非线性系统自适应复合控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,对非线性伺服系统的控制性能要求也随之提高,传统的线性控制理论已经不能满足要求,近年来,各国学者和研究人员纷纷致力于非线性控制理论和应用的研究,并已经取得了卓有成效的成果。对于非线性系统来说,除极少数情况外,目前还没有一套可行的通用方法,而且每种方法只能针对某一类问题有效,不能普遍适用。因此寻求结合多种控制方法优势的非线性系统综合控制的有效方法成为本论文的主要研究课题。总的来说,伺服系统的控制目的是外加控制使得系统的输出能够较好的跟踪参考输入,且尽可能获得高质量的动态和稳态性能,并且具有较强的鲁棒性能。
     首先,论文对传统的Backstepping控制进行改进,削弱其应用的强制性假设条件,得到广义的Backstepping控制,在此基础上结合原始模型和规范化模型引入一种易于实现的神经网络自适应在线补偿技术解决系统的鲁棒性问题,并在规范化模型的基础上引入平滑轨迹跟踪滤波器前馈补偿使系统获得高质量的动态性能。
     其次,针对MIMO系统的Lyapunov渐进稳定性问题,考虑一般形式的参考输入信号,即稳态值为某个稳定的自治系统产生,结合内模理论构建条件伺服补偿器和滑模稳定控制器,在此基础上针对实际系统的未建模非线性部分,引入易于实现的神经网络自适应在线补偿技术较好的解决系统的鲁棒性问题,并引入平滑轨迹跟踪滤波器前馈补偿使系统获得高质量的动态性能。
     最后,以永磁同步电动机为实际的应用对象,将本论文所提出的两种反馈-前馈复合控制方法应用于永磁同步电动机的位置伺服控制,通过仿真和实验验证所提方法的正确性和有效性。
With the in-depth improvement of technology, the conventional linear control theory can not meet the request of higher satisfied dynamic performance of nonlinear servo control systems. Recently, many researchers applied themselves to nonlinear control theory and its applications and acquired many significant results. However, for nonlinear systems, despite of several special occasions, there is no a kind of feasible general method and each control method is only applicable to solve some class of problem. Thus, the main research of this paper is to seek a valid integrated control technique which takes advantages of multi control methods. In general, the control purpose is to make the output track the reference input preferably with the high dynamic, static and strong robust performance by exerting control on the nonlinear plant.
     Firstly, by weakening the strict suppose for its application, the conventional backstepping control method is extended to general backstepping control method. Then based on the original model and the normal model of system, the robust problem is solved by introducing a kind of Neural Network adaptive online compensation law which is easily to implement in practice. Moreover, based on the normal model of system, good dynamic performance is acquired by adding the nonlinear smooth trajectory filter (STF) feedforward.
     Secondly, aiming at the Lyapunov stability problem for MIMO nonlinear systems and considering general reference input i.e. its steady value are generated by some natural stable exosystem, the conditional servocompensator and slide mode stabilizer are designed based on internal model theory. Furthermore, the non-modeling nonlinear parts of system are compensated by introducing Neural Network adaptive online compensator and the dynamic performance of system is greatly improved by adding the nonlinear smooth trajectory filter strategy.
     Lastly, in this paper, considering the permanent magnet synchronous motor (PMSM) as the controlled plant, the proposed two feedback-feedforward integrated control methods are applied to implement the position servo control for PMSM. And the validity and effectiveness of the nonlinear control strategies are verified through the simulations and the practical DSP experiments.
引文
[1] Hassan K., KhalilI, “Nonlinear Systems”, Prentice Hall, 2001.
    [2] J. L., Casti, “Nonlinear system theory”, Academic, Orlando, FL, 1985.
    [3] Erwin, Kreyszig, “Advanced engineering mathematics”, Wiley, 1998.
    [4] Julius S. Bendat, “Nonlinear system techniques and applications”, Wiley, 1998.
