介质孔隙度及其分布的新方法[J].西南石油学院学报.2004,26(2),43-48.
    [50]高健,吕静.应用CT成像技术研究岩芯孔隙度分布特征[J].CT理论与应用研究.2009(6),18(2):50-56.
    [51]章钰,孟凡顺.基于声波测井资料确定泥质砂岩储层孔隙度的方法研究[J].内蒙古石油化工.2008,18:82-84.
    [52]刘慧芳,于吉顺.电子显微镜图像法测定岩石的孔隙度[J].电子显微学报,2006,25(B08):358-359.
    [53]谢然红,肖立志,邓克俊.核磁共振测井孔隙度观测模式与处理方法研究[J].地球物理学报.2006,49(5):1567-1572.
    [54]彭石林,叶朝辉,刘买利.多孔介质渗透率的NMR测定[J].波谱学杂志,2006,23(2),272-283.
    [55]Gavalas GR, and Kim S. Periodic capillary models of diffusion in porous solids[J]. Chemical. Engineering Science.1981,36,1111-1122.
    [56]Sharratt P. and Mann NR. Some observations on the variation of tortuosity with Thiele modulus and pore size distribution[J]. Chemical Engineering Science,1987,42, 1565-1576.
    [57]Mann R, Sharratt PN, and Thomson G. Deactivation of a supported zeolitic catalyst: Diffusion, reaction and coke deposition in stochastic pore networks[J]. Chemical Engineering Science,1988,41,711-718.
    [58]Xu P, Yu B. Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry[J]. Advanced Water Resources, 2008,31,74-81.
    [59]Tomioka S, Kozaki T, Takamatsu H. Analysis of microstructural images of dry and water-saturated compacted bentonite samples observed with X-ray micro CT[J]. Applied clay science,2010,47,65-71.
    [60]Jin Y, Hayashi J, Nagao J. New method of assessing absolute permeability of natural gas hydrate sediments by microfocous X-ray computed tomography[J]. Japan journal of applied physics,2007,46(5A),3159-3162.
    [61]Kleinhans M G, Jeukens CR, Bakker CJ. Magnetic resonance imaging of coarse sediment [J]. Sedimentary geology,2008,208,69-78.
    [62]Baldwin CA, Sederman AJ, Mantle MD, et al. Determination and characterization of the structure of a pore space from 3D volume images [J]. Journal of colloid and interface science,1996,181,79-92.
    [63]Mattiello D, Balzarini M, Ferraccioli L, et al. Calculation of constituent porosity in a dual-porosity matrix:MRI and image analysis integration[J]. SCA-9706,1997.
    [64]Balzarini M, Nicula S, Mattiello D, et al. Quantification and description of fracture network by MRI image analysis[J]. Magnetic Resonance Imaging,2001,19,3-4,539-541.
    [65]Padhy GS, Lemaire C, and Ioannidis MA. Magnetic resonance methods for the characterization of the pore space in vuggy carbonates [J]. International Symposium of the Society of Core Analysts, Norway,2006.
    [66]Doughty C, Pruess K, Benson SM, et al. Hydrological and Geochemical Monitoring for a C02 Sequestration Pilot in a Brine Formation[J]. Lawrence Berkeley National Laboratory, Paper LBNL-55104.
    [67]Suekane T, Soukawa S, Iwatani S, et al. Behavior of supercritical C02 injected into porous media containing water[J]. Energy.2005,30,2370-2382.
    [68]Hildenbrand A, Krooss BM. C02 migration processes in argillaceous rocks: pressure-driven volume flow and diffusion[J]. Journal of Geochemical Exploration,2003, 78-79,169-172.
    [69]Li Z, Dong M, Li S, et al. C02 sequestration in deleted oil and gas reservoirs-caprock characterization and storage capacity [J]. Energy Conversion and Management,2006,47, 1372-1382.
    [70]Pan C, Hilpert M, and Miller CT. Lattice-Boltzmann simulation of two-phase flow in porous media[J]. Water Resources Research,2004,40, W01501.
