用户名: 密码: 验证码:
低损害新型多侧基植物胶压裂液开发及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大庆外围低渗透储层是目前油田产量接替的主要开发调整对象,低渗透储层必须通过压裂改造才能投入开发。由于该类油藏储层物性差,压裂过程中,储层极易受到伤害,如何有效控制和降低压裂过程对储层和人造导流裂缝渗透率的损害,提高单井产量,是大庆外围低渗透储层压裂改造时必需要面对的严峻挑战;大庆海拉尔油田岩性复杂、储层物性条件差,压裂中经常出现低砂比时砂堵,甚至出现压不开的情况,提高施工成功率,是海拉尔油田开发必须要解决的关键问题。
     利用红外、核磁、激光光散射、黏度等实验手段,对新型多侧基植物胶的结构和分子量进行表征。新型多侧基植物胶的分子结构是由半乳糖和甘露糖组成,半乳糖与主链上甘露糖的比值为1:1.34,明显高于胍胶的1:1.67。新型多侧基植物胶的分子量为5×105,显著低于常规用胍胶的分子量。由于新型多侧基植物胶分子量较低,并且含有更多的侧基,其空间位阻效应增加了高分子链的刚性,阻止了溶液中植物胶因分子间氢键相互作用产生聚集,因此新型多侧基植物胶水溶性更好,水不溶物含量更低,是一种比胍胶性能更加优越的压裂液增稠剂。
     利用新型多侧基植物胶为增稠剂制备了新型多侧基植物胶压裂液并且和羟丙基胍胶压裂液进行了对比和分析。在相同剪切粘度和温度条件下,新型多侧基植物胶的使用浓度要比羟丙基胍胶降低近30%,残渣含量比常规羟丙基胍胶压裂液降低45%左右,降低了对储层和人造导流裂缝渗透率的损害,适合对低渗透储层进行压裂增产改造。
     利用小幅振荡剪切实验得到的平台模量Gp和零切粘度η0结合起来对压裂液的网络结构和性能进行评价,并且对不同交联剂类型、浓度、不同多侧基植物胶浓度以及多侧基植物胶交联液和羟丙基胍胶交联液的流变性能进行对比和分析。
     优化和筛选出分子尺寸以及与硼离子络合能力不同的两种有机分子,通过控制反应条件制备出复合型有机硼交联剂,利用空间位阻效应和逐级释放技术提高了硼离子稳定性和延缓释放的时间,使压裂液的成交时间达到延缓可控,提高了压裂液冻胶的耐温和耐剪切性能。采用延缓交联新型多侧基植物胶压裂液,大幅度降低了压裂液施工时的沿程管路摩阻,提高了压裂施工成功率。
     优化了新型多侧基植物胶压裂液的整体性能,通过引入阳离子型低分子量和多支化度的聚二甲基二烯丙基氯化铵类高分子,利用其高分子链上的正电荷把不同的粘土颗粒结合在一起,可以有效抑制粘土破碎、脱落和运移;通过将含类表面活性剂与氧化铵类表面活性剂相结合,在降低表界面张力的同时增加了接触角,从而大幅度降低了毛细管力,显著提高了压裂液的返排性能。
     利用新型多侧基植物胶压裂液在大庆外围油田低渗透储层油井中共应用了576口井1719个层,压裂施工成功率达97.0%,压裂后初期平均单井日产液3.19m3/d。低损害新型多侧基植物胶压裂液有效解决了低渗透储层压裂液伤害问题。
     利用延缓交联多侧基植物胶压裂液技术,对大庆海拉尔油田深部高含泥南屯组储层进行了压裂改造,现场试验52口井89层,储层平均深度2634.9m,施工成功率为96.6%,压后初期平均单井产液10.84 m3/d。通过现场下入井底压力计对比测试结果表明,利用延缓交联压裂液技术,压裂液的沿程摩阻下降了5.7MPa以上,由此在不改变地面压裂施工设备的条件下,有效解决压裂中经常导致低砂比时砂堵,甚至出现压不开的情况,施工成功率由原来的百分之八十左右,提高到百分之九十六以上,有效解决了深部南屯组高含泥储层压裂成功率低难题。
     到目前为止,新型多侧基植物胶压裂液628口井1808个层,成功率达96.96%,压裂后平均单井增油量为2.65t/d,比常规羟丙基胍胶压裂液的增产效果提高了133%,改善了压裂增产效果,满足了低渗透油田开发需要。
The low permeability reservoirs in the peripheral oil fields are the main reservoirs for increasing production in Daqing fields. It must be fractured before being put into development. The formation is easy to be damage in the process of fracturing due to the poor reservoir properties and vulnerable. How to control and reduce the formation and man-made crack damage effectively during the fracturing process, and how to enhance the well productivity of this low permeability reservoir are the serious challenges we have to face. In addition, Hailar oilfield of Daqing has complex lithology and poor physical condition. Sand plug occers occasionally, even if the proppant concentration is low during the fracturing process. How to improve the success rate of fracturing treatment is the key issue which must be solved for Hailar oilfield fracturing stimulation.
