自锚式斜拉—悬索协作体系桥设计相关问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自锚式斜拉—悬索协作体系桥是在现代自锚式悬索桥和斜拉桥基础上形成的一种新型缆索承重桥梁,具有受力合理、适应性强、工程造价低等优点,已建成一座并有多座在进行方案设计。本文针对自锚式斜拉—悬索协作体系桥在设计中的相关问题进行研究,主要研究内容如下:
     1、对自锚式斜拉—悬索协作体系桥的几何非线性分析在精确求解中存在的问题和不足展开研究。以C.R.法为基础研究梁单元的刚体转动,分别使用梁单元的形函数法和稳定函数法计算轴向变形以考虑二阶效应的影响,在求解策略上提出了位移缩减法和多次循环法以提高梁单元非线性求解的收敛性;采用求解单元抗力向量的全量法计算轴向受力单元和索单元,指出了索单元求解中可能存在的多解现象,针对这种现象推导了双杆单元法来获取单索问题的良好初值,提出了多初值求解法以防止发散和舍弃伪解,同时在索结构的求解中引入阻尼刚度矩阵以提高非线性分析的鲁棒性;最后通过各单元有代表性的算例验证算法的收敛性和精度,为后续自锚式斜拉—悬索协作体系桥的分析提供保障。
     2、通过研究确定了自锚式斜拉—悬索协作体系桥恒载状态的设计变量、约束条件和目标函数,其中考虑了荷载因素和非荷载因素对目标函数确定的影响,并通过约束松弛的二次规划算法进行优化求解,给出了基于有限元的总刚度矩阵减少结构重分析的策略,提出了获取自锚式斜拉—悬索协作体系桥恒载状态的两阶段循环法,通过已建成的庄河建设大桥分析验证该方法的有效性。
     3、针对04公桥规附录F中给出的混凝土徐变系数幂函数表达式,提出了适合于递推法的指数函数表达式,并采用混合算法进行拟合。即首先用遗传模拟退火算法对徐变系数曲线进行初步拟合,估计传统非线性迭代计算中参数的初值,再通过基于Levenberg-Marquardt法和Gauss-Newton法的非线性最小二乘法对徐变系数进行精确的拟合,最后通过结果分析确定了指数函数表达式的最终形式,给出了徐变计算中各系数的取值表。基于此指数函数表达式和按龄期调整的有效弹模法,以力的增量形式推导了徐变的递推表达式,并编制相应的程序分析了新规范中徐变对自锚式斜拉—悬索协作体系桥的影响。
     4、通过对比几种常见桥型中采用的结合段构造,分析其优缺点,对金州海湾大桥的钢混结合部进行了试设计,提出了考虑材料非线性的多级收敛准则。针对自锚式斜拉—悬索协作体系桥中钢梁与混凝土梁结合部的多种连接方式,应用有限元软件ANSYS,建立了板单元与实体单元相结合的空间有限元模型,考虑了钢构件与混凝土之间的粘结滑移特征,以研究结合段的传力机理、应力分布特点和局部稳定性等问题,通过两种主要荷载工况下的结合部有限元分析,讨论了不同构造下接触面的应力分布、剪力连接器的内力状况、钢梁的剪力滞效应,得到了结合段的多级稳定系数,给出了提高结合部稳定系数的途径,为设计和评价自锚式斜拉—悬索协作体系桥钢混结合段的性能提供依据。
     5、对自锚式斜拉—悬索协作体系桥在结构设计中计算效率不高的问题进行研究。首先回顾了桥梁设计的发展演变过程,简单介绍了现代设计方法,提出将现代设计方法融入到桥梁设计中,主要体现在利用协同设计综合其他现代设计方法进行结构分析,对目前应用于桥梁分析的软件进行功能划分,研究自锚式斜拉—悬索协作体系桥的协同方法;讨论自锚式斜拉—悬索协作体系桥的结构描述方法,引入并行计算提高结构分析效率,使用Tcl/Tk开发桥梁分析的图形显示模块,实现了基于协同分析的软件系统开发,初步实现了现代设计方法在自锚式斜拉—悬索协作体系桥设计中的应用。
The self-anchored cable-stayed-suspension bridge is a new type of cable supported bridges, originating from modern self-anchored suspension bridges and cable-stayed bridges. It takes a lot of advantages, i.e. reasonable mechanical behaviors, strong foundation adaptability, saving cost. One of this bridge type was accomplished and several other bridges were in scheme design. In this paper, some problems about the bridge design are studied. The main research work covers the following aspects:
     1. Problems and shortages about accurate solution of geometric nonlinear analysis in self-anchored cable-stayed-suspension bridges are studied. C.R. method is used to study the rigid body rotation of beam element. The axial deformation is calculated by shape function and stability function method to take second-order effects into account. A displacement reduction and multi-cycle method are proposed to improve the nonlinear solution convergence of beam element. The element resistance vectors of axial and cable elements are calculated by total lagrange method. The cable element may exists multiple solutions is put forward. In order to solve the problem, a double bars element method is derived to obtain a good initial value and a multi-initial values method is proposed to prevent divergence and abandon spurious results. Meanwhile, a damping stiffness matrix is introduced in the cable element solution to improve the nonlinear analysis robustness. The elements are verified by the representation examples to prove the convergence and precision, which offer guarantee for the further analysis of self-anchored cable-stayed-suspension bridges.