    [5] Devaney, Robert L. “An introduction to chaotic dynamical systems”, Menlo Park, CA: Benjamin/Cummings, 1986.
    [6] Lorenz, Hans-Walter. “Nonlinear dynamical economics and chaotic motion”, Berlin: Springer-Verlag, 1993.
    [7] Puu, T?nu. “Attractions, Bifurcations, and Chaos”, Nonlinear Phenomena in Economics. New York: Springer, 2000.
    [8] Diederich Hinrichsen and Anthony J. Pritchard. “Mathematical Systems Theory I - Modelling, State Space Analysis, Stability and Robustness”, Springer Verlag, 2005.
    [9] Markley, Nelson G. “Principles of Differential Equatiosn”, Hoboken, N.J.: John Wiley, 2004.
    [10] R. Marino and P. Tomei, “Nonlinear adaptive design: Geometric, Adaptive, and Robust”, Printice-Hall, London, 1995.
    [11] M. Fliess, J. Levine, P. Martin and P. Rouchon, “Flatness and defect of nonlinear systems: introductory theory and example”, Inter. Journal of Control, Vol.61, pp.1327-1362, 1995.
    [12] Isidori, A. “Nonlinear control systems”(3rd ed.), Berlin:Springer, 1995.
    [13] V. I. Utkin, “Variable structure systems with sliding modes”, IEEE Trans. Automat. Control, Vol.22, pp.212-222, 1977.
    [14] F. R. Gantmacher, “The Theory of Matrices”, New York: Chelsea, 1959。
    [15] Song G., “Integrated sliding-mode adaptive-robust control”, Proceeding of the 1996 IEEE International Conference on Control Application.
    [16] Se-Kyo Chung, “Integral variable structure controller for current control of PWM inverter-fed AC motor”, Electric Machine and Power systems, Vol.27, pp.753-769., 1999.
    [17] H.Le-Hug, An adaptive current control scheme for PM synchronous motor drives: analysis and simulation, IEEE Trans. On Power Electronics, Vol.4, No.4, 1989.
    [18] H.C.Chen and C.M.liaw, “Sensorless control via intelligent commutation tuning for brushless DC motor”, IEE Proc. Electr. Power Appl., Vol.146, No.6, 1999.
    [19] P.Caravani and S.Di Gennaro, “Robust control of synchronous motors with nonlinearities and parameter uncertainties”, Automatica, Vol.34, No.4, pp445-450, 1998.
    [20] Wasim Khan, “Adaptive control of dc motor drives with inverter nonlinearities”, Int. J. Control, Vol.72, No.11, 1999.
    [21] Mohsen Ghribi, “Adaptive position control of a permanent-magnet synchronous motor drive”, Conference Record of 1990 IEEE IAS Annual Meeting, Vol.1.
    [22] C.M.Kwan, “Robust adaptive control of induction motors”, Int.J. Control, Vol.67, No.4, pp.539-552, 1997.
    [23] 周东华,《非线性系统的自适应控制导论》,清华大学出版社,2004。
    [24] J. J. E. Slotine and W. Li, “Applied Nonlinear Control”, Englewood Cliffs, NJ: Prentice-Hall, 1991.
    [25] 梅生伟,《现代鲁棒控制理论与应用》,清华大学出版社,2004。
    [26] 程代展,《先进鲁棒控制与自适应控制理论与应用》,清华大学出版社,2005。
    [27] C. I. Byrnes and A. Isidori, “Limit sets, zero dynamics and internal models in the problem of nonlinear output regulation,” IEEE Trans. Automat.Contr., vol. 48, pp. 1712–1723, Sept. 2003.