     The structure and molecular weight of the novel vegetable gum (VG) with many side groups are characterized using IR, NMR, light scattering, viscosity and other experimental methods. The molecular structure of this novel VG is also composed of galactose and mannose unit. The ratio of side galactose groups with mannose on main chain is 1:1.34, significantly greater than ordinary guar gum with the raio of 1:1.67.The molecular weight of this novel vegetable gum is 5×105, significantly lower than the molecular weight of ordinary guar gum. The steric effect makes the rigidity of the polymer chain increase accordingly due to the reason that new VG has more side groups. As a result, the intermolecular aggregation of the novel VG chains through the hydrogen bonding is prevented. This explains why this novel VG has the better water-soluble performance and lower water insolubles so that thickening behavior is much better than ordinary guar gum.
     Based on this new gum, a novel fracturing fluid is developed and the performance of that is studied and compared with the hydroxypropyl guar (HPG) aqueous solution. In the conditions of the same shear viscosity and temperature, the usage amount or concentration of VG is lower than HPG by nearly 30%,and the residue content of this novel fracturing fluid is nerely 45% lower than that of HPG based fracturing fluid. Therefore, it reduces the damage of both reservoirs and man-made crack, which on the needs and satisfaction of the fracturing treatment on the low permeability reservoirs.
     The paper also present the criterion by which the performance of fracturing fluid can be determined by using the combination of platform modulus Gp and zero shear viscosityη0 obtained by the small oscillation shear experiments. This paper also studies the performance of this novel fracturing fluid at different crosslinker concentrations and different VG concentrations and compares it with the performance of HPG based fracturing fluid.
     By optimizing and selecting two different organic molecules which have different molecular sizes and different complex capacity with boron, together with controlling the reaction conditions, a novel boron based crosslinker is synthesized. The crosslinking time of fracturing fluid may be delayed and controllable due to the steric effect and sequential release technology, the performance of boron based crosslinker, including the stability, resistance to the high temperature and shear rate, enhances significantly. The pipeline friction is dropping rapidly along the fracturing process and improve the success rate of fracturing process by crosslinker with the novel VG thickener,
     We also optimize the overall performance of this novel VG fracturing fluid. By introducing the cationic polyelectrolyte with the low molecular weight and multi-degree of branching such as polydimethyldially ammonium chloride, the positive charges along the polymer chains can combine different clay particles, and then inhibit the clay particles form breaking, losing, and migrating. By combining surfactants of oxidation of ammonium with the surfactants containing fluorine, the surface and interface tension reduces whereas the contact angle increases signifacntly. As a result, the capillary force becomes nerely zero, improving the flowback ability and other performances of fracturing fluid significantly. In addition, in this paper we also optimized demulsifiers, fungicides, soluble fluid filtration additive, capsule breaker to endue fracturing fluid better anti-emulsifying, anti-metamorphic, lower fluid filtration and gel breaking performance.