    [71]Guo Z, Zhao TS. Lattice Boltzmann model for incompressible flows through porous media [J]. Physical Review E,2002,66,036304.
    [72]Suekane T, Takigishi T, Hirai S. Analysis of two-pahse flow in C02 geological storage by LBM[J]. Nippon Dennetsu Shinpojiumu Koen Ronbunshu,2006,43, A225.
    [73]Izgec 0, Demiral B, Bertin H, et al.Experimental and numerical modeling of direct injection of C02 into carbonate formations[C]. SPE Annual Technical Conference and Exhibition,24-27 September 2006, San Antonio, Texas, USA.
    [74]Dong M, Huang S, Dyer SB, Mourits FM. A comparison of C02 minimum miscible pressure determinations for Weyburn crude oil[J]. Journal of petroleum science & engineering. 2001,31:13-22.
    [75]Franklin MO, Jessen K. An analysis of the vanishing interfacial tension techqique for determination of minimum miscibility pressure[J]. Fluid phase equilibria. 2007,255:99-109.
    [76]Esmaeilzadeh F, Roshanfekr M. Calculation of minimum miscibility pressure for gas condensate reservoirs[J]. Fluid phase equilibria.2006,249:75-81.
    [77]Eissa M, Shokir EM. C02-oil minimum miscibility pressure model for impure and pure C02 streams[J]. Petroleum science & engineering.2007,58:173-185.
    [78]任双双,杨胜来,沈飞.BP神经网络预测最小混相压力[J].断块油气田.2010,17:216-218.
    [79]王利生,王钰,郎兆新.CO2与正辛烷和正十四烷最小混相压力的实验研究[J].石油大学学报(自然科学报),1995,19:93-98.
    [80]郝永卯,陈月明,于会利.CO2驱最小混相压力的测定与预测[J].油气地质与采收率.2005,12:64-67.
    [81]赵明国,周海菲,王谦.原油与CO2最小混相压力预测方法研究[J].西部采矿工程.2007,12:60-63.
    [82]Sederman AJ, Johns ML, Alexander P, et al. Visualization of structure and flow in packed beds[J]. Magnetic Resonance Imaging.1998,16:497-500.
    [83]Doughty DA and Tomusta L. Multinuclear NMR microscopy of two-phase fluid systems in porous rock[J]. Magnetic Resonance Imaging.1996,14:869-873.
    [84]Kulkarni R, Watson AT and Nordtvedt JE. Estimation of porous media flow functions using NMR imaging data[J]. Magnetic Resonance Imaging.1998,16:707-709.
    [85]Irwin NC, Altobelli SA and Greenkorn RA. Concentration and velocity field measurements by magnetic resonance imaging in aperiodic heterogeneous porous media[J]. Magnetic Resonance Imaging.1999,17:909-917.
    [86]Agranovski, IE, Braddock RD, Crozier S, et al. Magnetic resonance imaging of gas flows in wet porous filters involved in aerosol removal processes[J]. J. Aerosol. 1999,30:543-544.
    [87]Mantle MD, Bijeljic B, Sederman AJ, et al. MRI velocimetry and Lattice-Boltzmann simulation of viscous flow of a Newtonian liquid through a dual porosity fiber array [J]. Magnetic Resonance Imaging.2001,19:527-529.
    [88]Bencsik M, Ramanathan C. Direct measurement of porous media local hydrodynamical permeability using gas MRI[J]. Magnetic Resonance Imaging.2001,19:379-383.
    [89]Cislerova M and Votrubova J. CT derived porosity distribution and flow domains[J], Journal of Hydrology.2002,267:186-200.
    [90]Yuen EHL, Sederman AJ, Sani F, et al. Correlations between local conversion and hydrodynamics in a 3-D fixed-bed esterification process:An MRI and Lattice-Boltzmann study[J]. Chemical Engineering Science.2003,58:613-619.
    [91]Gladden LF, Lim MHM, Mantle MD, et al.MRI visualization of two-phase flow in structured supports and trickle-bed reactors[J]. Catalysis Today.2003,79-80:203-210.