    [28] 张昌凡,《滑膜变结构的智能控制理论及应用研究》,科学出版社,2005。
    [29] Riccardo Marino Patrizio Tomei,《非线性系统设计—微分几何、自适应及鲁棒控制》,电子工业出版社,2006。
    [30] 周东华,孙优贤,《控制系统的故障检测与诊断技术》,清华大学出版社,1994。
    [31] 陈永利,《模糊集理论及其应用》,科学出版社,2005。
    [32] 何玉斌,《神经网络控制技术及其应用》,科学出版社,2000。
    [33] M. Krstic, I. Kanellakopoulos, P. V. Kokotovic, “Nonlinear and adaptive control design”, John Wiley & Sons, 1995.
    [34] 戴先中,《多变量非线性系统的神经网络逆控制方法》,科学出版社,2006。
    [35] 李春文,冯元琨,《多变量非线性控制的逆系统方法》,清华大学出版社,1991。
    [36] Rong-Jong Wai, “Total sliding-mode controller for PM synchronous servo motor drive using recurrent fuzzy neural network”, IEEE Transactions on Industrial Electronics, Vol.48, No.5, pp.926 -944, 2001.
    [37] R.F. Fung, K.W. Chen and J.Y. Yen, “Fuzzy, sliding mode controlled slider-crank mechanism using a PM synchronous servo motor drive”, I. J. of Mechanical Sciences, Vol.41, 337-355, 1999.
    [38] Kevin M. Passino, Stephen Yurkovich, 《Fuzzy Control(模糊控制)》,清华大学出版社,2001。
    [39] M. Sugeno, “Industrial application of fuzzy control”, Elsevier, Amsterdam, The Netherlands, 1985.
    [40] K. Tanaka and M. Sano. “A robust stabilization problem of fuzzy control systems and its application to backing up control of a truck-trailer”. IEEE Trans. on Fuzzy Systems, 2(2):119–134, 1994.
    [41] K. Tanaka and M. Sugeno. “Stability analysis and design of fuzzy control systems”, Fuzzy Sets and Systems, 45:135–156, 1992.
    [42] Wonham, W. M., “Towards an abstract internal model principle”, IEEE Trans. Sys., Man, and Cyber., pp.735-740.
    [43] Sridhar Seshagiri and Hassan K. Khalil, “On introducing integral action in sliding mode control”, Proceedings of the 41st IEEE Conference on Decision and Control, pp.1473-1748, 2002.
    [44] Davison EJ., “The robust control of a servomechanism problem for linear time-invariant multivariable systems”, IEEE Transactions on Automatic Control, Vol.21, pp.25-34, 1976.
    [45] Huang J, Rugh WJ., “On a nonlinear multivariable servomechanism problem”, Automatica, Vol.26, pp.963-972, 1990.
    [46] Bynes CI, Isidori A. “Output regulation for nonlinear systems: an overview”, International Journal of robust and nonlinear control, Vol.10, pp.323-337, 2000.
    [47] H. K. Khalil, “Robust servomechanism output feedback controllers for feedback linearizable systems,” Automatica, vol. 30, pp. 1587-1599, 1994.
    [48] Huang J., Lin CF., “On a robust nonlinear multivariable servomechanism problem”, IEEE Transactions on Automatic Control, Vol.39, pp.1510-1513, 1994.
    [49] Francis BA, Wonham WM., “The internal model principle of control theory”, Automatica, Vol.12, pp.457-465, 1976.
    [50] CA. Desoer and C.L. Gustafson, “Algebraic Theory of Linear Multivariable Systems”, IEEE Trans. Automat. Contr., pp.909-917, 1984.
    [51] Hepburn, J.S.A. and Wonham, W.M., “Error Feedback and Internal Models on Differentiable Manifolds”, IEEE Trans. Automat. Contr., pp.397-403, 1984.
    [52] Hepburn, J.S.A., “The Role of Internal Models in Regulation”, Proc. Amer. Contr. Conf, pp.1315-1321, 1985.
    [53] Pernebo, L., “An Algebraic Theory for Design of Controllers for Linear Multivariable Systems - Part 11”, IEEE Trans. Automat.Contr., pp.183-193, 1981.