     By using the novel plant gum fracturing fluids with many side groups, we carry out fracturing treatment in 1791 zones 576 wells in low permeability reservoir of daqing peripheral oilfields, the fracturing operation success rate is 97.0%, the average daily fluid production of single well in the early stage after fracturing is 3.19m3/d. Based on the novel fracturing fluid technique, the formation damage problem during fracturing process which treats on low permeability reservoirs of the peripheral oil fields of Daqing can be solved effectively.
     By using this novel fracturing fluid, the fracturing treatment is carried out on reservoirs which are deeply buried and have high mud content conditions in Hailaer oifield. Accumulated in 52 wells, about 89 layers, the average reservoir depth is 2634.9m, the success rate and the average liquid production is 96.6% and 10.84 m3/d respectively. Base on the contrast testing with the bottom-hole pressure device, the results show that by using the delayed crosslinking fracturing technique, the pipeline friction of fracturing fluid reduces at least 5.7 Mpa. Without changing the conditions of fracturing equipments on the ground,the sand plug during fracturing treatment process with low proppant concentrations and even the failure to fracturing the reservior can be solved. The success ratio of fracturing increases from about 80% in the past to at least 96% at present. Based on the novel fracturing fluid technique, the success rate of fracturing treatment on high mud content reservoirs in Hailaer oil field can be improved effectively.
     So far, a number of wells are treated by this novel VG based fracturing fluid is 628, about 1808 layers .The success rate is up to 96.96%. The average well productivity is 2.65t/d. The efficiency of the production enhancement treated by this fracturing fluid is 1.33 times higher than that treated by conventional HPG based fracturing fluid. The application of this new technology will reduce formation damage due to fracturing fluid filtration and improve fracturing stimulation effect and economic benefits significantly, which have met the needs of developing low permeability oil fields.
引文
[1] World Energy Outlook 2008[M].2008: International Energy Agency.
    [2]崔民选,中国能源发展报告[R]. 2008.
    [3] Gidley J L. Recent Advances in Hydraulic Fracturing[M]. 1989, SPE Monograph.
    [4]胡文瑞.中国进入低渗透开发时代[J].石油与装备, 2009(3): 16-17
    [5] Yew C H. Mechanics of Hydraulic Fracturing [M]. Houston, Texas:Gulf Publishing Company, 1997.
    [6] Economides M J, Nolte K G. Reservoir Stimulation [M], Third Edition, New York: John Wiley & Sons, Ltd, 2000.
    [7] Power D J. The Influence of Fluid Properties on the Success of Hydraulic Fracturing Operations[C]. 1994, SPE28804-MS.
    [8] de Kruijf A S, Roodhart L P, Davies, D R. Relation Between Chemistry and Flow Mechanics of Borate-Crosslinked Fracturing fluids[C]. 1983, SPE25206-PA.
    [9]米卡尔J.埃克诺米德斯著,张保平译.油藏增产措施(原著第3版)[M].北京:石油工业出版社,2002.298—299.
    [10] Ely J. Stimulation Engineering Handbook[M]. 2nd ed. Tulsa, OK: Penn Wells Publishing Company, 1994.
    [11] Dougherty E L. Application of optimization methods to oilfield problems: proved,probable,possible[C]. 1998, SPE3978-MS.
    [12]凝固汽油弹[EB/OL]. http://baike.baidu.com/view/892746.htmL.
    [13] Wieland D R. Recent Trends in Hydraulic Fracturing[C]. 1971, SPE3659-MS.
    [14] GITHENS C J, BURNHAM J W. Chemically Modified Natural Gum for Use in Well Stimulation[C]. 1975, SPE5706-PA.
    [15] Michael W. Conway S W, Almond. Chemical Model for the Rheological Behavior of Crosslinked Fluid Systems[C]. 1980, SPE9334-PA.
    [16] Anderson R W. Use of Guar Gum and Synthetic Cellulose in Oilfield Stimulation Fluids[C]. 1974, SPE5005-MS.
    [17] Evani. Water Dispersible Hydrophobic Thickening Agent[P]. 1984, US Patent: 4432881.
    [18] Mondshine. Crosslinked Fracturing Ftuids[P]. 1986, US Patent: 4619776.
    [19] Hinkcl. Breaker System for High Viscosity Fluids[P]. 1985, US Patent: 4560486.