    [92]Baumann T and Werth CJ. Visualization of colloid transport through heterogeneous porous media using magnetic resonance imaging [J]. Colloids and Surfaces A:Physicochem, Eng. Aspects.2005,265:1123-1128.
    [93]肖立志,沈伊民,杜有如,等.储油岩心的核磁共振微成像[J].科学通报.1994,15:1439-1440.
    [94]阚洪培.多孔介质润湿性的测定—核磁共振(NMR)松弛法[J].国外油田工程.1995,6:1-5.
    [95]王为民,冯义濂.多孔介质体元内随机运动的核磁共振成像研究[J].波谱学杂志.1995,1:7-12.
    [96]查传钰,吕刚.多孔介质中流体的扩散系数及其测量方法[J].地球物理学进展.1998,2:60-72.
    [97]堪丛菊,邓风,岳勇.多孔岩心的渗透性[J].物理化学学报.1998,10:940-944.
    [98]朱维耀,鞠岩,赵明,等.低渗透裂缝性砂岩油藏多孔介质渗吸机理研究[J].石油学报.2002,6:56-60.
    [99]唐巨鹏,潘一山.核磁共振成像技术在煤层气领域应用研究[J].煤矿开采.2003,2:1-6.
    [100]武红岭,王小凤,马彦生,等.多孔介质构造应力驱油的固流耦合分析[J].石油勘探与开发.2006,1:76-79.
    [101]Eaton M. A novel high-pressure apparatus to study hydrate-sediment interactions[J]. Journal of petroleum science and ngineering.2007,56(1-3):101-107.
    [102]孙长宇,马昌峰,陈光进,等.二氧化碳水合物分解动力学研究[J].石油大学学报(自然科学版).2001,25(3):8-10.
    [103]李素侠,赵仕俊.天然气水合物试验装置的智能化设计[J].计算机工程与设计.2006,27(1):159-161.
    [104]业渝光,张剑,刁少波,等.海洋天然气水合物模拟实验技术[J].海洋地质与第四纪地质.2003,23(1):119-123.
    [105]张亮,刘道平,樊燕.喷雾反应器对生成甲烷水合物影响研究[J].齐鲁石油化工,2008,36(3):165-168.
    [106]窦斌,蒋国盛,吴翔,等.天然气水合物合成及微钻实验装置设计[J].天然气工业,2004,24(6):77-79.
    [107]Buff ett BA, Zatsepina OY. Formation of gas hydrate from dissolved gas in natural porous media[J]. Marine Geology,2000,164:69-77.
    [108]Kono HO, Narasimhan S, Song F, et al. Synthesis of methane gas hydrate in porous sediments and its dissociation by depressurizing[J]. Powder Technology.2002,122:239-246.
    [109]张剑,业渝光,刁少波,等.超声探测技术在天然气水合物模拟实验中的应用[J].现代地质,2005,19(1):113-118.
    [110]顾轶东,林维正,张剑.模拟岩芯中天然气水合物超声检测技术[J].声学技术.2006,25(3):218-221.
    [111]张卫东,刘永军,任韶然,等.水合物沉积层声波速度模型[J].中国石油大学学报(自然科学版),2008,32(4):60-63.
    [112]Buffett BA, Zatsepina OY. Experimental study of the stability of C02-hydrate in a porous medium[J]. Fluid phase equilibria.2001,192:85-102.
    [113]Zatsepina OY, Buff ett BA. Nucleation of C02-hydrate in a porous medium[J]. Fluid phase equilibria.2002,200(2):263-275.
    [114]Spangenberg E and Kulenkampff J. Physical properties of gas hydrate-bearing sediments[C]. The 5th international conference on gas hydrates, Trondheim, Norway, 2005:587-596.
    [115]佳布EC,唐纳森著,沈平平,秦积舜,等译.油层物理(第二版)[M].北京:石油工业出版社,2007:57-58.
    [116]王志勇,韩明俊,李强,等.人造填砂岩心渗透率影响因素及控制方法[J].高新技术.2008,18:5.