     2. The permanent load state is investigated for the self-anchored cable-stayed-suspension bridge. Design variables, constraint conditions and objective functions are then determined, where the load and non-load factors are considered. A quadratic programming method for constraint relaxation is used to solve the optimization problem, and a method about how to reduce structure reanalysis by the global stiffness matrix is presented to improve the solution speed. Finally, a two stage cycle method is proposed to obtain the permanent load state of self-anchored cable-stayed-suspension bridges, and Zhuanghe Jianshe Bridge is studied to verify the effectiveness.
     3. A hybrid algorithm is adopted to fit the creep coefficient power function introduced in China standard of 2004 highway PC bridge appendix F into exponential function, from which can obtain the successive expression of the creep. The curve of creep coefficient is firstly fitted by the genetic simulated annealing algorithm to estimate the initial data, and then based on the Levenberg-Marquardt method and Gauss-Newton method, the curve is exactly fitted by the nonlinear least square method. The exponential function is determined by the result analysis at last. Based on the exponential function and age-adjusted effective modulus method, the successive expression of the creep is derived. According to the corresponding program, the influences of creep to a self-anchored cable-stayed-suspension bridge are analyzed.
     4. Compared with several steel-concrete joints of usual bridge type, the advantages and disadvantages are analyzed and the steel-concrete joint of Jinzhou Bay Bridge is trial designed. A multi-convergence criterion is proposed by material nonlinearity. In order to analyze the connection modes of steel-concrete joints, a space finite element model that contains solid elements and shell elements is built by ANSYS. The bond-slip behavior of steel and concrete is taken into account, which aims to study the problems of transfer mechanism, stress distribution, local stability and so on. Finally, the joint is analyzed by two main load cases and the stress distribution of contact surface, internal force of shear connectors and shear-lag effect of steel girder are discussed, from which the multi-stability coefficient of joint are obtained. Ways to increase stability coefficients are also put forward. The method can be applied to design and estimate the steel-concrete joint performance of self-anchored cable-stayed-suspension bridges.
     5. The problem about low computational efficiency during the structural design of self-anchored cable-stayed-suspension bridges is studied. The development and evolution of bridge design process is reviewed and the modern design methods are introduced. In order to take modern design methods into bridge engineering, the cooperative design method is used to integrate other modern design methods to bridges design. The bridge analysis softwares are divided by functions and the cooperation method is studied. The structure description way is discussed and parallel computation is inducted to improve the analysis efficiency. Tcl/Tk is used to develop the graphic display module. Based on cooperative analysis, the software system is realized and the frame rudiment of self-anchored cable-stayed-suspension bridges is established by modern design methods.
引文
[1]Gimsing N J. Cable supported bridges[M]. John Wiley & Sons Ltd,1983.
    [2]肖汝诚,项海帆.斜拉—悬吊协作体系桥力学特性及其经济性能研究[J].中国公路学报.1999,12(03):43-48.
    [3]Cheng J, Cai C S, Xiao R, et al. Flutter reliability analysis of suspension bridges [J]. Journal of Wind Engineering and Industrial Aerodynamics.2005,93(10): 757-775.
    [4]Boonyapinyo V, Lauhatanon Y, Lukkunaprasit P. Nonlinear aerostatic stability analysis of suspension bridges[J]. Engineering Structures.2006,28(5):793-803.
    [5]Knapman J. Stability of the space cable[J]. Acta Astronautica.2009,65(1-2): 123-130.
    [6]Vik M, Pakdemirli M. Non-linear vibrations of suspension bridges with external excitation[J]. International J. of Non-Linear Mechanics.2005,40(6):901-923.
    [7]Au F T, Cheng Y S, Cheung Y K, et al. On the determination of natural frequencies and mode shapes of cable-stayed bridges [J]. Applied Mathematical Modelling.2001, 25(12):1099-1115.
    [8]Yoo H, Choi D H. Improved system buckling analysis of effective lengths of girder and tower members in steel cable-stayed bridges [J]. Computers & Structures.2009, 87(13-14):847-860.
    [9]王会利.自锚式斜拉—悬索协作体系桥结构性能分析与试验研究[D].大连:大连理工大学,2007.
    [10]Matson D D. Lions'Gate Suspension Bridge:Design of the Suspended Structure Replacement[C]. New York, New York:ASCE,2005.
    [11]Zhang D M, Huang H W, Yang J. Long-Term Displacement of Concrete Anchor Foundation of Suspension Bridge in Soft Soils[C]. Shanghai, China:ASCE,2006.
    [12]Heo G, Lee W S, Lee G, et al. Field validation of a wireless sensor unit using self-anchored suspension bridge[C]. San Diego, CA, USA:SPIE,2006.
    [13]Zhang X. Influence of some factors on the aerodynamic behavior of long-span suspension bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics. 2007,95(3):149-164.