    [20] Brannon. Biotechnological Breakthrough Improves Performance of Moderate to High Tempature Fracturing Applications[C]. 1994, SPE28513-MS.
    [21] Le H V. Method for increasing the Stability of Water-based Fracturing Fluids[P]. 1993, US Patent: 5226481.
    [22] Flippen M, Yang, B. Improved Flowback Analysis: A Conclusive Evaluation for Polymer Damage[C]. 1997, SPE38305-MS.
    [23] Seaman J. Handbook of Water Soluble Gums and Resins[M]. McGraw Hill ,1980.
    [24] Stahl G, Schulz D N. Water-Soluble Polymers for Petroleum Recovery[C]. 1986, California: American Chemical Society Proceedings.
    [25] Kcm. Method and Composition for Formation Fracturing[P]. 1962, US Patent: 3058909.
    [26] Moorehouse R. Inter-relationships between Polymer_Crosslinker Chemistry and Performance in Fracturing Fluids[C]. 1998, SPE39531-MS.
    [27] Hodge. Hydraulic fracturing method using delayed crosslinker composition[P]. 1988, US Patent: 4749041.
    [28] Hodge. Delayed crosslinker composition containing organic titanium complexes and hydroxycarboxylic acids[P]. 1989, US Patent: 4861500.
    [29] Harris. Delayed release borate crosslinking agent[P]. 1994, US Patent: 5372732.
    [30] Dawson. A Thermodynamic Study of Borate Complexation with Guar and Guar Derivatives[C]. 1991, SPE22837-MS.
    [31]丁云宏,丛连铸,卢拥军等.CO2泡沫压裂液的研究与应用[J].石油勘探与开发,2002,29(4):103-105.
    [32]陈彦东,卢拥军,田助红等.CO2泡沫压裂液的流变特性研究[J].钻井液与完井液,2000,17(2):25-27.
    [33]沈林华,王树众,段百齐等.基于气泡尺度的泡沫压裂液流变机理研究[J].西安交通大学学报,2006,40(3):344-347.
    [34]李兆敏,孙茂盛,仵元兵.泡沫压裂液在裂缝内的层流流动[J].广西大学学报,2006,31(3):212-215.
    [35]刘晓明,蔡明哲,蔡长宇.CO2泡沫压裂液性能评价[J].钻井液与完井液,2004,21(3):1-4.
    [36] Reidenbach V G,Harris P C.Rheological study of foam fracturing fluid using nitrogen and carbon dioxide[J].SPE Production engineering, 1986, 1(1): 31-41.
    [37] Cawiezel K E,Niles T D.Rheological properties of foam fracturing fluid under downhole conditions[J].SPE Productions and Facilities, 1997, 2(16): 53-63.
    [38]王玉普,刘合,卓胜广等.海拉尔油田沉凝灰岩储层岩石稳定乳化压裂液的研制及应用[J].石油学报,2005, 26(5):67-70.
    [39]董强,陈彦东,卢拥军.乳化压裂液在低渗强水敏地层中的应用研究[J].钻井液与完井液,2006, 23(5):23-25.
    [40] Klm C M. Fracture Conductivity Damage Due to Crosslinked Gel Residue and Closureand Closure Stress on Propped 20/40 Mesh Sand[C]. 1985, SPE14436-MS.
    [41] Willberg D M, Card, R. J. Determination of the Effect of Formation Water on Fracture Fluid Cleanup Through Field Testing in the East Texas Cotton Valley[C]. 1997, SPE38620-MS.
    [42] CHASE B, CHMILOWSKI W, MARCINEW R, et a1.Clear Fracturing Fluids for Increased Well Productivity[J]. Oilfield Review, 1997, 9(3):20-33.
    [43] M.M. Samuel R J , Card E B, Nelson J E, Brown P S, Vinod H L. Temple, Q. Qu, D.K. Fu. Rheological properties of a new surfactant-based fracturing gel[J]. SPE Drilling and Completion , 1999, 14: 240–246.