    [117]孔祥言.高等渗流力学[M].北京:中国科学技术大学出版社,2001.
    [118]Sloan E D. Clathrate hydrates of natural gases [M].2nd ed. New York:Marcel Decker Inc,1998.
    [119]Clarke MA, Darvish MP, Bishnoi PR. A Method to predict equilibrium conditions of gas hydrate formation in porous media[J]. Industrial & Engineering Chemistry. Research.1999,38(6):2485-2490.
    [120]Wilder JW, Seshadri K, Smith DH. Modeling hydrate formation in media with broad pore size distributions[J]. Langmuir.2001,17(21):6729-6735.
    [121]Turner DJ, Cherry RS, Sloan ED. Sensitivity of methane hydrate phase equilibria to sediment pore size[J]. Fluid Phase Equilibria.2005,228-229:505-510.
    [122]郭琨.海洋手册[M].海洋出版社,北京,1984.
    [123]Kang SP, Lee H, Lee CS, et al. Hydrate phase equilibria of the guest mixtures containing C02, N2 and tetrahydrofuran[J]. Fluid phase equilibria.2001,185:101-109.
    [124]Masuda Y, Kurihara M, Ohuchi H, et al. A field scale simulation study on gas productivity of formations containing gas hydrates[C]. The 4th international conference on gas hydrates, Yokohama, Japan,2002.
    [125]Masuda Y, Naganawa S, Fujita K, et al. Modeling and experimental studies on dissociation of methane gas hydrates in Berea sandstone core[C]. The 3rd international conference on gas hydrates, Salt Lake City,USA,1999.
    [126]Sakamoto Y, Komai T, Kawabe Y, et al. Formation and dissociation behavior of methane hydrate in porous media. Part 1:estimation of permeability in methane hydrate reservoir[J]. Journal of MMIJ.2004,120(50):85-90.
    [127]Sakamoto Y, Komai T, Kawabe Y, et al.Experimental study on physical phenomena in methane hydrate reservoir and its gas production behavior during hot water injection process. Part 2:estimation of permeability in methane hydrate reservoir[J]. Journal of MMIJ.2005,121(2-3):44-50.
    [128]Shimokawara M, Ohga K, Sakamoto Y, et al. Permeability of artificial methane hydrate sediment in radial flow system[C]. Process of the 7th ISOPE ocean mining symposium. Lisbon, Portugal,2007.
    [129]Minagawa H, Nishikawa Y, Ikeda I, et al. Measurement of methane hydrate sediment permeability using several chemical solutions as inhibitors[C]. Process of the 7th ISOPE ocean mining symposium. Lisbon, Portugal,2007.
    [130]陈强,业渝光,孟庆国,等.甲烷水合物分解过程模拟实验研究[J].现代地质,2008,22(3):475-479.
    [131]宋永臣,杨明军,刘瑜.天然气水合物生成与分解实验检测技术进展[J].天然气工业,2008,28(8):111-113.
    [132]Sloan ED. Introductory overview:Hydrate knowledge development[J]. American Mineralogist.2004,89:1155-1161.
    [133]Kleinberg RL, Flaum C, Griffin DD, et al. Deep sea NMR:Methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation, and submarine slope stability[J]. J. Geophys. Res.2003,108(B10):2508-2576.
    [134]蒲毅彬,邢莉莉,吴青柏,等.天然气水合物CT实验方法的初步研究[J].CT理论与应用研究.2005,14(2):54-62.
    [135]蒋观利,吴青柏,蒲毅彬.甲烷水合物形成过程的CT识别原理和成像特征[J].天然气地球科学.2005,16(6):814-817.
    [136]吴青柏,蒲毅彬,蒋观利.x-射线断层扫描系统研究甲烷水合物生成和分解动力学[J].自然科学进展.2006,16(1):61-65.
    [137]吴青柏,蒲毅彬,蒋观利,等.甲烷水合物生成和分解的X-射线断层扫描试验研究[J].冰川冻土.2006,28(1):122-125.