    [54] Kamen, E.W., “Tracking in Linear Time-Varying Systems”, Proc. 1989 American Control Conference, pp.263-268, 1989.
    [55] B.A. Francis, et al, “Synthesis of Multivariable Regulators: The Internal Model Principle”, Appl. Math. Opt., pp.64-86, 1974.
    [56] B.A. Francis and W.M. Wonham, “The Internal Model Principle for Linear Multivariable Regulators”, Appl. Math. Opt.,1975.
    [57] W.M. Wonham, “Linear Multivariable Control: A Geometric Approach”, 2nd. edition, Springer-Verlag, 1979.]
    [58] A. Isidori and C. I. Byrnes. “Output regulation of nonlinear systems”, IEEE Transactions on Automatic Control, Vol.35, pp.131-140, 1990.
    [59] J.C.多伊尔[美]和B.A.弗朗西斯[加拿大],《反馈控制理论》,清华大学出版社,1993。
    [60] 方康玲,王新民,《过程控制系统》,武汉理工大学出版社,2002。
    [61] Tae Kyoon Ha, Chung Hyuk Yim, “Generalized approach to robust feedforward control and its application to servo control”, Power Electronics Congress, 1996. Technical Proceedings. CIEP '96., V IEEE International, pp.47-52, 1996.
    [62] Knobloch H., Isidori A., Flockerzi D., “Topics in Control Theory”, DMV-Seminar Series. Birkhauser: Boston, 1993.
    [63] A. Isidori, Noniliear Control Systems, Vol. I, Springer Verlag, London, 1995.
    [64] Boerlage, M., Tousain, R., Steinbuch, M., “Jerk derivative feedforward control for motion systems”, American Control Conference, 2004., Vol.5, pp.4843–4848.
    [65] King, R.J., “Feedforward control laws for the buck converter”, IEEE 4th Workshop on Computers in Power Electronics, pp.192-197, 1994.
    [66] Chun-Liang Lin, Yi-Hsing Hsiao, “Adaptive feedforward control for disturbance torque rejection in seeker stabilizing loop”, IEEE Transactions on Control Systems Technology, Vol.9, pp.108-121, 2001.
    [67] Jian Zhan, Zhang, J.S., Fu Li, Zhigang Fan, “Parallel feedforward equalization-a new nonlinear adaptive algorithm”, 1995 International Conference on Acoustics, Speech, and Signal Processing, Vol.3, pp.1848-1851, 1995.
    [68] 陈伯时,《电力拖动自动控制系统—运动控制系统》,机械工业出版社,2005。
    [69] 符曦,《高磁场永磁式同步电动机及其驱动系统》,机械工业出版社,1997。
    [70] 陈志雄,《数控机床与数控编程技术》,电子工业出版社,2007。
    [71] R.Zanasi, C.Guarino Lo Bianco, A.Tonielli, “Nonlinear filters for the generation of smooth trajectories”, Automatica, Vol.36, pp.439-448, 2000.
    [72] Leonhard, W., “Control of electrical drives”, Berlin: Springer, 1985.
    [73] Rossi, C., & Tonielli, A., “A unifying approach to robust control of electrical motor drives”, Proceedings of international conference on industrial electronic control instruments and automatics, IECON’92, San Diego, pp.95-100, 1992.
    [74] Rossi, C., & Tonielli, A., “Robust control of permanent magnet motors: VSS techniques lead to simple hardware implementation”, IEEE Transactions on Industrial Electronics, Vol.44, pp.451-460, 1994.
    [75] C.Guarino Lo Bianco, A.Tonielli and R.Zanasi, “Nonlinear trajectory generator”, IECON’96—22nd annual international conference on the IEEE Industrial Electronics Society, Taipei, Taiwan, 1996.
    [76] R.Zanasi, C.Guarino Lo Bianco, A.Tonielli, “Nonlinear filters for the generation of smooth trajectories”, NOLCOS’98, University of Twente, Enschede, The Netherlands, 1998.