    [44] G.C. Maitland, Curr. Opin. Methodology to break test for surfactant-based fracturing gel[J]. Colloid & Interface Sci, 2000, 5: 301–311.
    [45] M.M. Samuel. Methods of fracturing subterranean formations[P]. 2001, US Patent: 6306800.
    [46] JIANG Yang. Viscoelastic wormLike micelles and their applications[J].Current Opinion in Colloid & Interface Science, 2002, 7(5): 276-281.
    [47]刘俊.粘弹性表面活性剂流变性及其作为清洁压裂液的可行性研究[D].西南石油学院,2003.
    [48]李圣涛,陈馥等.粘弹性表面活性剂溶液流变性及评价方法[J].精细石油化工进展, 2005,12(6):26-28.
    [49] HORTON R L. Surfactant—polymer compositions for enhancing the stability of viscoelastic surfactant based fluid[P]. 2003, US20040063587.
    [50] LUNGWITZ B. Viscoelastic surfactant fluids stable at high brine concentrations[P]. 2001, US Patent: 6762154.
    [51] COUILLET I, HU GHES T, MAITLAND.G et a1. Synergistic effects in aqueous solutions of mixed wormLikemicelles and hydrophobically modified polymers [J]. Macromolecules, 2005, 38(12): 5271-5282.
    [52]Schlumberger Marketing Communications. PrimeFRAC [EB/OL]. http://www.Slb.corn/media/services/stimulation/fracturing/primefrac.pdf, 2001-08.
    [53] Halliburton Communications. Zero-DTM Fracturing FIuid. Systems[EB/OL]. http://www.halliburton.Corll/public/pe/contents/Data-Sheets/Web/H/H04458.pdf, 2005-05.
    [54] Schlumberger Marketing Communications. Fiber technology enhances proppant distribution[EB/OL].http://www.slb.com/media/services/stimulation/fracturing/fiberfrac.pdf7, 2005-04.
    [55] PALMORE L, MCKENZIE D. High-performance fracture fluid outperforms conventional fluids[J]. World Oil, 2003, 224(6): 23-25.
    [56] Pope D, Britt L. Field Study of Guar Removal from Hydraulic Fractures[C]. 1996, SPE31094-MS.
    [57] Shah S, Lord D L, Rao B N. CURLEW PROJECT-An Elegant Solution[C]. 1997, SPE37487-MS.
    [58] Wang X, Quu, Q, McCarthy, S, Null, J, Bowen, K. Successful Applications of Borate Crosslinked Fracturing Fluids at High Temperature[C]. 2002, SPE73789-MS.
    [59] Cheng Y, Brown, K M, Prud'homme, R K. Characterization and Intermolecular Interactions of Hydroxypropyl Guar Solutions[J]. Biomacromolecules, 2002, 3:456.
    [60]卢拥军.压裂液对储层的损害及其保护技术[J].钻井液与完井液,1995,12(5):36-43.
    [61]贺承祖,华明琪.压裂液对储层的损害及其抑制方法[J].钻井液与完井液,2003, 20(1): 49-53.
    [62]朱鸿亮,郎学军,李补鱼.低渗气藏低损害压裂液技术研究与应用[J].石油钻采工艺,2004,26(6): 54-58.
    [63]肖丹凤,王兆跃,洪怡春.大庆外围低渗透扶杨储层降低压裂液伤害问题探讨[J].采油工程,2006, 2: 39-43.
    [64]陈馥,李钦.压裂液伤害性研究[J].天然气工业,2006,26(1):109-111.
    [65] Mathew S, Roger J C, Nelson E B, et al. Polymer-free fluid for hydraulic fracturing[C]. 1997, SPE38622-MS: 554-599.
    [66] H. Prabhanjan, M. M. Gharia & H. C. Srivastava. Guar Gum Derivatives. Part I:Preparation and Properties. Carbohydrate Polymers 1989, 11: 279-292.
    [67]张广伦,肖正春.半乳甘露聚糖胶的研究生产和应用[J].中国野生植物,1990, 2:1-5.
    [68]何勤功,古大治.油田开发用高分子材料[M].北京:石油工业出版社, 1990.