    [14]Nagai M, Xie X, Yamaguchi H, et al. Economical comparison between cable-stayed and suspension systems with a span exceeding 1000 meters[J]. Journal of Constructional Steel Research.1998,46(1-3):59-59.
    [15]蒙云,刘东,孙淑红.大跨度P-F-C吊拉组合桥设计研究[J].重庆交通学院学报.1999,18(04):8-12.
    [16]Tang M C. Analysis of cable-stayed bridge [J]. Journal of the Structural Division. 1971,97:1481-1496.
    [17]Fleming J F. Nonlinear static analysis of cable-stayed bridge structures[J]. Computers & Structures.1979,10(4):621-635.
    [18]高征铨,汪嘉铨,陈忆渝.大跨度斜张桥的非线性分析——天津永和斜张桥几何非线性研究[J].北京工业大学学报.1982(02):34-58.
    [19]Bruno D, Leonardi A. Nonlinear analysis of cable-stayed bridges eccentrically loaded[C].1986.
    [20]Nazmy A S, Abdel-ghaffar A M. Three-dimensional nonlinear static analysis of cable-stayed bridges[J]. Computers & Structures.1990,34(2):257-271.
    [21]程庆国,潘家英,高路彬,等.关于大跨度斜拉桥几何非线性问题[C].同济大学出版社,1992.
    [22]陈政清,曾庆元,颜全胜.空间杆系结构大挠度问题内力分析的UL列式法[J].土木工程学报.1992,25(05):34-44.
    [23]Kanok-nukulchai W, Hong G. Nonlinear modelling of cable-stayed bridges[J]. Journal of Constructional Steel Research.1993,26(2-3):249-266.
    [24]Karoumi R. Some modeling aspects in the nonlinear finite element analysis of cable supported bridges[J]. Computers & Structures.1999,71(4):397-412.
    [25]梁鹏.超大跨度斜拉桥几何非线性及随机模拟分析[D].上海:同济大学,2004.
    [26]梁鹏,肖汝诚,孙斌.超大跨度斜拉桥几何非线性精细化分析[J].中国公路学报.2007,20(02):57-62.
    [27]吴光宇.大跨P.C.桥梁非线性行为的分析理论及其极限承载力计算研究[D].杭州:浙江大学,2007.
    [28]Brotton D M. A general computer program for the solution of suspension bridge problems[J]. The structural Engineer.1966,44(5):161-167.
    [29]Hou K M H A F Y. Nonlinear finite element analysis of elastic frames[J].1986, 26(4):693-701.
    [30]张国政.铁路悬索桥非线性分析及其极限承载能力的研究[D].北京:铁道部科学研究院,1994.
    [31]潘永仁.悬索桥的几何非线性静力分析及工程控制[D].上海:同济大学,1996.
    [32]肖汝诚.确定大跨径桥梁结构合理设计状态的理论与方法研究[D].上海:同济大学,1996.
    [33]Kim H K, Lee M J, Chang S P. Non-linear shape-finding analysis of a self-anchored suspension bridge[J]. Engineering Structures.2002,24(12):1547-1559.
    [34]罗喜恒.复杂悬索桥施工过程精细化分析研究[D].上海:同济大学,2004.
    [35]李传习.混合梁悬索桥非线性精细计算理论及其应用[D].湖南:湖南大学,2006.
    [36]颜东煌.斜拉桥合理设计状态确定与施工控制[D].长沙:湖南大学,2001.
    [37]苗家武.超大跨度斜拉桥设计理论研究[D].上海:同济大学,2006.
    [38]黄侨,吴红林,杨大伟.确定斜拉桥成桥索力多约束条件下最小能量法[J].哈尔滨工业大学学报.2007,39(2):288-291.
    [39]杨俊.基于影响矩阵的大跨桥梁合理成桥状态与施工控制研究[D].武汉:武汉理工大学,2008.
    [40]Zienkiewicz O C, Watson M, King I P. A numerical method of visco-elastic stress analysis[J]. International Journal of Mechanical Sciences.1968,10(10):807-827.
    [41]Bazant Z P. Prediction of concrete creep effects using age-adjusted effective modulus method[J]. ACI Journal.1972,69(4):212-217.
    [42]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,1979.
    [43]鲍卫刚.混凝土结构的徐变计算[J].华东公路.1988(05):40-50.
    [44]宁平华,鲍卫刚.公路桥涵设计规范徐变系数的解析[J].公路.1990(03):6-8.
    [45]杜国华毛昌时,司徒妙龄.桥梁结构分析[M].上海:同济大学出版社,1993.
    [46]刘忠.混凝土徐变收缩的递推AEMM法[J].重庆交通学院学报.1994,13(5):31-34.
    [47]杨美良,李传习,夏桂云.初应变法在节段施工桥梁徐变分析中的应用[J].长沙交通学院学报.2000,16(03):46-52.
    [48]颜东煌,田仲初,李学文,等.混凝土桥梁收缩徐变计算的有限元方法与应用[J].中国公路学报.2004,17(02):55-58.
    [49]李学文,姚康宁,颜东煌.利用最小二乘法实现2004规范徐变系数的指数函数拟合[J].长沙交通学院学报.2006,22(03):20-24.