    [138]蒲毅彬,吴青柏,蒋观利,等.封闭系统中多孔介质甲烷水合物的CT实验研究[J].地球科学进展.2007,22(4):362-368.
    [139]吴青柏,蒲毅彬,蒋观利,等.冻结粗砂土中甲烷水合物形成CT试验研究[J].天然气地球化学.2006,17(2):239-243.
    [140]Uemura S, Kataoka R, Tsushima S, et al. X-ray computed tomography of C02 behavior in water saturated sandstone for geological storage[C]. Proceedings of International Heat Transfer Conference, Washinton DC, USA, 2010.
    [141]Tomioka S, Kozaki T, Takamatsu H, et al. Analysis of microstructural images of dry and water-saturated compacted bentonite samples observed with X-ray micro CT[J]. Applied clay science.2010,47:65-71.
    [142]Jin Y, Hayashi J, Nagao J, et al. New method of assessing absolute permeability of natural methane hydrate sediments by microfocus X-ray computed tomography [J]. Japan Journal of Applied Physics.2007,46:3159-3162.
    [143]Seol Y and Kneafsey TJ. X-ray computed-tomography observations of water flow through anisotropic methane hydrate-bearing sand[J]. Journal of petroleum science and engineering.2009,66:121-132.
    [144]Ripmeester JA, Tse JS, Ratcliffe CI, et al. A new clathrate hydrate structure[J]. Nature.1987,325:135-136.
    [145]Davidson DW, Ripmeester JA. Inclusion Compounds[M]. In:Atwood JL, Davies JED, Macnicol DD. Academic Press. Oxford, London Academic,1984.
    [146]Kleinberg R. Nuclear magnetic resonance pore-scale investigation of permafrost and gas hydrate sediments [J]. In:Rothwell G. New Methods of Core Analysis:Principles and Applications. Geological Society,London,2005.
    [147]Baldwin BA, Stenvens J, Howard JJ, et al. Using magnetic resonance imaging to monitor CH4 hydrate formation and spontaneous conversion of CH4 hydrate to C02 hydrate in porous media[J]. Magnetic resonance imaging.2009,27:720-726.
    [148]Stevens JC, Howard JJ, Baldwin BA, et al. Experimental formation and gas production scenarios based on C02 sequestration[C]. The 6th international conference on gas hydrates. Vancouver, British Columbia, CANADA,2008.
    [149]Ogawa K, Matsuka T, Hirai S, et al. Three-dimensional velocity measurement of complex interstitial flows through water-saturated porous media by the tagging method in the MRI technique[J]. Measurement Science and Technology.2001,12(2):172-180.
    [150]Moran PR. A flow velocity zeugmatographic interlace for NMR imaging in humans[J]. Magnetic resonance Imaging.1982,1:197-203.
    [151]Chang C, Watson A. NMR imaging of flow velocity in porous media[J]. Journal of AIChE.1999,45:437-440.
    [152]Sankey MH, Holland DJ and Sederman AJ. Magnetic resonance velocity imaging of liquid and gas two-phase flow in packed beds[J]. Journal of magnetic resonance.2009,196(2):142-148.
    [153]Okamoto I, Xue Z, and Ohsumi T. Does carbon dioxide remain dissolved in aquifer[J]. Greenhouse gas control technologies.2005,7:2195-2198.
    [154]Chen Q, Kinzelbach W and Oswald S. Nuclear Magnetic Resonance Imaging for studies of flow and transport in porous media[J]. Journal of environmental quality. 2002,31:477-486.
    [155]Baldwin BA, Moradi A, Stevens JC. Monitoring hydrate formation and dissociation in sandstone and bulk with magnetic resonance imaging[J]. Magnetic Resonance Imaging.2003,21:1061-1069.
    [156]Bondarev EA, Groisman AG, Savvin AZ. Porous medium effect on phase equilibrium of tetrahydrofuran hydrate[C]. ICGH 2, Toulouse, France,1996:89-93.