    [69] Molyneux P. In Water-Soluble Polymers: Synthesis Solution Properties and Applications; S.W., McCormick, C.L., Butler,G. B., Eds.; ACS Symposium Series; American Chemical Society: Washington DC, 1991, 467, 232.
    [70] Reid, J. S. G, Edwards, M. E. Food. Polysaccharides and their Applications [M]. New York: Marecel Dekker 1995, 155-186.
    [71] Whistler, R. L, BeMiller, J. N. Industrial Gums: Polysaccharidesand Their Derivatives[M]. Academic Press, San Diego, CA. 1993.
    [72]王延军,顾立新.胍胶在牙膏中的应用[J].牙膏工业,1995, 3: 11-12.
    [73]唐燕祥.胍胶与田菁胶化学改性的研究进展[J].矿冶,1995, 4(3):67-73.
    [74]蒋建新,张卫明,朱莉伟,徐嘉生,安鑫南.半乳甘露聚糖型植物胶的研究进展[J].中国野生植物资源,2001,20(4):1-5.
    [75]王宗训等.田菁胶及其应用[M].北京:北京科学出版社, 1987.
    [76] Edwin G. Azero, Cristina T. Andrade. Testing procedures for galactomannan purification [J]. Polymer Testing, 2002, 21(5): 551-556.
    [77] B. R. Nayak, R. P. Singh. Synthesis and characterization of grafted hydroxypropyl guar gum by ceric ion induced initiation [J]. European polymer Joural, 2001, 37(8): 1655-1666.
    [78] Yu Cheng, Kirk M. Brown, and Robert K. Prud'homme, Characterization and Intermolecular Interactions of Hydroxypropyl Guar Solutions [J]. Biomolecules, 2002, 3(3): 456-461.
    [79]蒋建新,朱莉伟,张卫明等.塔拉多糖胶的研究[J].西南林学院学报,2003,22(4):l2-l6.
    [80]杨海洋,朱平平,何平笙.高分子物理实验[M].合肥:中国科学技术大学出版社,2008.
    [81]刘晓敏,董立峰.皂荚胍胶的提取及其性能[J],河北科技师范学院学报, 2007,21(3):33-35.
    [82] K.S. Parvathy, N.S. Susheelamm, R.N. Tharanathan, Anil Kumar Gaonkar. A simple non-aqueous method for carboxymethylation of galactomannans[J]. Carbohydrate Polymers, 2005, 62: 137–141.
    [83] Grasdalen,H.;Painter,T.NMR studies of composition and sequence in legume-seed galactomannans[J]. Carbohydr Res. 1980, 81: 59-66.
    [84]邹时英,王克,殷勤俭,江波.羟丙基胍胶的制备及表征[J],化学研究与应用, 2004,16(1):73-75.
    [85]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,1981.
    [86] Catherine Schorsch, Catherine Garnier, Jean-Louis Doublier.Viscoelastic properties of xanthan/galactomannan mixtures:comparison of guar gum with locust bean gum[J]. Carbohydrate Polymers. 1997, 34(3): 165-175.
    [87] McCleary B V, Clarck A H, Dea I C, Rees D A. The fine structures of carob and guar galactomannans[J]. Carbohydr.Res. 1985, 139: 237-260.
    [88] De Gennes P G. Scaling Concepts in Polymer Physics[M]. Ithaca, NY: Cornell University Press, 1979.
    [89] Pezron E ,Ricard A ,Lafuma F ,et al . Reversible gel formation induced by ion complexation: 1.Borax-galactomannan interactions[J]. Macromolecules. 1988, 21(4): 1121-1125.
    [90]吴金桥,张宁生,吴新民等.微胶囊包裹化学生热压裂液体系及其工艺技术研究[J].石油学报. 2005, 26(5): 116-119.
    [91]张汝生,卢拥军,汪永利等.低损害高弹性聚合物压裂液体系研究[J] .钻井液与完井液. 2006, 23(6): 12-14.
    [92]彭宝仔,罗虎,陈光进等.用界面张力法测定CO2与原油的最小混相压力[J].石油学报. 2007, 28(2): 93-95.