    [50]余报楚,张哲,李生勇,等.一种混凝土桥梁徐变的有效计算方法[J].哈尔滨工业大学学报.2006,38(06):994-996.
    [51]占玉林,向天宇,赵人达.几何非线性结构的徐变效应分析[J].工程力学.2006,23(07):45-48.
    [52]Leonhardt. Development and test of a new shear connector for steel concrete composite bridges[C].1995.
    [53]O E C, H M U. A parametric study of perfobond rib shear connectors [J]. Canadian Journal of Civil Enginnering.1994,21(4):614-625.
    [54]Oguejiofor E C, Hosain M U. Numerical analysis of push-out specimens with perfobond rib connectors[J]. Computers & Structures.1997,62(4):617-624.
    [55]董春燕,罗世东,雷俊卿.混合梁自锚式悬索桥结合段连接方式的比选研究[C].北京交通大学学报,2006.
    [56]夏嵩,赵灿晖,张育智,等.PBL传剪器极限承载力的试验研究[J].西南交通大学学报.2009,44(02):166-170.
    [57]Nakamura S, Momiyama Y, Hosaka T, et al. New technologies of steel/concrete composite bridges[J]. J. of Constructional Steel Research.2002,58(1):99-130.
    [58]文武松,汪双炎,王邦楣.混合型斜拉桥连接部位的传力研究[J].桥梁建设.1997,(03):75-81.
    [59]叶梅新,蒋彪.混合型自锚式悬索桥连接部位传力研究[J].铁道科学与工程学报.2006,3(03):1-6.
    [60]胡建华,侯文崎,黄琼.混合梁自锚式悬索桥钢混接合段结构形式的对比试验研究[J].铁道科学与工程学报.2007,4(05):28-34.
    [61]郑舟军,陈开利.混合梁斜拉桥结合段剪力钉受力机理研究[J].武汉理工大学学报(交通科学与工程版).2008,32(04):767-770.
    [62]刘玉擎.混合梁接合部设计技术的发展[J].世界桥梁.2005(04):9-12.
    [63]刘荣,刘玉擎.混合梁结合部连接件受力分析[C].《哈尔滨工业大学学报》编辑部,2007.
    [64]高荣雄.混合梁斜拉桥施工控制技术研究[D].武汉理工大学,2005.
    [65]杨琪.大跨度斜拉桥空间几何非线性仿真分析及其软件开发[D].成都:西南交通大学,2003.
    [66]唐茂林.大跨度悬索桥空间几何非线性分析与软件开发[D].成都:西南交通大学,2003.
    [67]李玉华,集成化桥梁工程CAD系统[N].大连理工大学
    [68]徐郁峰.大跨度预应力混凝土斜拉桥施工控制理论与核心技术研究及软件开发[D].华南理工大学,2004.
    [69]陈明.基于规范知识的桥梁抗震CAD系统研究[D].上海:同济大学,2004.
    [70]杨兴旺.大跨度斜拉桥施工全过程非线性行为研究[D].成都:西南交通大学,2006.
    [71]唐平波,肖汝诚.桥梁CAD系统集成化相关研究的现状与展望[C].长沙:人民交通出版社,2004.
    [72]瞿尔仁,黄曦,王超,等.CSCW环境下的桥梁设计系统研究[J].合肥工业大学学报(自然科学版).2001,24(05):921-925.
    [73]潘伟辉,华成,胡玉兰.协同设计技术在土木工程设计中的应用前景探讨[J].工程建设与设计.2004,(08):87-88.
    [74]柯宇.施工图阶段各工种协同设计的研究[C].杭州:中国建材工业出版社,2008.
    [75]Sim L M, Negr J H. Optimization of cable-stayed bridges with box-girder decks[J]. Advances in Engineering Software.2000,31 (6):417-423.
    [76]Chen D W, Au F T, Tham L G, et al. Determination of initial cable forces in prestressed concrete cable-stayed bridges for given design deck profiles using the force equilibrium method[J]. Computers & Structures.2000,74(1):1-9.
    [77]Wang P H, Lin H T, Tang T Y. Study on nonlinear analysis of a highly redundant cable-stayed bridge[J]. Computers & Structures.2002,80(2):165-182.
    [78]Macdonald J H. Evaluation of buffeting predictions of a cable-stayed bridge from full-scale measurements[J]. Journal of Wind Engineering and Industrial Aerodynamics.2003,91(12-15):1465-1483.
    [79]Sung Y C, Chang D W, Teo E H. Optimum post-tensioning cable forces of Mau-Lo Hsi cable-stayed bridge[J]. Engineering Structures.2006,28(10):1407-1417.
    [80]Song W K, Kim S E. Analysis of the overall collapse mechanism of cable-stayed bridges with different cable layouts[J]. Engineering Structures.2007,29(9): 2133-2142.
    [81]Biondini F, Frangopol D M, Malerba P G. Uncertainty effects on lifetime structural performance of cable-stayed bridges[J]. Probabilistic Engineering Mechanics Dedicated to Professor Ove Ditlevsen.2008,23(4):509-522.