    [77] Chiman Kwan and F. L. Lewis, “Robust backstepping control of nonlinear systems using neural networks,” IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 30, no. 6, pp. 753-766, 2000.
    [78] Z. Chen and J. Huang, “Nonlinear internal model and the robust output regulation problem,” in Proc. 2003 Amer. Control Conf., Denver, CO, June2003, pp. 1560–1565.
    [79] R.Zanasi, C.Guarino Lo Bianco, A.Tonielli, “Nonlinear filters for the generation of smooth trajectories”, Automatica, Vol.36, pp.439-448, 2000.
    [80] Sridhar Seshagiri and Hassan K. Khalil, “Robust output regulation of minimum phase nonlinear systems using conditional servocompensators”, Int. J. Robust Nonlinear Control, Vol. 15, pp: 83-102, 2005.
    [81] B.K.Bose, Power electronics and variable frequency drives technology and application, IEEE Press., 1997.
    [82] Ge S.S. etc., “Stable adaptive neural network control”, Kluwer, Academic Publishers, 2002.
    [83] 高为炳,《变结构控制理论及设计方法》,科学出版社,1996。
    [84] B.K.Bose, “Power electronics and variable frequency drives technology and application”, IEEE Press., 1997.
    [85] D.G. Taylor, “Nonlinear control of electric machines: an overview”, IEEE Control Systems Magazine, Vol.14, No.6, pp. 41-51, 1994.
    [86] T.G.. Park, “SMC-based adaptive input-output linear control of induction motor”, IEE Proceeding Control Theory and Application, Vol.145, No.1, 1998.
    [87] Jian-xin Xu, “On adaptive robust back-stepping control scheme suitable for PM synchronous motors”, International Journal of control, Vol.70, No.6, pp.893—920, 1998.
    [88] Fliess, M., and Sira-Ramirez, H., “A module theoretic approach to sliding mode control of linear systems”, Proceedings of the IEEE Conference on Decision and Control, San Antonio, Texas, USA, pp.1322-1323, 1993.
    [89] P.V. Kokotovic, and R. Marino, “On vanishing stability regions in nonlinear systems with high gain feedback,” IEEE Trans. Automat. Contr., vol. 31, pp. 967-970, 1986.
    [90] Sira-Ramirez, H., “On the sliding mode of multivariable nonlinear systems”. International Journal of Control, pp. 745–765, 1996.
    [91] Young, K. K. D., Utkin, V. I., and Ozguner, U., “A control engineer’s guide to sliding mode control”, IEEE Transactions on Control, Systems Technology, Vol.7, pp.328-342, 1999.
    [92] M. Fliess, J. Levine, P. Martin and P. Rouchon, “Flatness and defect of nonlinear systems: introductory theory and example”, Inter. Journal of Control, Vol.61, pp.1327-1362, 1995.
    [93] Levine, J., Lottin, J., and Ponsart, J.C., “A nonlinear approach to the control of magnetic bearings”, IEEE transactions on Control Systems Technology, No.4, pp.524- 544, 1996.
    [94] Martin, P., and Rouchon, P., “Flatness and sampling control of induction motors”, Proceedings of the 13th Triennial World Congress, San Francisco, California, USA, pp.389-394, 1996.
    [95] 苏春翌,“变结构控制系统的理论及其应用”,控制理论及应用,Vol.7, No.3, 1990.
    [96] S.G.. Lyshevski, “Motion control of electromechanical servo-devices with PM stepper motor”, Mechatronics, Vol.7, No.6, pp.521-536, 1997.
    [97] 夏超英,《交直流传动系统的自适应控制》,机械工业出版社,1998。
    [98] K.S. Narendra and K. Partthasarathy, “Identification and control of dynamical sustems using neural networks”, IEEE, Trans. Neural Network, Vol.1, No.1, pp.4-27, 1990.