    [93]郝春山,苏月琦.低渗致密砂岩气田压裂改造技术[J].江汉石油学院学报,2003,25(3):101-102.
    [94] Jeff C. Dawson. Successful Application of a Novel Fracturing Fluid in the Wasatch Formation in Eastern Utah [C]. 1998, SPE49042-MS: P275-279.
    [95] Bruggem J.L, et al. Frac-and-pack completion of low permeabilify in West Africa[C]. 1996, SPE31112-MS: P315-316.
    [96] Janks, J.S. Identification and Properties of Modified Zeolites for the Removal of Benzene, Toluene, and Xylene From Aqueous Solutions [C]. 1991, SPE22833-MS.
    [97] Harris.P.C. Chemistry and rheology of borate-crosslinked fluids at temperatures to 3000F[C]. 1992, SPE24339-MS.
    [98]卢拥军,杜长虹.压裂液用有机硼络合交联剂[J],钻井液与完井液,1994,12:50.
    [99] E.Park , K.E.Olson, K.E.Cawlezel, T.D.Monroe et al. Systematic Approach to the Design and Application of a Well-Fracturing Fluid To Ensure Deepwater Production[C]. 2006, SPE103089-MS.
    [100] K. E. Cawiezel. Relation between Chemistry and Flow Mechanics of Borate-Crosslinked Fracturing Fluids [C]. 1989, SPE20077-MS.
    [101]卢拥军.有机硼压裂液延迟交联特性研究[J].石油与天然气化工,1995,24:134.
    [102] M J埃克诺米德斯,K G诺尔蒂著,康德良等译.油藏增产措施[M].北京:石油工业出版社,1991:178.
    [103] P. S. Virk. Drag reduction fundamentals [J]. AIChE J, 1975, 21: 625.
    [104] B. Hlavacek, L. A. Rollin, H. P. Schreiber. Drag reduction effectiveness of macromolecules [J]. Polymer. 1976, 17: 81.
    [105] Siriluck Suksamranchit, Anuvat Sirivat, Alexander M. Jamieson. Polymer–surfactant complex formation and its effect on turbulent wall shear stress[J]. Journal of Colloid & Interface Science. 2006, 294: 212-221.
    [106]奥野忠一等著,牛长山等译.实验设计方法[M].北京:机械工业出版社,1985:234-239.
    [107] Free, D. L. Fracturing subterranean formation[P]. 1976, US Patent: 3974077.
    [108] Wadhwa S. K. Cross-linking system for water based well fracturing fluids[P]. 1985, US Patent: 4514309.
    [109] Nelson E B, Constien V G, Cawiezel K E. Delayed borate crosslinked fracturing fluid having increased temperature range[P]. 1997, US Patent: 5658861.
    [110] Dawson J C, Hoang V L, Kesavan S. Polymer expansion for oil and gas recovery[P]. 2001, US Patent: 6649572.
    [111]何平笙.新编高聚物的结构与性能[M].北京:科学出版社,2009.
    [112] Granek R, Cates M E. J. Chem. Phys. 1992, 96: 4758.
    [113] Larson R G. The Structure and Rheology of Complex Fluids[M]. Oxford University Press: Oxford, 1999.
    [114]刘合,肖丹凤.新型低损害植物胶压裂液及其在低渗透储层中的应用[J].石油学报,2008, 29(6):880-884.
    [115]李和平.十二烷基二甲基氧化胺的合成及应用研究[J].精细石油化工,1995,6:34-37.
    [116]权艳梅,陈茂涛,胡旭光,王满学.二甲基二烯丙基氯化铵的合成鉴测及聚合研究[J].西安石油学院学报,1992,7(1):58-62.
    [117] Yamaguchi , Keisaburo. 3, 4' - Diaminodiphenyl ether[P]. JP. 1986, 61: 225155.
    [118]张龙庆.3,4'-二氨基二苯醚的制造过程[P].2005, CN: 1583713A.
    [119]傅献彩,沈文霞,姚天扬.物理化学[M].北京:高等教育出版社,1989.