    [82]Buckland P G. Increasing the Load Capacity of Suspension Bridges [J]. Journal of Bridge Engineering.2003,8(5):288-296.
    [83]Pourzeynali S, Datta T K. Semiactive Fuzzy Logic Control of Suspension Bridge Flutter[J]. Journal of Structural Engineering.2005,131(6):900-912.
    [84]Serzan K, Khazem D, Edwards N. Emergency Suspension Cable Reinforcement of Waldo Hancock Bridge[C]. New York, New York:ASCE,2005.
    [85]Spoth T, Serzan K, Condell S. The New Tacoma Narrows Suspension Bridge:Design of the Suspended Superstructure[C]. New York, New York:ASCE,2005.
    [86]Mal J. Generalized nonlinear models of suspension bridges[J]. Journal of Mathematical Analysis and Applications.2006,324(2):1288-1296.
    [87]Juozapaitis A, Vainiunas P, Kaklauskas G. A new steel structural system of a suspension pedestrian bridge[J]. Journal of Constructional Steel Research.2006, 62(12):1257-1263.
    [88]Mal J. Nonlinear models of suspension bridges[J]. Journal of Mathematical Analysis and Applications.2006,321(2):828-850.
    [89]颜东煌,李学文,刘光栋,等.混凝土斜拉桥合理成桥状态确定的分步算法[J].中国公路学报.2003,16(1):43-46.
    [90]杨俊.确定自锚式悬索桥吊杆合理成桥张拉力的综合方法探讨[J].北方交通.2008(10):38-41.
    [91]狄谨,武隽.自锚式悬索桥主缆线形计算方法[J].交通运输工程学报.2004,4(03):38-43.
    [92]程斌,肖汝诚.自锚式悬索桥主缆线形计算非线性规划方法[J].深圳大学学报(理工版).2008,25(02):140-146.
    [93]刘厚军,刘钊.自锚式悬索桥吊索张力及主缆线形的设计研究[J].土木工程学报.2008,41(03):79-83.
    [94]彭苗,卢哲安.空间缆索自锚式悬索桥成桥状态的确定方法[J].公路交通科技.2008,25(11):101-104.
    [95]胡建华,唐茂林,崔建峰,等.自锚式悬索桥恒载吊索力的设计方法研究[J].桥梁建设.2007(02):39-42.
    [96]段明德.《公路钢筋混凝土及预应力混凝土桥涵设计规范》徐变系数的计算和应用[J].中国公路学报.1998,11(04):70-76.
    [97]肖汝诚.桥梁结构分析及程序系统[M].北京:人民交通出版社,2002.
    [98]陈德伟,郑信光,项海帆.混凝土斜拉桥的施工控制[J].土木工程学报.1993,26(01):1-11.
    [99]胡狄.预应力混凝土桥梁徐变效应分析[D].中南大学,2004.
    [100]苗家武,肖汝诚,裴岷山,等.苏通大桥斜拉桥静力稳定分析的综合比较研究[J].同济大学学报(自然科学版).2006,34(07):869-873.
    [101]何政,欧进萍.钢筋混凝土结构非线性分析[M].哈尔滨工业大学出版,2007.
    [102]满晓麟,王书庆,石洞.软件构件化技术及其在桥梁CAD中的应用[J].计算机应用研究.2000,(09):72-74.
    [103]潘永仁.悬索桥结构非线性分析理论与方法[M].北京:人民交通出版社,2004.
    [104]朱慈勉,吴维华,陈栋.TL法和UL法对刚架弹性大位移分析的适用性[J].力学季刊.2001,22(01):104-111.
    [105]Mattiasson K, Samuelsson A. Total and updated Lagrangian forms of the co-rotational finite element formulation in geometrically and materially nonlinear analysis[M]. Pineridge Press Limited,1984.
    [106]范志良.考虑几何非线性的杆单元应变公式[J].力学与实践.1995,17(01):63-64.
    [107]吕和祥,朱菊芬,马莉颖.大转动梁的几何非线性分析讨论[J].计算力学学报.1995,12(04):485-490.
    [108]吴力宁,王新敏.平面杆系几何非线性分析的刚度矩阵[J].石家庄铁道学院学报.1993,6(01):1-10.
    [109]Yang Y, Kuo S. Theory and Analysis of Nonlinear Framed Structures[M]. New York: Prentice Hall PTR,1994.
    [110]Yang Y B, Leu L J. Non-linear stiffnesses in analysis of planar frames[J]. Computer Methods in Applied Mechanics and Engineering.1994,117(3-4):233-247.
    [111]陈惠发.梁柱分析与设计第一卷[M].北京:人民交通出版社,1997.
    [112]李国强,刘玉姝.一种考虑初始缺陷影响的非线性梁单元[J].计算力学学报.2005,22(01):69-72.
    [113]洪锦如.桥梁结构计算力学[M].上海:同济大学出版社,1998.
    [114]李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社,2002.
    [115]Kuo-mo H, Horng-jann H, Yeh-ren C. A corotational procedure that handles large rotations of spatial beam structures[J]. Computers & Structures.1987,27(6): 769-781.