    [157]Yun TS, Santamarina JC, Ruppel C. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate[J]. Journal of Geophysical Research,2007,112, B04106, doi:10.1029/2006JB004484.
    [158]Leaist DG, Murray JJ, Post ML, et al. Enthalpies of decomposition and heat-capacities of ethylene-oxide and tetrahydrofuran hydrates[J].The Journal of Chemical Physics.1982,86:4175-4178.
    [159]Rueff RM and Sloan ED. Effect of granular sediment on some thermal properties of tetrahydrofuran hydrate[J]. Industrial & Engineering Chemistry.1985,24:882-885.
    [160]Cha SB, Ouar H, Wildeman TR, et al. A third-surface effect on hydrate formation [J]. The Journal of Chemical Physics.1988,92:6492-6494.
    [161]臧小亚,樊栓狮,梁德青,等.3A分子筛对四氢呋喃水合物生成过程的影响[J].中国科学B辑:化学.2008,2:170-176.
    [162]Winters WJ, Pecher IA, Waite WF, et al. Physical properties and rock physics models of sediments containing natural and laboratory formed methane gas hydrate [J]. American Mineralogist.2004,89(8-9):1221-1227.
    [163]Skovborg P, Ng HJ, Rasmussen P, et al. Measurement of induction times for the formation of methane and ethane gas hydrates[J]. Chemical Engineering Science.1993,48(3):445 —453.
    [164]Nguyen NL, Buren V, Reimert R, et al. Determination of porosity and flow distribution in packed beds by magnetic resonance imaging[J]. Magnetic resonance imaging.2005,23(2):395-396.
    [165]Pan C, Hilpert M, and Miller CT. Lattice-Boltzmann simulation of two-phase flow in porous media[J]. Water resources research.2004,40:1632-1640.
    [166]Callaghan PT. Principles of nuclear magnetic resonance microscopy [M]. Oxford Science Publications. New York, United States,1991.
    [167]Suekane T, Furukawa N, Tsushima S, et al. Application of MRI in the measurement of two-phase flow of supercritical C02 and water in porous rocks. Journal of Porous Media. 2009,12(2):143-151.
    [168]Goodfield M, Goodyear SG, and Townsley PH. New coreflood interpretation method for relative permeability based on direct processing of in-situ saturation data[C]. The 2001 SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana,2001.
    [169]Bon J, Sarma HK, and Theophilos AM. An investigation of MMP for C02-rich injection gases with pentanes-plus fraction[C]. SPE97536,2005.
    [170]Elsharkawy AM, Poettmann FH, and Christiansen RL. Measuring C02 minimum miscibility pressures:slim-tube or rising-bubble method[J]. Energy & Fuels.1996,10(2):443-449.
    [171]Mihcakan M,Poettmann FH. Minimum miscibility pressure, rising bubble apparatus and phase behavior[C]. SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma,1994.
    [172]Benham AL, Dowden WE, Kunzman WJ. Miscible fluid displacement-prediction of miscibility[J]. Petroleum transactions.1960,219:229-237.
    [173]Stalkup FI. Miscible displacement[M].Society of Petroleum Engineerings. Richardson, TX, United States,2008.
    [174]Holm WL. Evolution of the carbon dioxide flooding processes[J]. Journal of Petroleum Technology.1987,39:1337-1342.
    [175]Lake LW. Enhanced oil recovery[M]. Old Tappan, NJ; Prentice Hall Inc. United States,2008.
    [176]Asghari K, Torabi F. Effect of miscible and immiscible CO2 flooding on gravity drainage: experimental and simulation results[C]. SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma, USA,2008
    [177]Ayirala SC, Xu W, Rao DN. Interfacial behavior of complex hydrocarbon fluids at elevated pressures and temperatures[C]. International Conference on MEMS, NANO and Smart Systems, Banff, Alberta, Canada,2005.
    [178]Polikhronidi NG, Batyrova RG, Abdulagatov IM, et al. Isochoric heat capacity measurements for a C02+n-decane mixture in the near-critical and supercritical regions[J]. The journal of supercritical fluids.2005,33:209-222.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700