    [120] Hinkel J J, Brown J E, Gadiyar B, et al. New environmentally friendly surfactant enhance swell clean-up [C]. 2003, SPE82214-MS,.
    [121]孙铭勤,张贵才,葛际江,铁磊磊.高温酸化助排剂HC2-1的研究[J].油气地质与采收率, 2006,13(2):93-96.
    [122] Washburn E.W. Thedynamics of capillary flow[J]. Physical Review. 1921, 17(3): 273-283.
    [123]北京大学胶体化学教研室.胶体与界面化学实验[M].北京:北京大学出版社,1993.
    [124]孙维林,王铁军,刘庆旺.粘土理化性能[M].北京:地质出版社,1992.
    [125]王平全,熊汉桥.粘土表面结合水定量分析及水合机制研究[M].北京:北京石油工业出版社,2002.
    [126]孙艳萍,李柏林,李科.阳离子PDMDAAC粘土稳定剂的研制[J].油气田地面工程. 2006,25(10):28.
    [127]宁廷伟.胜利油田开发和应用的粘土稳定剂[J].油田化学. 1999,16(1):77-78.
    [128] Grim R E. Clay Minerology [M]. First Edition. McGraw-Hill, 1953. 148.
    [129] Vesely D P. New DAP Mud System Shows Promise for RockyMountain Environmentally Sensitive Areas,”[C]. SPE17511, Rocky Mountain Regional Meeting, Casper, Wyoming, 1988, 11-13.
    [130] Himes R E, Vinson E F. Fluid Additive and Method for Treatment of Subterranean Formations.”[P]. 1989, U S Patent 4842073.
    [131] Beihoffer T W, Dorrough D S, Schmidt D D.“The Development of an Inhibitive Cationic Drilling Fluid for Slim-Hole Coring Applications,”[C]. SPE 19953, SPE/IADC Drilling Conference, Houston, Feb 27-March 2. 1990.
    [132] Arvind Patel, Emanuel Stamatakis, Steve Young, and Jim Friedheim, M-I Swaco. Advances in Inhibitive Water-Based Drilling Fluids—Can They Replace Oil-Based Muds?[C]. 2007, SPE106476-MS.
    [133] Bruton J R, McLaurine H C.“Modified Poly-Amino AcidHydration Suppressant Proves Successful in ControllingReactive Shales,”[C]. SPE 26237, SPE Annual Technical Conference, Houston, 1993.
    [134] Patel A, ThaemLitz C J, McLaurine H Can, Stamatakis E. Drilling Fluid Additive and Method for Inhibiting Hydration[P]. 1999, U S. Patent: 5908814.
    [135] Horton C, Jones A. Clay Stabilizing Agent and a Method of Use in Subterranean Formations to Inhibit Clay Swelling[P]. 1998, U S Patent: 5771971.
    [136] Patel A D, Stamatakis E, Davis E. Shale Hydration Inhibition Agent and Method of Use[P]. 2001, U S Patent: 6247543.
    [137]陈智敏.粘土稳定剂合成及其评价研究进展[J].化学工程与装备,2009,8:130-132.
    [138]任全益,马洪兴. SY/T5971-1994注水用粘土稳定剂性能评定方法.中国石油天然气总公司发布.
    [139]吴结丰,郭海军,吕仁亮,王永军,辛诺.原油破乳剂的研究进展[J].化学推进剂与高分子材料,2009,7(1):28-30.
    [140]吴利春,刘松涛,刘雪娟.原油破乳剂的发展现状[J].日用化学品科学,2008,31(11):8-10.
    [141]孙在春,丁德磐,徐梅清.破乳行为与破乳剂结构关系的研究[J].石油学报,1998,14(3):93-96.
    [142]龙政军.压裂液添加剂对压裂效果的影响及分析[J].钻采工艺,2002,25(2): 76-79.
    [143]张文胜.新型压裂液破胶剂的研究与应用[J].钻井液与完井液,2002,19(4): 10-12.
    [144]李健萍,王稳桃,王俊英,张晓英,赵保才.低温压裂液及其破胶技术研究与应用[J].特种油气藏,2009, 16(2): 72-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700