    [116]丁泉顺,陈艾荣,项海帆.大跨度桥梁实用几何非线性分析[C].南京:同济大学出版社,2000.
    [117]邱文亮.自锚式悬索桥非线性分析与试验研究[D].大连:大连理工大学,2004.
    [118]蔡松柏,沈蒲生.大转动平面梁有限元分析的共旋坐标法[J].工程力学.2006,23(S1):69-72.
    [119]周凌远,李乔.基于UL法的CR列式三维梁单元计算方法[J].西南交通大学学报.2006,41(06):690-695.
    [120]铁摩辛柯著,张福范译.弹性稳定理论[M].北京:科学出版社,1958.
    [121]卢耀祖,李悦.有限元计算中用间隙元模拟非线性弹性支承[J].上海汽车.1997(04):5-6.
    [122]铁摩辛柯著,肖敬勋等译.材料力学[M].天津:天津科学技术出版社,1989.
    [123]Sanfan S A. theoretical analysis of suspension bridges[J]. Journal of the Structural Division.1966,92(4):1-11.
    [124]Chen Z Q, Agar T J. Geometric nonlinear analysis of flexible spatial beam structures[J]. Computers & Structures.1993,49(6):1083-1094.
    [125]蔡聪明.悬链线趣谈[J].科学月刊.1997,28(0336).
    [126]陈仁福.大跨悬索桥理论[M].成都:西南交通大学出版社,1994.
    [127]Irvine H M. Cable Structures[M]. MIT Press,1981.
    [128]O'brien, T. w. And Francis A J. Cable movement under two-dimensional loading[J]. J. Struct. Eng. Div.1964, ASCE,90(ST3):89-123.
    [129]O'brien T W. General Solution of Suspended Cable Problems[J]. J. Struct. Eng. Div.1967, ASCE,93(ST1):1-26.
    [130]Pevrot, A. H. And Goulois A M. Analysis of cable structures[J]. Computers & Structures.1978,10(5):805-813.
    [131]Jayaraman H B, Knudson W C. A curved element for the analysis of cable structures[J]. Computers & Structures.1981,14(3-4):325-333.
    [132]Coyette J P, Guisset P. Cable network analysis by a nonlinear programming technique[J]. Engineering Structures.1988,10(1):41-46.
    [133]Desai Y M, Popplewell N, Shah A H, et al. Geometric nonlinear static analysis of cable supported structures [J]. Computers & Structures.1988,29(6):1001-1009.
    [134]Bell K A A A J. The analysis of cables subject to uniformly distributed loads [J]. 1988,3(10):174-184.
    [135]Levinson D A, Kane T R. A usable solution of the hanging cable problem[J]. Computers & Structures.1993,46(5):821-844.
    [136]Huddleston J V, Ham H J. Poisson Effect in Extensible Cables with Both Ends Fixed[J]. J. Engrg Mech., ASCE.1994,120(7):1590-1595.
    [137]李强兴.斜拉索静力解[J].桥梁建设.1996(03).
    [138]李强兴.斜拉索静力解(续)[J].桥梁建设.1997(01):74-75.
    [139]Russell J C, Larder T J. Statics experiments on an elastic catenary [J]. JOURNAL OF ENGINEERING MECHANICS.1997,123(12):1322-1324.
    [140]聂建国,陈必磊,肖建春.悬链线索单元算法的改进[J].力学与实践.2003(04).
    [141]魏建东,刘忠玉.四种不同形式的弹性悬索静力解答[J].空间结构.2005(02).
    [142]Andreu A, Gil L, Roca P. A new deformable catenary element for the analysis of cable net structures[J]. Computers & Structures.2006,84(29-30):1882-1890.
    [143]王慧东.悬索桥施工控制分析与恒载初内力分析的解析迭代法[J].桥梁建设.1994(01):64-69.
    [144]魏建东.斜拉桥拉索的参数振动及其控制[D].成都:西南交通大学,1999.
    [145]黄炎,兰伟仁.高压柔性传输线的非线性变形分析[J].工程力学.2007,24(06):185-188.
    [146]杨俊.综合弯曲能量法和应力平衡法确定斜拉桥合理成桥状态[D].武汉:武汉理工大学,2005.
    [147]任亮,张璟.自锚式悬索桥合理成桥索力探讨[J].公路交通技术.2007(5):53-55.
    [148]颜东煌,李学文,刘光栋,等.用应力平衡法确定斜拉桥主梁的合理成桥状态[J].中国公路学报.2000,13(3):49-52.
    [149]张建民,肖汝诚.斜拉桥合理成桥状态确定的一阶分析法[J].力学季刊.2004,25(02):297-303.
    [150]谭冬莲.大跨径自锚式悬索桥合理成桥状态的确定方法[J].中国公路学报.2005,18(2):51-55.
    [151]张建民.大跨度斜拉桥施工过程中的索力优化与线形控制[D].上海:同济大学,2004.
    [152]Wang P H, Tang T Y, Zheng H N. Analysis of cable-stayed bridges during construction by cantilever methods[J]. Computers & Structures.2004,82(4-5):329-346.