    [99] F.J. Lin, “Adaptive fuzzy sliding mode control for PM synchronous motor”, IEE Proceeding Control Theory and Application , Vol.145, No.1, 1998.
    [100] F. L. Lewis, S. Jagannathan and A. Yesildirek, “Neural network control of robot manipulators and nonlinear systems”, Taylor & Francis, Philadephia, 1999.
    [101] O. Wallmark, “Control of a permanent magnet synchronous motor with non-Sinusoidal flux density distribution,” Master Degree Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2001.
    [102] M. Kitamura, Y. Enomoto, J. Kaneda, and M. Komuro, “Cogging torque due to roundness errors of the inner stator core surface,” IEEE Transactions on Magnetics, vol.39, no. 3, pp. 1622-1625, May 2003.
    [103] Ouassaid, M., Cherkaoui, M., Zidani, Y, “A nonlinear speed control for a PM synchronous motor using an adaptive backstepping control approach”, 2004 IEEE International Conference on Industrial Technology, Vol.3, pp.1287-1292, 2004.
    [104] Tan X, Zhang J, Yang Y. “Synchronizing chaotic systems using backstepping design”, Chaos, Solitons & Fractals, Vol.16, pp.37-46, 2003.
    [105] P.V. Kokotovic, “Bode lecture: The joy of feedback,” IEEE Contr. Syst. Mag., No.3, pp.7–17, 1992.
    [106] T. C. Burg, D. M. Dawson, J. Hu, and P. Vedagarbha, “Velocity tracking control for a separately excited DC motor without velocity measurements,” in Proc. Amer. Contr. Conf., pp.1051–1056, 1994.
    [107] D. Dawson, J. J. Carroll, and M. Schneider, “Integrator backstepping control of a brush DC motor turning a robotic load,” IEEE Trans. Contr. Syst. Technol., vol.2, no.3, 1994.
    [108] S. R. Chu and R. Shoureshi, “Neural-based adaptive nonlinear system identification”, in Intelligent Control Systems, ASME Winter Annu. Meet., vol. DSC-45, 1992.
    [109] B. Horn, D. Hush, and C. Abdallah, “The state space recurrent neural network for robot identification,” in Advanced Control Issues for Robot Manipulators, ASME Winter Annu. Meet., vol. DSC-39, 1992.
    [110] F. C. Chen and H. K. Khalil, “Adaptive control of nonlinear systems using neural networks,” Int. J. Control, vol. 55, no. 6, pp. 1299–1317, 1992.
    [111] K. S. Narendra, “Adaptive control using neural networks,” in Neural Networks for Control. Cambridge, MA: MIT Press, pp.115–142, 1991.
    [112] T. Ozaki, T. Suzuki, T. Furuhashi, S. Okuma, and Y. Ushikawa, “Trajectory control of robotic manipulators”, IEEE Trans. Ind. Electron., vol.38, pp. 195–202, 1991.
    [113] X. Cui and K. G. Shin, “Direct control and coordination using neural networks”, IEEE Trans. Syst., Man, Cybern., Vol. 23, No.3, 1993.
    [114] A. R. Barron, “Universal approximation bounds for superposition of a sigmoidal function,” IEEE Trans. Inform. Theory, Vol. 39, No. 3, 1993.
    [115] N. Sadegh, “Nonlinear identification and control via neural networks,” in Control Systems with Inexact Dynamic Models, ASME Winter Annu. Meet., Vol.33, 1991.
    [116] C. M. Kwan, F. L. Lewis, and Y. H. Kim, “Robust neural network control of rigid link flexible-joint robots,” Asian J. Control, Vol.1, No. 3, pp.188–197, 1999.
    [117] R. M. Sanner and J. J. Slotine, “Stable adaptive control and recursive identification using radial Gaussian networks,” in Proc. IEEE Conf. Decision and Control, 1991.
    [118] J. Hung and C.F. Lin, “On a robust nonlinear servomechanism problem”, IEEE Transactions on Automatic Control, Vo1.39, pp.1510-1513, 1994.