    [153]Papadopoulos P G, Arethas J, Lazaridis P, et al. A simple method using a truss model for in-plane nonlinear static analysis of a cable-stayed bridge with a plate deck section[J]. Engineering Structures.2008,30(1):42-53.
    [154]Nakamura S, Tanaka H, Kato K. Static analysis of cable-stayed bridge with CFT arch ribs[J]. Journal of Constructional Steel Research.2009,65(4):776-783.
    [155]Lute V, Upadhyay A, Singh K K. Computationally efficient analysis of cable-stayed bridge for GA-based optimization[J]. Engineering Applications of Artificial Intelligence.2009,22(4-5):750-758.
    [156]杜国华,姜林.斜拉桥的合理索力及其施工张拉力[J].桥梁建设.1989,(03):11-17.
    [157]范立础,杜国华,马健中.斜拉桥索力优化及非线性理想倒退分析[J].重庆交通学院学报.1992,11(01):1-13.
    [158]陆楸,徐有光.斜拉桥最优索力的探讨[J].中国公路学报.1990,3(01):38-48.
    [159]王勋文,辛学忠,潘家英,等.确定PC斜拉桥合理恒载索力方法的探讨[J].桥梁建设.1996(4):1-4.
    [160]肖汝诚,项海帆.斜拉桥索力优化及其工程应用[J].计算力学学报.1998,15(1):118-126.
    [161]巩春领,陶海,吴文明,等.斜拉桥合理成桥状态确定的序列二次规划法[J].力学季刊.2005,26(2):305-309.
    [162]Wei J, Li C. Optimization Analysis of Cable Tensions for Suspension Erection of Long-Span CFST Arch Bridge[C]. Chengdu, China:ASCE,2009.
    [163]程耿东.工程结构优化设计基础[M].北京:水利电力出版社,1984.
    [164]张哲.混凝土自锚式悬索桥[M].北京:人民交通出版社,2005.
    [165]Atora J S. Survey of structural reanalysis techniques[J]. J of the Structural Division.1976,102(4):1029-1045.
    [166]黄传奇.一种精确结构静力重分析法[J].计算力学学报.1996,13(03):295-302.
    [167]刘钢,王忠辉,沈为平.静力问题及应力影响函数的重分析方法[J].上海交通大学学报.1995,29(05):148-152.
    [168]刘亮,翟宇毅.桁架结构重分析的一种新方法[J].计算力学学报.1998,15(02):149-160.
    [169]刘蓉华.结构优化设计中的一种简捷的重分析方法[J].西南交通大学学报.1992,87(05):72-78.
    [170]周履,陈永春.收缩徐变[M],北京:中国铁道出版社,1994.
    [171]王忠彬.混凝土收缩徐变对自锚式悬索桥的影响分析[D].成都:西南交通大学,2006.
    [172]中华人民共和国交通部.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTGD62-2004)[M].北京:人民交通出版社,2004.
    [173]E G D. Genetic Algorithms in Research, Optimization and Machine Learning[M]. Addison-Westley:Publishing company,1989.
    [174]刘勇等.非数值并行算法第二册遗传算法[M].北京:科学出版社,1995.
    [175]P J M, van Laarhoven, Aarts E H L. Simulated Annealing:Theory and Applications[M]. Dordrecht:D. Reidal Publishing Company,1987.
    [176]康立山等.非数值并行算法第一册模拟退火算法[M].北京:科学出版社,1994.
    [177]王凌.智能优化算法及其应用[M].北京:清华大学出版社,2001.
    [178]王凌,郑大钟.一种GASA混合优化策略[J].控制理论与应用.2001,18(04):552-554.
    [179]雷英杰,张善文,李续武等.MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005.
    [180]王雪梅,王义和.模拟退火算法与遗传算法的结合[J].计算机学报.1997,20(04):381-384.
    [181]刑文训.现代优化计算方法[M].北京:清华大学出版社,1999.
    [182]谭冬莲,肖汝诚.基于Levenberg-Marquardt算法的桥梁结构静力参数识别[J].交通运输工程学报.2005,5(03):56-59.
    [183]陈宝林.最优化理论与算法(第二版)[M].北京:清华大学出版社,2005.
    [184]赵灿晖.钢拱肋、钢桥塔钢—混连接段传力机理及设计原理[J].学术动态.2008,(03):7-111
    [185]吴文明,刘玉擎,蒋劲松,等.混合拱肋钢与混凝土结合部局部模型试验研究[J].公路交通科技(应用技术版).2008,40(04):111-114.
    [186]吴文明,刘玉擎,蒋劲松.组合拱肋连接部钢与混凝土结合性能试验研究[C].《北京交通大学学报》编辑部,2006.
    [187]华渝生.重庆石板坡长江大桥复线桥工程[M].重庆:重庆出版社,2008.
    [188]东北路立交加宽改造工程模型试验研究报告[R].大连:大连理工大学桥梁研究所,2007.
    [189]严国敏.日本一座别具一格的斜拉桥——浜名湖曲塔混合梁斜拉桥[J].国外桥梁.1997(01):1-5.
    [190]江见鲸.钢筋混凝土结构非线性有限元分析[M].陕西科学技术出版社,1994.
    [191]Adeli H, Zhang J. Fully nonlinear analysis of composite girder cable-stayed bridges[J]. Computers & Structures.1995,54(2):267-277.
    [192]W R, R O W. Description of Stress-Strain Curves by Three Parameters[R]. Washington D. C:National Advisory Committee for Aeronautics,1943.
    [193]中国建筑科学研究院.钢筋混凝土结构设计与构造——85年设计规范背景资料汇编[M].北京:中国建筑科学研究院,1985.
    [194]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003.
    [195]张建仁.基于概率理论的荷载分项系数分析研究[J].中国公路学报.1993,6(01):55-60.
    [196]龚曙光,谢桂兰.ANSYS操作命令与参数化编程[M].北京:机械工业出版社,2004.
    [197]Ansys中国.ansys结构分析指南(中)[Z].2004.
    [198]Yam L C P, Chapman J C. The inelastic behaviour of continuous composite beams of steel and concrete[J]. Proc. Inst. Civ. Eng.1972,53(3):487-501.
    [199]Bradford M A, Gilbert R I. Nonlinear behaviour of composite beams at service loads[J]. The Structural Engineer.1989,67(4):263-268.
    [200]尹定邦.设计学概论[M].长沙:湖南科学技术出版社,2000.
    [201]叶元烈.机械现代设计方法学[M].北京:中国计量出版社,2000.
    [202]钱令希.赵州桥的承载能力分析[J].土木工程学报.1978,20(04):39-48.
    [203]宋飞舟.现代工业工程[M].山西:山西科学技术出版社,2004.
    [204]Gerhard P, Wolfgang B.工程设计学[M].北京:机械工业出版社,1992.
    [205]彭俊生,罗永坤.结构概念分析与SAP2000应用[M].成都:西南交通大学出版社,2005.
    [206]李晓莉.独塔斜拉桥的设计理论研究[D].上海:同济大学,2006.
    [207]郭鹏飞,韩英仕.结构优化设计[M].沈阳:东北大学出版社,2005.
    [208]周济.智能设计[M].北京:高等教育出版社,1998.
    [209]李刚,程耿东.基于性能的结构抗震设计理论、方法与应用[M].北京:科学出版社,2004.
    [210]阮欣,陈艾荣,石雪飞.桥梁工程风险评估[M].北京:人民交通出版社,2008.
    [211]钟志华,周彦伟.现代设计方法[M].武汉:武汉理工大学出版社,2001.
    [212]芮延年.协同设计[M].北京:机械工业出版社,2003.
    [213]李丽平,郭庆华,潘欣,等.桥梁CAD软件的现状与发展趋势[J].公路交通技术.2004,(01):43-45.
    [214]邓亮.三维协同设计在工厂建筑设计中的应用[J].钢铁技术.2008,(01):43-48.
    [215]ANSYS CHINA. ANSYS协同仿真环境[J]. CAD/CAM与制造业信息化.2004,(06):110-111.
    [216]熊光楞,郭斌,陈晓波,等.协同仿真与虚拟样机技术[M].北京:清华大学出版社,2004.
    [217]唐沛蓉,黄春,杨学军,等.Co-array Fortran编译器的设计与实现[J].计算机工程.2007,33(23):84-86.
    [218]李晓梅,吴建平.数值并行算法与软件[M].北京:科学出版社,2007.
    [219]Dongarra J, Foster I, Fox G, et al. sourcebook of parallel computing[M]. Elsevier Science,2003.
    [220]都志辉.高性能计算并行编程技术-MPI并行程序设计[M].北京:清华大学出版社,2001.
    [221]多核系列教材编写组.多核程序设计[M].北京:清华大学出版社,2007.
    [222]周树荃,邓绍忠.有限元结构分析并行计算的若干研究进展[J].南京航空航天大学学报.1995,27(01):27-32.
    [223]李生勇.自锚式悬索桥结构可靠性研究[D].大连:大连理工大学,2007.
    [224]张智畯.基于并行模糊遗传算法的结构动力优化方法研究[D].成都:四川大学,2007.
    [225]陈蓝.桥梁CAD若干问题[C].上海:同济大学出版社,1995.
    [226]吴鸿庆,任侠.结构有限元分析[M].北京:中国铁道出版社:2000.
    [227]黄穗.用Tcl/Tk开发Linux下的图形界面应用[J].计算机工程与设计.2002,23(01):52-54.
    [228]BrentBWelch著,崔凯译.Tcl/Tk编程权威指南[M].北京:中国电力出版社,2002.
    [229]Ousterhout J K. Tcl and the Tk [M]. Addison-Wesley Publishing Company,1994.
    [230]周波,杨贯中,蔡宇辉.TCL/TK语言结构分析及其在网络教学中的应用[J].计算机工程.2002,28(04):258-260.
    [231]马兴义.Matlab 6应用开发指南[M].北京:机械工业出版社,2002.
    [232]刘志俭.MATLAB应用程序接口用户指南[M].北京:科学出版社,2000.
    [233]ANSYS Inc. Release 10.0 Documentation for ANSYS[DB/CD].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700