    [119] C. I. Byrnes, F. Delli Priscoli, A. Isidori and W. Kang, “Structurally stable output regulation of nonlinear systems,” Automatica, Vo1.33, pp.369-385, 1997.
    [120] J. Huang, “Remarks on robust output regulation problem for nonlinear systems,” IEEE Transactions on Automatic Control, Vo1.46, pp. 2028-2031, 2001.
    [121] Young, K. D., Utkin, V. I., & Ozguner, U., “A control engineers guide to sliding mode control”, IEEE Transactions on Control Systems Technology, Vol.7, pp.328–342, 1999.
    [122] Khalil HK., “Universal integral controllers for minimum phase nonlinear systems”, IEEE Transactions on Automatic Control, Vol.45, pp.490–494, 2000.
    [123] Abhyudai Singh, Hassan K. Khalil, “Regulation of nonlinear systems using conditional integrators”, International Journal of Robust and Nonlinear Control, Vol.15, pp.339-362, 2005.
    [124] Khalil HK. “On the design of robust servomechanisms for minimum phase nonlinear systems”, International Journal of Robust and Nonlinear Control, Vol.10, pp.339-361, 2000.
    [125] Sridhar Seshagiri, Hassan K. Khalil, “Robust output regulation of minimum phase nonlinear systems using conditional servocompensators”, International Journal of Robust and Nonlinear Control, Vol.15, pp.83-102, 2005
    [126] J. Huang and Z. Chen, “A general framework for tackling output regulation problem”, Proceedings of the American Control Conference, pp.102-109, 2002.
    [127] A. Serrani, A. Isidori, and L. Marconi, “Semiglobal nonlinear output regulation with adaptive internal model,” IEEE Trans. Automat. Contr., vol. 46, pp. 1178–1194, July 2001.
    [128] Zhiyong Chen, Jie Huang, “A general formulation and solvability of the global robust output regulation problem,” in Proc. 42nd IEEE Conf. Decision Control, Maui, HI, pp. 1017–1079, 2003.
    [129] C.I. Byrnes, A. Isidori, “Nonlinear Internal Models for Output Regulation”, IEEE Trans. on Automatic Control, Vol. 49, pp. 2244-2247, 2004.
    [130] Teel,A.R., “Global stabilization and restricted tracking for multiple integrators with bounded controls”, Systems and Control Letters, Vol.18, pp.165-171, 1992.
    [131] Lee,E.B. and Markus,L., “Foundations of optimal control theory”, New York: Wiley, 1967.
    [132] Ryan,E.P., “Optimal relay and saturation control”, synthesys. London:Peter Peregrinus Ltd.
    [133] Roberto Zanasi and Riccardo Morselli, “Discrete minium time tracking problem for a chain of three integrators with bounded input”, Automatica, Vol.39, pp.1643-1649, 2003.
    [134] Sira-Ramirez, H., “Differential geometric methods in variable structure control”, International Journal of Control, pp. 1359–1390.
    [135] H.L. Huy, “An adaptive current control scheme for PWM synchronous motor”, IEEE Trans.on Power Elect., Vol.4, No.4, 1989.
    [136] A. Sabanobic, “Application of sliding modes to induction motor control”, IEEE Trans.on Ind.App., Vol.17, pp.41-49, 1981.
    [137] J. Chen and P.C. Tang, “A sliding mode current control scheme for PWM brushless DC motor drives”, IEEE Trans. On PE, Vol.14, No.3, 1999.
    [138] Zhang J, Li C, Zhang H, Yu J., “Chaos synchronization using single variable feedback based on backstepping method”. Chaos,Solitons & Fractals, Vol.21, pp.1183–93, 2004.
    [139] K. S. Narendra and A. M. Annaswamy, “A new adaptive law for robust adaptation without persisitent excitation,” IEEE Trans. Automat. Contr., Vol.32, pp.134–145, 1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700